Contents

List of Contributors XXIII
Preface XXVII

Part I Laboratory Building and Laboratory Equipment – Subjects of Laboratory Design of Building and Equipment 1
Egbert Dittrich

1 Introduction: Laboratory Typologies 3
Christoph Heinekamp
1.1 Purpose 4
1.2 Science Direction 5
1.3 Fields of Activities 6
1.4 Working Methods 8
1.5 Physical Structure 8
1.5.1 What is the Conclusion Resulting from the Evaluation of the Lab Allocation Tree? 8
1.5.2 Use-Specific and Building-Related Needs and Requirements 9
1.5.3 Determination of the Areas for Independent Buildings or Special Components 10
1.5.4 Determination of the Areas as Restricted Areas 10
1.5.5 Areas with Locks and Access Area 10
1.5.6 Determination of Areas with Special Requirements Regarding Fire and Explosion Protection 11
1.5.7 Determination of Areas for the Laboratory Equipment 11
1.5.8 Determination of Areas for Special Laboratories 11
1.5.9 Determination of Standard Laboratory Areas 11
1.5.10 Conception Laboratory Building 11
1.6 Conclusion 12

2 Requirements and Determination of Requirements 13
Christoph Heinekamp
2.1 Area Misuse through Wrong Grids 16
2.1.1 Determination of Requirements of Workplaces and Storage Space for Extra Equipment 16
2.1.2 Flexible Laboratory Space 20

3 Laboratory Concept and Workstations 21
Christoph Heinekamp

4 Determination of User Needs – Goal-Oriented Communication between Planners and Users as a Basis for Sustainable Building 31
Berthold Schiemenz and Stefan Krause
4.1 Work Areas 33
4.2 Work Flows and Room Groups 34

5 Corporate Architecture – Architecture of Knowledge 37
Tobias Ell
5.1 Image - The Laboratory as a Brand 38
5.2 Innovation - The Laboratory as the Origin of Knowledge 39
5.3 Excellence: The Laboratory as a Magnet for High Potentials 40

6 Scheduler Tasks in the Planning Process 43
Markus Hammes
6.1 Project Preparation 44
6.2 Integral Planning Teams 44
6.3 User Participation 45
6.4 Planning Process 45
6.5 Execution Phase 46
6.6 Commissioning 46
6.7 Conclusion 47
6.8 Best Practice 47
6.8.2 Project: Max Planck Institute for Aging Biology, Cologne, Germany 50

7 Space for Communication in the Laboratory Building 55
Markus Hammes
7.1 Definition of Terms 55
7.2 Historical Development 56
7.3 Development in the Modern Age - Why and When Were These Ideal Conceptions Lost? 57
7.3.1 Why Is Communication Important in the Laboratory Building? 60
7.3.1.1 Communication Promotes Knowledge and Innovation 60
7.3.1.2 Communication and Safety in the Laboratory is Not a Contradiction 61
Contents

7.3.2 How Does Space for Communication Evolve? 61
7.4 Conclusion for Future Concepts 61

8 Fire Precautions 63
Markus Bauch
8.1 Preventive Fire Protection 63
8.1.1 Scope 63
8.1.1.1 Fire Protection 63
8.1.2 Legal Framework – Construction Law 64
8.1.3 Model Building Code 64
8.1.3.1 Walls, Ceilings, and Roofs 65
8.1.3.2 Ceilings, Roofs 65
8.1.3.3 Section 33 (MBC) 66
8.1.4 Special Building Codes 67
8.1.5 Other Rules and Regulations Including Structural Fire Protection Requirements for Laboratories 67
8.1.5.1 TRGS 526/BGR 120/BGI 850-0 67
8.1.5.2 Escape and Rescue Routes 68
8.1.5.3 Doors 68
8.1.5.4 Shut-Off Valves 68
8.1.5.5 Fire Alarm Systems 68
8.1.5.6 Air Ventilation Units 69
8.2 Fire Protection Solution for Laboratory Buildings 69
8.3 Fire Protection Solutions for Laboratory Buildings – Examples 70
8.3.1 Classic Laboratory 70
8.3.2 Laboratory Units 71
8.3.3 Open Architecture Laboratories 72
8.3.4 Particular Cases 73
8.3.5 Problem of Existing Buildings 74

Part II Layout of Technical Building Trades 77
Egbert Dittrich

9 Development in Terms of Building Technology and Requirements of Technical Building Equipment 81
Hermann Zeltner
9.1 Field of Research 82
9.2 Required Flexibility of Laboratory Areas 83
9.3 Number of Floors, Height of the Floor, and Development Extent of the Laboratory Area (Laboratory Landscape) 85
9.4 Plumbing Services 86
9.5 Electrical Installation 88
9.6 Ventilation 89
9.7 Determination and Optimization of the Air Changes Quantities and Definition of Air Systems Required 90
9.8 Creation of an Energy-Optimized Duct System 93

10 Ventilation and Air Conditioning Technology 95
Roland Rydzewski
10.1 Introduction 95
10.1.1 General Note 96
10.2 Air Supply of Laboratory Rooms 96
10.2.1 Extract Systems 97
10.2.2 Removal of Room Cooling Load 98
10.2.3 Supply Air 99
10.3 Air-Flow Routing in the Room 99
10.3.1 Mixed Ventilation 101
10.3.2 Displacement Ventilation 101
10.4 Numerical Flow Simulation (Computational Fluid Dynamics (CFD)) 102
10.4.1 Case Example 1: Comparison of Supply-Air Systems: Swirl Diffuser + Ceiling Sail/Textile Diffuser 104
10.4.2 Case Example 2: Comparison of Supply-Air Systems: Swirl Diffuser, Flush with the Ceiling/Displacement Diffuser on the Ceiling 104
10.4.3 Case Example 3: Ventilation Optimization of a Model Lab Room 105
10.4.4 Case Example 4: Laboratory for Laser Physics (Fritz-Haber-Institute Berlin) 108
10.5 Energy-Efficient Systems Engineering 110
10.5.1 Fans 110
10.5.2 Heat Recovery 111
10.5.3 Humidity Treatment of Supply Air 113
10.6 Installation Concepts for Laboratory Buildings from the Point of View of Ventilation and Air-Conditioning Planning 114
10.6.1 Arrangement of the Central Ventilation Unit in the Building 114
10.6.2 Central Units 116
10.6.3 Vertical Access 116
10.6.4 Horizontal Access 117

11 Electrical Installations 119
Oliver Engel
11.1 Power Supply 119
11.1.1 General Distribution 119
11.1.2 Shutdowns 120
11.1.2.1 Emergency Shutdown 120
11.1.3 Consumers 120
11.1.3.1 Plug Connections 120
11.1.3.2 Switches and Sockets 120
11.1.3.3 Motors 121
11.1.3.4 Rotational Speed Control with Frequency Converter 121
11.1.3.5 Pumps 121
11.1.3.6 Vacuum Pumps 121
11.1.4 Routes 122
11.1.4.1 Air Ducts 122
11.1.5 Hazard Analysis 124
11.1.5.1 Equipment with Special Risks 124
11.1.5.2 Danger Symbols and Sources of Danger 124
11.1.5.3 Explosion Danger through Electrostatic Charge and Protection Measures 124
11.1.5.4 EMC 124
11.1.5.5 Regulations for Access to High-Voltage Laboratories 124
11.1.5.6 Noise Protection 125
11.1.5.7 Explanation: Trained Electrician 125
11.1.6 Instruction 125
11.1.6.1 Explanation: Electrotechnically Instructed Person 125
11.1.7 Behavior in Case of Electrical Accidents 125
11.2 Lightings 126
11.2.1 Lighting Systems 126
11.2.2 Illuminance Level 126
11.2.3 Lighting Control 126
11.2.4 Lighting Regulation 126
11.2.5 Emergency Lighting 127
11.3 Data Networks 127
11.3.1 Data Systems Technology 127
11.3.2 Fire Alarm System 128
11.3.3 Telephone System 128
11.3.4 Access Control 128
11.3.5 Miscellaneous 128
11.4 Central Building Control System 129
11.4.1 Nodal Points 129
11.4.1.1 Planning and Coordination across Trades and Disciplines 129
11.4.1.2 Signaling Devices and Warnings 129
11.4.2 Regulation 129
11.4.2.1 Air Volumes 130
11.4.3 Operating Modes 130
11.4.3.1 Operation 130
11.4.4 Monitoring 130

12 Service Systems via Ceiling 133

Hansjürg Lüdi

12.1 General Discussion 133
12.2 Flexible Laboratory Room Sizes/Configuration 134
12.2.1 Planning 134
12.2.2	Height 135
12.2.3	Width 135
12.2.4	Depth 136
12.2.5	Analytic/Composition Areas 136
12.2.6	Room within Room Solutions 137
12.2.7	Flexible Separation Walls 137
12.2.8	Reconfiguration due to Change in Work Content or Process 138
12.3	Major Differentiating Components 139
12.3.1	Ventilation 139
12.3.2	Lighting 140
12.3.3	Other Services 141
12.3.4	Prefabrication and Installation of Service Ceiling 141
12.3.5	3D CAD Design versus 2D Planning 142

13 Laboratory Logistics 145

Ines Merten

13.1	Classic Systems 145
13.1.1	Drawbacks of Classic Systems 146
13.2	Centralization and Implementation of Logistics Systems in the Building 146
13.2.1	Centralization 146
13.2.2	Vertical Linking of Several Laboratory Rinsing Rooms 147
13.2.3	Material Flow Systems 147
13.2.3.1	Consignment and Concentration of the Flow of Goods 147
13.3	Consignment and Automatic Storage Facilities 148
13.4	Solvents – Supply and Disposal Systems 150
13.4.1	Solvents Disposal Systems in the Pharmaceutical Sector 150
13.5	Laboratory Work 2030 – Objective? 152
13.6	From Small Areas to the Big Picture 153
13.7	Local Transport Systems 153
13.8	Supply and Disposal of Chemicals at the Workplace 153
13.9	Perspective 154

14 Animal Housing 157

Ina-Maria Müller-Stahn

<p>| 14.1 | General Points 157 |
| 14.2 | Planning of an Animal Facility 158 |
| 14.3 | SPF Management of Animals 159 |
| 14.4 | Animal Management under SPF Status 164 |
| 14.5 | Decentralized Connection of IVC 165 |
| 14.6 | Central Connection 165 |
| 14.7 | Extract Air 165 |
| 14.8 | Supply through the Barrier 166 |
| 14.9 | Quarantine 167 |
| 14.10 | Open Animal Management without Hygiene Requirements 167 |</p>
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.11</td>
<td>Experimental Animal Facility</td>
<td>168</td>
</tr>
<tr>
<td>14.12</td>
<td>Sustainability – An Issue in an Animal Facility?</td>
<td>168</td>
</tr>
<tr>
<td>15</td>
<td>Technical Research Centers – Examples of Highly Sophisticated Laboratory Planning Which Cannot be Schematized</td>
<td>171</td>
</tr>
<tr>
<td></td>
<td>Thomas Lischke and Maike Ring</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Clean Rooms</td>
<td>175</td>
</tr>
<tr>
<td></td>
<td>Thomas Lischke</td>
<td></td>
</tr>
<tr>
<td>16.1</td>
<td>Wall materials</td>
<td>178</td>
</tr>
<tr>
<td>16.2</td>
<td>Ceilings</td>
<td>179</td>
</tr>
<tr>
<td>16.3</td>
<td>Fixtures and fittings</td>
<td>179</td>
</tr>
<tr>
<td>17</td>
<td>Safety Laboratories</td>
<td>181</td>
</tr>
<tr>
<td></td>
<td>Michael Staniszewski</td>
<td></td>
</tr>
<tr>
<td>17.1</td>
<td>General Remark</td>
<td>181</td>
</tr>
<tr>
<td>17.2</td>
<td>Types of Safety Laboratories</td>
<td>182</td>
</tr>
<tr>
<td>17.2.1</td>
<td>Biological Safety Laboratory</td>
<td>182</td>
</tr>
<tr>
<td>17.2.2</td>
<td>Safety Laboratory for Radioactive Material = Isotope Laboratory</td>
<td>185</td>
</tr>
<tr>
<td>17.2.3</td>
<td>Safety Laboratories for Active and Highly Active Substances</td>
<td>187</td>
</tr>
<tr>
<td>17.3</td>
<td>Building Structures</td>
<td>190</td>
</tr>
<tr>
<td>17.3.1</td>
<td>Technical Equipment: Ventilation, Electrics, Media</td>
<td>192</td>
</tr>
<tr>
<td>17.3.2</td>
<td>Fittings</td>
<td>193</td>
</tr>
<tr>
<td>Part III</td>
<td>Laboratory Casework and Installations</td>
<td>195</td>
</tr>
<tr>
<td></td>
<td>Egbert Dittrich</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Laboratory Casework</td>
<td>197</td>
</tr>
<tr>
<td></td>
<td>Egbert Dittrich</td>
<td></td>
</tr>
<tr>
<td>18.1</td>
<td>Design</td>
<td>197</td>
</tr>
<tr>
<td>18.2</td>
<td>Functionality and Flexibility</td>
<td>200</td>
</tr>
<tr>
<td>18.3</td>
<td>Trends</td>
<td>201</td>
</tr>
<tr>
<td>19</td>
<td>Work Benches, Sinks, Storage, Supply- and Disposal Systems</td>
<td>203</td>
</tr>
<tr>
<td></td>
<td>Egbert Dittrich</td>
<td></td>
</tr>
<tr>
<td>19.1</td>
<td>Benches</td>
<td>203</td>
</tr>
<tr>
<td>19.1.1</td>
<td>Major Bench Frames</td>
<td>203</td>
</tr>
<tr>
<td>19.1.2</td>
<td>Laboratory Work Bench Material</td>
<td>204</td>
</tr>
<tr>
<td>19.2</td>
<td>Sinks</td>
<td>204</td>
</tr>
<tr>
<td>19.3</td>
<td>Under Bench Units, Cabinets, Storage Cabinets</td>
<td>208</td>
</tr>
<tr>
<td>19.4</td>
<td>Supply and Disposal Systems</td>
<td>211</td>
</tr>
<tr>
<td>19.4.1</td>
<td>Supply System for Combustible Liquids</td>
<td>211</td>
</tr>
<tr>
<td>19.4.2</td>
<td>Cyclic Supply</td>
<td>212</td>
</tr>
<tr>
<td>19.4.3</td>
<td>Continuous Supply</td>
<td>212</td>
</tr>
</tbody>
</table>
19.4.4 Monitoring System for Continuous Supply 212
19.4.5 Disposal of Combustible Liquids 213
19.4.6 Electronic or Mechanical Level Indicators 214
19.4.7 Connection for Liquid Chromatograph 214
19.4.8 Filling by Funnel in the Under Bench Safety Unit 214
19.4.9 Mechanical Gauge 214
19.4.10 Filling by Funnel in the Containment of the Fume Cupboard 214
19.5 Service Carrying Frames 215
19.5.1 Service Spine 217
19.5.2 Service Boom 217
19.5.3 Service Columns 218
19.5.4 Wall-Mounted Service Channel 218
19.5.5 Service Wing 218
19.5.5.1 Configurations of the Service Wing 219
19.5.6 Bench-Mounted Service Duct 221
19.5.7 Service Ceiling 222

20 Fume Cupboards and Ventilated Units 225
Egbert Dittrich
20.1 Technical Data and Selection Criteria 225
20.2 Fume Cupboards and Sustainability 231
20.3 Ventilation Control and Monitoring 231
20.4 Fume Cupboard Monitoring, -Control and Room Control 234
20.5 Laboratory Control 235
20.6 Sash Controller 238

21 Laboratory Furniture Made from Stainless Steel – for Clean-Rooms, Labs, Medical-, and Industry Applications 241
Eberhard Dürr
21.1 Areas for Stainless Steel Equipment 241
21.2 Hygienic Requirements of Surfaces 242
21.3 How to Clean and Disinfect Stainless Steel Surfaces 243
21.4 Cleanliness Classes for Sterile Areas 245
21.5 Microorganisms 246
21.5.1 Microbial Decontamination 247
21.5.2 Bacterial Spores 247
21.5.3 Coccoid Bacteria (Round Shape) 248
21.5.4 Bacilli (Rod-Shaped Bacteria) 248
21.5.5 Other Forms of Bacteria 248
21.5.6 Fungi 248
21.5.7 Viruses 249
21.5.8 Protozoans 249
21.5.9 Waterborne Pathogenic Germs 249
21.5.10 Individual Cleaning Concepts and Hygiene Regulations Plus Decontamination Measures 249
22 Clean Benches and Microbiological Safety Cabinets 255
Walter Glück

22.1 Laboratory Clean Air Instrument, in General and Definition(s) 255
22.2 Possible Joint Possession of “Clean Benches” and “Microbiological Safety Cabinets” 256

22.2.1 Minor Turbulent Purified Air Stream/Purified Laminar Air Stream 256
22.2.2 Purified Air Quality inside Experimental Chamber 257
22.3 Laboratory Clean Air Instruments Intended to Protect the Samples – “Clean Benches” 258

22.3.1 Functional Principles of “Clean Benches” 259
22.3.2 Clean Benches: Upsides and Downsides of Design Principles 259

22.4 Microbiological Safety Cabinets 261

22.4.1 Definition of Protective-Functions 262
22.4.2 Personal Protection 262
22.4.3 Protective Function of Different Cabinet Classification 263

22.5 Microbiological Safety Cabinet Class 1 263
22.6 Microbiological Safety Cabinets Class 2 265

22.7 Enhanced Microbiological Safety Cabinets Class 2 266

22.7.1 Enhanced Safety by Means of Class 2 Cabinet “Extract Connection” on the Building Extract System 266

22.8 Enhanced Safety of Safety Cabinet Class 2 by Means of Redundant HEPA Filter(s) 269

22.8.1 Redundant (Second) HEPA Exhaust Filter 269

22.9 Microbiological Safety Cabinet Class 3 271

22.10 Inactivation of Cabinet and Filters 271

23 Safety Cabinets 273
Christian Völk

23.1 History – the Development of the Safety Cabinet 273
23.2 Safety Cabinets for Flammable Liquids 274

23.2.1 Definition – Safety Cabinets for Flammable Liquids 274
23.2.2 Fire Protection, Fire Resistance 275

23.2.3 Pipe Penetration 276
23.2.4 Door Technology 276
23.2.5 Interior Fittings 278

23.2.6 Bottom Tray 280

23.2.7 Ventilation 281
23.2.8 Earthing, Equipotential Bonding 283
23.2.9 Marking and Operating Instructions 284
23.3 Safety Cabinets for Pressurized Gas Cylinders 285
23.3.1 Definition – Safety Cabinet for Pressurized Gas Cylinders 285
23.3.2 Fire Protection, Fire Resistance 285
23.3.3 Ventilation 287
23.3.4 Insertion and Restraint of Pressurized Gas Cylinders 287
23.3.5 Installing Pipes and Electrical Cables 287
23.3.6 Marking and Operating Instructions 289
23.4 Safety Cabinets for Acids and Lyes 289
23.4.1 Definition – Safety Cabinet for Acids and Lyes 289
23.4.2 Collection Trays 289
23.4.3 Ventilation 290
23.4.4 Marking and Operating Instructions 291
23.5 Test Markings for Safety Cabinets 291
23.6 Special Solutions for the Storage of Flammable Liquids 292
23.6.1 Active Storage 292
23.6.2 Cooled Storage 292
23.6.3 Clean Room Cabinets 294
Abbreviations 296

24 Laboratory Service Fittings for Water, Fuel Gases, and Technical Gases 297

Thomas Gasdorf

24.1 Medium 297
24.2 Temperature 297
24.3 Dosing Task 298
24.4 Safety 298
24.5 Place of Installation 298
24.6 Ease of Installation 298
24.7 Materials 299
24.7.1 Brass 299
24.7.2 Stainless Steel 299
24.7.3 Plastics 299
24.7.4 Brass Plus Plastics 299
24.8 Headwork 300
24.9 Seals 300
24.10 According to Standard 300
24.11 Water 300
24.11.1 Brass 301
24.11.2 Stainless Steel 302
24.11.3 Plastics 302
24.11.4 Shut-Off and Dosing 302
24.11.5 Lubricated Headwork 303
24.11.6 Ceramic Disc Cartridge 303
24.11.7 Diaphragm Headwork 303
24.11.8 Plastic Headwork with Overwind Protection 303
24.11.9 Ceramic Disc Cartridge 304
24.11.10 Potable Water 304
24.11.11 Free Draining 304
24.11.12 Pipe Interrupter 304
24.11.13 Backflow Preventer 305
24.12 Conclusion 305
24.12.1 Cooling Water 305
24.12.2 Circuits 305
24.12.3 Temperatures and Volume Flow 306
24.12.4 Pressure 306
24.12.5 Quick Connects 306
24.12.6 Treated Waters 306
24.12.7 Vapor 306
24.13 Burning Gas 307
24.13.1 Quick Couplings 310
24.14 Technical Gases up to 4.5 Purity Grade 310
24.14.1 Several Types 313
24.14.2 Normative Framework 313
24.15 Vacuum 313

25 Gases and Gas Supply Systems for Ultra-Pure Gases
up to Purity 6.0 317
Franz Wermelinger
25.1 Gases and Status Types 317
25.1.1 System Explanation 318
25.1.2 Examples 318
25.1.3 Basic Principles 318
25.2 Material Compatibility 319
25.3 Connection Points 319
25.4 Impurities 319
25.4.1 Particle 320
25.5 Supply Systems: Central Building Supply/Local Supply and Laboratory Supply 320
25.6 Central Building Supply (CBS) 323
25.7 Pipe Networks and Zone Shut-Off Valves with Filter 324
25.8 Fitting Supports and Tapping Spots 325
25.9 Local Laboratory Gas Supply 327
25.10 Surfaces – Coatings 327
25.11 Inspections 328
25.12 Operation Start-Up and Instruction of the Operating Staff 328
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>Emergency Devices</td>
<td>333</td>
</tr>
<tr>
<td></td>
<td>Thomas Gasdorf</td>
<td></td>
</tr>
<tr>
<td>26.1</td>
<td>General</td>
<td>333</td>
</tr>
<tr>
<td>26.1.1</td>
<td>Where and how?</td>
<td>333</td>
</tr>
<tr>
<td>26.1.2</td>
<td>Special Fittings</td>
<td>333</td>
</tr>
<tr>
<td>26.1.3</td>
<td>Identification</td>
<td>334</td>
</tr>
<tr>
<td>26.2</td>
<td>Body Showers</td>
<td>334</td>
</tr>
<tr>
<td>26.3</td>
<td>Eye-Washer</td>
<td>334</td>
</tr>
<tr>
<td>26.4</td>
<td>Emergency Shower Combinations</td>
<td>334</td>
</tr>
<tr>
<td>26.5</td>
<td>Hygiene</td>
<td>335</td>
</tr>
<tr>
<td>26.6</td>
<td>Testing and Maintenance</td>
<td>335</td>
</tr>
<tr>
<td>26.7</td>
<td>Complementary Products</td>
<td>335</td>
</tr>
<tr>
<td>Part IV</td>
<td>Sustainability and Laboratory Operation</td>
<td>339</td>
</tr>
<tr>
<td>27</td>
<td>Sustainability Certification – Assessment Criteria and Suggestions</td>
<td>341</td>
</tr>
<tr>
<td></td>
<td>Egbert Dittrich</td>
<td></td>
</tr>
<tr>
<td>27.1</td>
<td>Certification Systems</td>
<td>342</td>
</tr>
<tr>
<td>27.2</td>
<td>Individual Strategies to Implement Sustainability</td>
<td>345</td>
</tr>
<tr>
<td>27.2.1</td>
<td>Planning, Design, and Simulations</td>
<td>345</td>
</tr>
<tr>
<td>27.2.2</td>
<td>Benchmarking</td>
<td>346</td>
</tr>
<tr>
<td>27.2.3</td>
<td>Measuring and Control</td>
<td>347</td>
</tr>
<tr>
<td>27.2.4</td>
<td>Ventilation and Cooling Concept</td>
<td>347</td>
</tr>
<tr>
<td>27.2.5</td>
<td>Working Conditions</td>
<td>348</td>
</tr>
<tr>
<td>27.2.6</td>
<td>Consumables</td>
<td>349</td>
</tr>
<tr>
<td>28</td>
<td>Reducing Laboratory Energy Use with Demand-Based Control</td>
<td>351</td>
</tr>
<tr>
<td></td>
<td>Gordon P. Sharp</td>
<td></td>
</tr>
<tr>
<td>28.1</td>
<td>Reducing Fume Cupboard Flows</td>
<td>351</td>
</tr>
<tr>
<td>28.2</td>
<td>Reduce Thermal Load Flow Drivers</td>
<td>352</td>
</tr>
<tr>
<td>28.3</td>
<td>Vary and Reduce Average ACH Rate Using Demand-Based Control</td>
<td>353</td>
</tr>
<tr>
<td>28.4</td>
<td>A New Sensing Approach Provides a Cost-Effective Solution</td>
<td>354</td>
</tr>
<tr>
<td>28.5</td>
<td>Demand-Based Control (DBC) Improves Beam Use</td>
<td>355</td>
</tr>
<tr>
<td>28.6</td>
<td>A Few Comments on New Lab Ventilation Standards and Guidelines</td>
<td>356</td>
</tr>
<tr>
<td>28.7</td>
<td>Case Studies</td>
<td>357</td>
</tr>
<tr>
<td>28.7.1</td>
<td>Case Study 1: Arizona State University’s Biodesign Institute</td>
<td>357</td>
</tr>
<tr>
<td>28.7.2</td>
<td>Case Study 2: Masdar Institute of Science and Technology (MIST)</td>
<td>358</td>
</tr>
<tr>
<td>28.7.3</td>
<td>MIST (Abu Dhabi) Energy Savings Analysis Example</td>
<td>359</td>
</tr>
<tr>
<td>28.8</td>
<td>Capital Cost Reduction Impacts of Demand-Based Control</td>
<td>361</td>
</tr>
<tr>
<td>28.9</td>
<td>Conclusions on Lab Energy Efficient Control Approaches</td>
<td>362</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>362</td>
</tr>
</tbody>
</table>
29 Lab Ventilation and Energy Consumption 363
Peter Dockx
29.1 Introduction 363
29.2 Step 1: Minimize Demand! 365
29.2.1 Fume Cupboard Control 365
29.2.2 Biosafety Cabinets 366
29.2.3 Temperature Control 367
29.2.4 Minimum Amount of Air Changes 367
29.2.5 How to Integrate the Lab-Controller in a Smart Way in Our Ventilation System 367
29.3 Step 2: Design Energy Friendly Systems 369
29.3.1 Energy Recovery 369
29.3.2 Rotary Wheel Heat Exchangers 369
29.3.3 Plate Heat Exchangers 370
29.3.4 Twin Coil Heat Exchangers 370
29.3.5 Adiabatic Cooling System 370
29.3.6 Extract Systems 371
29.4 Step 3: Install and Proper Commission the Installation 374
29.5 Step 4: Maintain the Installation and Monitor 374
29.6 Step 5: Use of Alternative Energy 375
29.6.1 Importance of Energy Modeling 375
29.6.2 Using Heat-Pump 377
29.6.3 Phase Change Materials (PCMs) 377
29.7 Conclusion 378
30 Consequences of the 2009 Energy-Saving Ordinance for Laboratories 379
Fritz Runge and Jörg Petri
30.1 The Task Force 379
30.2 Energy Certificates for Laboratory Buildings 380
30.2.1 Issue of Demand-Based Energy Certificates 381
30.2.2 Issue of Consumption-Based Energy Certificates 382
30.3 Special Energy Characteristics of Laboratory Buildings 385
30.4 Reference Values for the Energy Consumption of Laboratory Buildings 386
30.5 Energy Consumption Values 387
30.6 Reference Quantities 387
30.7 Groups with Homogeneous Characteristics 391
30.8 Conclusions from the Results of the Investigations 392
30.9 Example for the Issue of a Consumption-Based Energy Certificate for a Laboratory Building 394
30.10 Summary 396
Part V Standards and Test Regulations 399
Egbert Dittrich
31 Legislation and Standards 401

Burkhard Winter

31.1 Introduction 401

31.2 Laboratory Planning and Building 402

31.2.1 General 402

31.2.2 Regulations for Energy Efficiency 403

31.2.2.1 Legislative Requirements 403

31.2.2.2 Voluntary Certification 404

31.3 Regulations for Labor Safety and Occupational Health 406

31.3.1 Minimum Safety and Health Requirements 407

31.3.2 Chemicals and Hazardous Substances Regulations 409

31.3.3 Biological Agents and Safety 410

References 410

32 Examination, Requirements, and Handling of Fume Cupboards 413

Bernhard Mohr and Bernd Schubert

32.1 Introduction 413

32.2 Principle of Operation 414

32.3 Types of Fume Cupboards 417

32.3.1 Standard Fume Cupboard 417

32.3.2 Walk-In Fume Cupboards 418

32.3.3 Fume Cupboards for Thermal Loads 418

32.3.4 Special Constructions 418

32.3.4.1 Hand Over Fume Cupboards 418

32.3.4.2 Pharmacy Fume Cupboards 419

32.3.4.3 Fume Cupboards for Radioactive Substances 419

32.3.4.4 Safety Benches with Air Recirculation 419

32.3.4.5 Individual Constructions 420

32.3.4.6 Fume Cupboards with Auxiliary Air 420

32.3.5 Control Systems 421

32.3.6 Window Closing System 423

32.4 Standards 424

32.4.1 U.S. Standard (ASHRAE) 424

32.4.1.1 Flow Visualization 424

32.4.1.2 Measurements of Air Velocity 425

32.4.1.3 Measurements with Test Gas 425

32.4.1.4 Additional Measurements for Fume Cupboards with VAV Systems 425

32.4.2 European Standard 425

32.4.3 Other Standards 427

32.4.3.1 France 427

32.4.3.2 Australia/New Zealand 427

32.4.3.3 Germany – Standard for Special Fume Cupboards 427

32.4.4 Comparison 427

32.5 Safety Criterion 427
34.5.1.2 Vaccination 464
34.5.2 Health Monitoring 464
34.6 Employment Restrictions 465
34.6.1 Protection of Minors and Mothers 465
34.7 Access Regulations and Protection against Theft 466
34.7.1 Identification and Access Control 466
34.7.2 Protection against Burglary and Theft 467
34.8 Cleanliness and Hygiene 467
34.8.1 Minimum Hygiene Standards 468
34.8.1.1 Cleaning and Hygiene Measures 468
34.8.1.2 Microbiological Requirements 469
34.8.2 Disinfection Measures and Hygiene Plan 469
34.8.3 Personal Protective Measures 471
34.9 Operation of Safety Systems According to Regulations 472
34.9.1 Structural Barriers 472
34.9.1.1 Containment 472
34.9.1.2 Hygiene Barriers 473
34.9.1.3 Inactivated Lock Systems 473
34.9.2 Technical Barriers 474
34.9.2.1 Extraction Equipment 474
34.9.2.2 Fume Hoods 475
34.9.2.3 Barrier Systems 476
34.9.2.4 Local Extraction Devices 476
34.9.2.5 Insulators 477
34.9.2.6 Aerosol-Preventing Systems 477
34.9.2.7 Microbiological Safety Cabinets 477
34.9.2.8 Retaining Basins 478
34.9.3 Storage and Disposal Systems 478
34.9.3.1 Solvent Waste 478
34.9.3.2 Hazardous Substance Waste 479
34.9.3.3 Biological Liquid and Solid Waste 479
34.10 Operational Safety in Laboratories – Conclusion 479
34.11 Laboratory Rules and Regulations (Sample) 480
34.11.1 General 480
34.11.2 Working Hours 480
34.11.3 Work and Protective Clothes 481
34.11.4 Order at the Workplace 481
34.11.5 Maintaining Safety Systems 481
34.11.6 Conduct during Hazardous Work 482
34.11.7 Conduct in Hazardous Situations 482
34.11.8 Handling Hazardous Substances and Pressurized Gases 482
34.11.9 Correct Handling of Storage Equipment 483
34.11.10 Collection and Disposal of Hazardous Waste 483
34.11.11 People in Charge of Occupational Health and Safety Protection 483
34.12 Testing Equipment Registry (Sample) 486
34.13 Screening Examinations for Laboratory Activities
(Selection) 488
34.14 Skin Protection Plan (Sample) 492
References 495

Part VII Laboratory Operation 497
Helmut Martens

35 Facility Management in the Life Cycle of Laboratory Buildings 499
Andreas Kühne and Ali-Yetkin Özcan
35.1 Self-Understanding and Background 499
35.2 Process Optimization 500
35.3 FM in the Life Cycle of a Laboratory Building 500
35.4 Concept Phase Laboratory Building 502
35.4.1 Rough Building Concept 502
35.4.2 Concept Finding 502
35.4.3 Project Preparation 503
35.4.4 Basic Evaluation 503
35.4.5 Design Phase 503
35.5 Construction Phase 504
35.6 Use Phase 504
35.7 Revitalization Phase 505
35.8 Deconstructing Phase 507
35.9 Benefits of FM 507

36 Laboratory Optimization 509
Helmut Martens
36.1 The Procedure 510
36.2 The Actual Recording 511
36.3 Determination of the Optimization Potential 512
36.4 Planning and Implementation 513
36.5 Permanent Need for Optimization 514
36.6 An Example 515
36.6.1 Another Example 516
36.7 Utilization of Staff 516
36.8 Utilization of Equipment 517
36.9 Employee Retention, Employee Retention Time, Device Runtime 518
36.10 Another Example 518
36.11 Cost 518
36.12 Logistics 519
36.13 Quality 520
36.14 Customer Satisfaction and Customer Loyalty 520
36.15 Laboratory Indicators 521
37 Quality Management 523
 Helmut Martens
37.1 Quality Control 523
37.2 Quality Assurance 523
37.3 Quality Management 523
37.4 Creation and Maintenance of a Quality Management System 524
37.5 The Purpose of Systematic Quality Management 525
37.6 Integrated Management Systems 525
37.7 Certification or Accreditation 526
37.8 International Recognition of Accreditation 527
37.9 Central Functions of Quality Management 527
37.10 Responsibilities of the Quality Manager in Practice 529
37.11 Implementation of a Quality Management System in the Laboratory 529
37.12 Documents 530
37.13 Expiration of Accreditation Project 532

38 Data 535
 Helmut Martens
38.1 Data Systems 536
38.2 Data Systems at the Corporate Management Level 536
38.3 LIMS 537
38.4 LIMS Selection and Procurement 537
38.5 Requirements for a Specification 540
38.5.1 Content and Classification 540
38.5.2 Conditions 540
38.5.3 Descriptions of Function 541
38.6 Selection of Suitable Suppliers 541
38.7 Data Privacy and Data Security 542
38.8 Risk Assessment 543
38.9 Safety Management 544
38.10 System Documentation 546
38.11 Emergency Plan 547

Index 549