Contents

Foreword by Steven R. Cope XI

Foreword by Lawrence B. Evans XIII

Preface XV

Acknowledgements XXI

About the Authors XXIII

1 Characterization, Physical and Thermodynamic Properties of Oil Fractions 1
1.1 Crude Assay 1
1.1.1 Bulk Properties 4
1.1.2 Fractional Properties 6
1.1.3 Interconversion of Distillation Curves 7
1.2 Pseudocomponent Generation Based on Boiling-Point Ranges 8
1.3 Workshop 1.1 – Interconvert Distillation Curves 13
1.4 Workshop 1.2 – Extrapolate an Incomplete Distillation Curve 15
1.5 Workshop 1.3 – Calculate MeABP of a Given Assay 18
1.6 Workshop 1.4 – Duplicate the Oil Fraction in Aspen HYSYS

Petroleum Refining 21
1.7 Property Requirements for Refinery Process Models 30
1.8 Physical Properties 31
1.8.1 Estimating Minimal Physical Properties for Pseudocomponents 31
1.8.2 Molecular Weight 32
1.8.3 Critical Properties 34
1.8.4 Liquid Density 36
1.8.5 Ideal Gas Heat Capacity 38
1.8.6 Other Derived Physical Properties 39
1.9 Process Thermodynamics 42
1.9.1 Thermodynamic Models 43
Contents

1.9.2 Mixed or Activity-Coefficient Approach 44
1.9.3 Equation-of-State Approach 46
1.10 Miscellaneous Physical Properties for Refinery Modeling 48
1.10.1 Two Approaches for Estimating Fuel Properties 48
1.10.2 Flash Point 49
1.10.3 Freeze Point 50
1.10.4 PNA Composition 50
1.11 Conclusions 52
1.12 Nomenclature 53
1.13 References 55

2 Atmospheric Distillation Unit 57
2.1 Introduction 57
2.2 Scope of the Chapter 58
2.3 Process Overview 58
2.3.1 Desalting 59
2.3.2 Preheat Train and Heat Recovery 60
2.3.3 Atmospheric Distillation 61
2.4 Model Development 63
2.5 Feed Characterization 66
2.6 Data Requirements and Validation 67
2.7 Representative Atmospheric Distillation Unit 73
2.8 Building the Model in Aspen HYSYS 75
2.8.1 Entering the Crude Information 75
2.8.2 Selection of a Thermodynamic System 81
2.8.3 Crude Charge and Prefractionation Units 81
2.8.4 Atmospheric Distillation Column – Initial 84
2.8.5 Atmospheric Distillation Column – Side Strippers 86
2.8.6 Atmospheric Distillation Column – Pumparounds 88
2.8.7 Atmospheric Distillation Column – Final Column Convergence 89
2.8.8 Post-Convergence 91
2.9 Results 91
2.10 Model Applications to Process Optimization 95
2.10.1 Improve the 5% Distillation Point for an Individual Cut 96
2.10.2 Change Yield of a Given Cut 97
2.11.1 Import Distillation Data into Aspen HYSYS Oil Manager 100
2.11.2 Import Distillation Data into Aspen HYSYS Oil Manager 102
2.11.3 Reorganize Process Flowsheet 104
2.11.4 Converging Column Model 106
2.11.5 Comparison of Results 109
2.12 Workshop 2.2 – Investigate Changes in Product Profiles with New Product Demands 111
2.12.1 Update Column Specifications 112
2.12.2 Vary Draw Rate of LGO 113
VII

Contents

2.13 Conclusions 115
2.14 Nomenclature 116
2.15 References 116

3 Vacuum Distillation Unit 117
3.1 Process Description 117
3.2 Data Reconciliation 119
3.2.1 Required Data 119
3.2.2 Representation of the Atmospheric Residue 120
3.2.3 Makeup of Gas Streams 123
3.3 Model Implementation 124
3.3.1 Before Building the Process Flowsheet 124
3.3.2 Build a Simplified Model 128
3.3.3 Develop the Rigorous Simulation from a Simplified Model 132
3.4 Model Applications to Process Optimization – VDU Deep-Cut Operation 135
3.5 Workshop – Using Aspen HYSYS Petroleum Refining to Implement the Deep-Cut Operation 139
3.6 References 144

4 Predictive Modeling of the Fluid Catalytic Cracking (FCC) Process 145
4.1 Introduction 146
4.2 Process Description 147
4.2.1 Riser-Regenerator Complex 147
4.2.2 Downstream Fractionation 148
4.3 Process Chemistry 151
4.4 Literature Review 153
4.4.1 Kinetic Models 153
4.4.2 Unit-Level Models 158
4.5 Aspen HYSYS Petroleum Refining FCC Model 159
4.5.1 Slip Factor and Average Voidage 161
4.5.2 21-Lump Kinetic Model 162
4.5.3 Catalyst Deactivation 163
4.6 Calibrating the Aspen HYSYS Petroleum Refining FCC Model 164
4.7 Fractionation 165
4.8 Mapping Feed Information to Kinetic Lumps 168
4.8.1 Fitting Distillation Curves 168
4.8.2 Inferring Molecular Composition 170
4.8.3 Convert Kinetic Lumps to Fractionation Lumps 173
4.9 Overall Modeling Strategy 174
4.10 Results 176
4.11 Model Applications to Process Optimization 184
4.11.1 Improving Gasoline Yield 184
4.11.2 Increasing Unit Throughput 187
4.11.3 Sulfur Content in Gasoline 189
4.12 Model Application to Refinery Production Planning 190
4.13.1 Introduction 195
4.13.2 Process Overview 196
4.13.3 Process Data 198
4.13.4 Aspen HYSYS and Initial Component and Thermodynamics Setup 200
4.13.5 Workshop 4.1: Basic FCC Model 204
4.13.6 FCC Feed Configuration 208
4.13.7 FCC Catalyst Configuration 211
4.13.8 FCC Operating Variable Configuration 214
4.13.9 Initial Model Solution 217
4.13.10 Viewing Model Results 219
4.14 Workshop 4.2: Calibrating Basic FCC Model 222
4.15 Workshop 4.3: Build Main Fractionator and Gas Plant System 230
4.16 Workshop 4.4: Model Applications to Process Optimization – Perform Case Study to Identify Different Gasoline Production Scenarios 233
4.17 Workshop 4.5: Model Application to Production Planning – Generate DELTA-BASE Vectors for Linear-Programming (LP)-Based Production Planning 240
4.18 Conclusions 247
4.20 Nomenclature 248
4.21 References 249

5 Predictive Modeling of the Continuous Catalyst Regeneration (CCR) Reforming Process 253
5.1 Introduction 254
5.2 Process Overview 255
5.3 Process Chemistry 260
5.4 Literature Review 263
5.4.1 Kinetic Models and Networks 263
5.4.2 Unit-Level models 267
5.5 Aspen HYSYS Petroleum Refining Catalytic Reformer Model 270
5.6 Thermophysical Properties 273
5.7 Fractionation System 274
5.8 Feed Characterization 276
5.9 Model Implementation 280
5.9.1 Data Consistency 280
5.9.2 Feed Characterization 282
5.9.3 Calibration 282
5.10 Overall Modeling Strategy 285
5.11 Results 287
5.12 Model Applications to Process Optimization 293
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.12.1</td>
<td>Effect of Reactor Temperature on Process Yield</td>
<td>293</td>
</tr>
<tr>
<td>5.12.2</td>
<td>Effect of Feed Rate on Process Yield</td>
<td>296</td>
</tr>
<tr>
<td>5.12.3</td>
<td>Combined Effects on Process Yield</td>
<td>298</td>
</tr>
<tr>
<td>5.12.4</td>
<td>Effect of Feedstock Quality on Process Yield</td>
<td>300</td>
</tr>
<tr>
<td>5.12.5</td>
<td>Chemical Feedstock Production</td>
<td>301</td>
</tr>
<tr>
<td>5.12.6</td>
<td>Energy Utilization and Process Performance</td>
<td>303</td>
</tr>
<tr>
<td>5.13</td>
<td>Model Applications to Refinery Production Planning</td>
<td>304</td>
</tr>
<tr>
<td>5.14</td>
<td>Workshop 5.1: Guide for Modeling CCR Units in Aspen HYSYS Petroleum Refining</td>
<td>309</td>
</tr>
<tr>
<td>5.14.1</td>
<td>Introduction</td>
<td>309</td>
</tr>
<tr>
<td>5.14.2</td>
<td>Process Overview and Relevant Data</td>
<td>309</td>
</tr>
<tr>
<td>5.14.3</td>
<td>Aspen HYSYS and Initial Component and Thermodynamics Setup</td>
<td>312</td>
</tr>
<tr>
<td>5.14.4</td>
<td>Basic Reformer Configuration</td>
<td>316</td>
</tr>
<tr>
<td>5.14.5</td>
<td>Input Feedstock and Process Variables</td>
<td>319</td>
</tr>
<tr>
<td>5.14.6</td>
<td>Solver Parameters and Running Initial Model</td>
<td>324</td>
</tr>
<tr>
<td>5.14.7</td>
<td>Viewing Model Results</td>
<td>326</td>
</tr>
<tr>
<td>5.14.8</td>
<td>Updating Results with Molecular Composition Information</td>
<td>329</td>
</tr>
<tr>
<td>5.15</td>
<td>Workshop 5.2: Model Calibration</td>
<td>332</td>
</tr>
<tr>
<td>5.16</td>
<td>Workshop 5.3: Build a Downstream Fractionation</td>
<td>344</td>
</tr>
<tr>
<td>5.17</td>
<td>Workshop 5.4: Case Study to Vary RON and Product Distribution Profile</td>
<td>351</td>
</tr>
<tr>
<td>5.18</td>
<td>Conclusions</td>
<td>358</td>
</tr>
<tr>
<td>5.19</td>
<td>Nomenclature</td>
<td>358</td>
</tr>
<tr>
<td>5.20</td>
<td>References</td>
<td>360</td>
</tr>
<tr>
<td>6</td>
<td>Predictive Modeling of the Hydroprocessing Units</td>
<td>363</td>
</tr>
<tr>
<td>6.1</td>
<td>Introduction</td>
<td>364</td>
</tr>
<tr>
<td>6.2</td>
<td>Aspen HYSYS Petroleum Refining HCR Modeling Tool</td>
<td>369</td>
</tr>
<tr>
<td>6.3</td>
<td>Process Description</td>
<td>376</td>
</tr>
<tr>
<td>6.3.1</td>
<td>MP HCR Process</td>
<td>376</td>
</tr>
<tr>
<td>6.3.2</td>
<td>HP HCR Process</td>
<td>377</td>
</tr>
<tr>
<td>6.4</td>
<td>Model Development</td>
<td>378</td>
</tr>
<tr>
<td>6.4.1</td>
<td>Workflow of Developing an Integrated HCR Process Model</td>
<td>378</td>
</tr>
<tr>
<td>6.4.2</td>
<td>Data Acquisition</td>
<td>379</td>
</tr>
<tr>
<td>6.4.3</td>
<td>Mass Balance</td>
<td>381</td>
</tr>
<tr>
<td>6.4.4</td>
<td>Reactor Model Development</td>
<td>382</td>
</tr>
<tr>
<td>6.4.4.1</td>
<td>MP HCR Reactor Model</td>
<td>383</td>
</tr>
<tr>
<td>6.4.4.2</td>
<td>HP HCR Reactor Model</td>
<td>388</td>
</tr>
<tr>
<td>6.4.4.2.1</td>
<td>Equivalent Reactor</td>
<td>388</td>
</tr>
<tr>
<td>6.4.4.2.2</td>
<td>Reconciliation of HP HCR Reactor Model</td>
<td>390</td>
</tr>
<tr>
<td>6.4.5</td>
<td>Delumping of the Reactor Model Effluent and Fractionator Model</td>
<td>393</td>
</tr>
<tr>
<td>6.4.5.1</td>
<td>Applying the Gauss–Legendre Quadrature to Delump the Reactor Model</td>
<td>396</td>
</tr>
</tbody>
</table>