Subject Index

a
A8 isomers 272
above stage convention 64
absorbers
 – atmospheric distillation unit 85
 – fluid catalytic cracking 145, 167, 182
 – vacuum distillation unit 129 ff
acentric factor 34, 43, 46, 54, 395
acid functions 261
acid number 5
acid site reaction 372
acid-catalyzed cracking 151
activity factors 43
 – continuous catalyst regeneration reforming 341
 – fluid catalytic cracking 214, 222, 227
 – hydrocracking 383, 386, 435, 444–451
 – hydropyroprocessing units 372
adjustment factors 84, 284
adsorption 266, 271
alkylation 147
alkylcycloalkanes 260
alkylcyclopentanes 260
alumina-based catalysts 260
amines 369, 381
aniline point 5
API (American Petroleum Institute) correlations
 – atmospheric distillation unit 81
 – continuous catalyst regeneration reforming 277
 – fluid catalytic cracking 173
 – hydropyroprocessing units 370
API gravity see gravity
API standards 40, 48 f
API true boiling points 91
apparent cracking heat 222
aqueous phase 108
Arab properties 66, 71 f
aromatic hydrogenation 425
aromatic ring condensation 146, 151 f
aromatics 6
 – CatReform model 274
 – continuous catalyst regeneration reforming 253 f, 259–263, 280–300, 350, 356
 – fluid catalytic cracking 151–163, 171, 198, 211
 – hydropyroprocessing units 369 ff
Arrhenius equation 390
Aspen HYSYS 48
 – atmospheric distillation unit 58–84
 – continuous catalyst regeneration reforming 312
 – main fractionator 230
 – molecular weight 33 ff
 – oil fractions 8
 – vacuum distillation unit 124–130
Aspen HYSYS Petroleum Refining
 – Catalytic Reformer Model 253, 270, 276
 – deep-cut operation 139
 – fluid catalytic cracking 145 ff, 159 ff, 200
 – hydrocracking 363–369, 457
 – oil fraction duplication 21
Aspen PIMS planning software 191, 195, 241, 246, 430
Aspen RefSYS
 – continuous catalyst regeneration 312
 – fluid catalytic cracking 200
 – HCR model 438, 456
assays
 – oil fractions 24
 – atmospheric distillation unit 66
ASTM (American Society for Testing and Materials) distillation
 – continuous catalyst regeneration reforming 253, 259
 – D-1160 fluid catalytic cracking 173
Subject Index

- D-1160 vacuum distillation unit 124, 129 ff, 134
- D-86 atmospheric distillation column 92
- D-86 fluid catalytic cracking 178
- hydrocracking 393
- hydropyrolysis units 370
- oil fractions 6 ff, 13 ff, 48 f
ATM-100 column environment 107
atmospheric crude distillation section 89
atmospheric distillation unit (ADU) 57–117
- oil fractions 7
atmospheric gas oil (AGO) 62
atmospheric residue 119 ff, 136
average absolute deviation (AAD)
- continuous catalyst regeneration reforming 288 f
- fluid catalytic cracking 169, 175, 180 f
- HP hydrocracking 415, 419
- MP hydrocracking 403
average relative deviation (ARD) 403, 415
average voidage 161

b
back-blending
- atmospheric distillation column 58, 68, 90, 98, 109
- crude distillation column 104
- fluid catalytic cracking 166, 174
- vacuum distillation unit 120
backward feedstock approach 369 ff
base hydrocracking data set 379
base vector 191
basic FCC model 204
basic reformer configuration 316
basis environment 29
Benedict–Webb–Rubin-Starling (BWRS) 46
benzene 253, 284, 290, 300
benzothiophene 369
beta density function
- atmospheric distillation unit 68
- continuous catalyst regeneration reforming 276 ff
- fluid catalytic cracking 168 f, 173 f
- oil fractions 10, 15
bifunctional/bimetallic catalysts 260
blending
- atmospheric distillation unit 77, 102
- continuous catalyst regeneration reforming 330
- fluid catalytic cracking 190
- oil fractions 27
boiling points 51 see also true boiling points
- atmospheric distillation unit 66
- fluid catalytic cracking 153, 162, 170 ff
- hydrocarbons 34, 39 f, 393
- hydrocracking 399, 411 ff
- oil fractions 5, 8 ff, 39
- vacuum distillation unit 121
Bolkan-Kenny correlation 161
bottom oil 407–414, 427 f
Braun-K10 (BK-10) correlation 44, 81
bromine number 370
BTEX (benzene, toluene, ethylbenzene, xylenes) 253, 258
BTX production 272 ff, 300 ff
bubbling bed reactor 159
bulk properties 52
- atmospheric distillation unit 66, 75 ff
- continuous catalyst regeneration reforming 321, 331, 267, 276
- fluid catalytic cracking 145, 210
- hydropyrolysis units 371
- light naphtha 100
- oil fractions 4, 25
- vacuum distillation unit 126
butane 147, 244, 291, 307
butenes 244
calculation of MeABP 18
calibration
- continuous catalyst regeneration reforming 253, 280 ff, 318, 332–343
- fluid catalytic cracking 164, 174, 208, 222, 227 ff
- hydrocracking 384, 387, 440–456
carbocation 151
catalysts
- continuous catalyst regeneration reforming 253 ff, 318, 323
- fluid catalytic cracking 147, 159, 163, 200, 211 f
- HP hydrocracking 425
- hydrocracking 387, 434, 438
- MP hydrocracking 403
catalysts deactivation see deactivation
catalyst-to-oil ratio 158, 184, 187
catalytic cracking 151, 190
catalytic reforming 30
CatReform model 254, 270 f
C–C scission 372
cetane number/index 7
Chao–Seader method 45
carbocation 151
characterization of oil fractions 1–56
chemical feedstock production 301
catalytic cracking 151, 190
catalytic reforming 30
chemical type lumps 153
chroomatographic simulation 7
Chueh–Prauznitz correlation 38
Subject Index

cloud point 5, 48, 198, 226
coke
 – catalyst deactivation 163
 – continuous catalyst regeneration reforming 295
 – fluid catalytic cracking 147–158, 186, 192, 244
 – HP hydrocracking 425
 – vacuum distillation unit 137
coker gas oil (CGO) 147
columns
 – atmospheric distillation unit 60–70, 84–94, 106, 112
 – continuous catalyst regeneration reforming 274, 292, 347 ff
 – fluid catalytic cracking 145, 230
 – hydrocracking 399, 405
 – vacuum distillation unit 119, 124, 135
combustion heat 5
component list
 – blends 103
 – continuous catalyst regeneration reforming 312
 – fluid catalytic cracking 201
 – hydrocracking 470
 – vacuum distillation unit 127
components (hypothetical) 66
composition
 – continuous catalyst regeneration reforming 268, 276
 – fluid catalytic cracking 199
 – hydroprocessing units 369
 – light components 26
 – LPG-HP HCR 421
computational fluid dynamics (CFD) 158
computer files 479 ff
condenser 63, 90 ff, 112, 146
configuration
 – atmospheric distillation column 61, 84, 88, 107 ff
 – continuous catalyst regeneration reforming 258, 311, 345 ff
 – DA301 348
 – fluid catalytic cracking 147, 159, 205–214
 – hydroprocessing units 383, 429
 – reformer 316 ff
 – refractionator 230
 – vacuum distillation unit 124, 128
Conradson carbon (concarbon / CON) 194, 242
Conradson carbon residue 5, 158, 175, 210 f
contaminants 137
continuous catalyst regeneration (CCR)
 – reforming 253–362
continuously stirred-tank reactor (CSTR) 159
control window 319
convergence
 – atmospheric distillation column 84–90
 – continuous catalyst regeneration reforming 321, 326
 – fractionation 166, 217, 228, 232, 274
 – hydrocracking 438, 443
 – hydroprocessing 384, 438, 443
 – solver 217, 324, 342
 – vacuum distillation unit 124, 132
conversion (distillation curves) 7 ff, 388
see also ASTM, API
correlations 79 ff
 – API 81, 173, 277, 370
 – Bolkan-Kenny 161
 – Braun-K10 (BK-10) 44, 81
 – Chueh-Prausnitz 38
 – ESSO 81
 – Goosen 173
 – Grayson–Streed 45, 81
 – Lee-Kesler 52
 – Riazi’s 274
 – Riazi-Daubert 51 f, 170, 173, 395 ff
 – Riedel 41
 – Twu 32
COSTALD (Corresponding States Liquid Density) correction 37, 47, 53
 – atmospheric distillation column 95
 – continuous catalyst regeneration reforming 314
cracking see also
 – acid-catalyzed –, catalytic –, thermal –, over-, high-pressure hydro–
 – fluid catalytic –, hydrocracking
 – atmospheric residue 123
 – fluid catalytic cracking 146, 151 f
creep step parameters 217, 324, 443
critical pressure 43, 54 see also pressure
critical properties 34
critical temperature 43 see also temperature
 crude assays
 – atmospheric distillation unit 66, 101
 – oil fractions 1 ff, 90
 crude charge 81
 crude distillation unit (CDU) 57, 84, 110–115
 – hydrocracking 364, 383, 399
 – MP hydrocracking 376, 379
 crude feed 31, 66
 – atmospheric distillation column 75–104
 – fluid catalytic cracking 145, 168 ff, 190–195
 – vacuum distillation unit 117, 135
 crude fractionation 42, 53, 65 ff
<table>
<thead>
<tr>
<th>term</th>
<th>page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>crude furnace</td>
<td>58, 81</td>
</tr>
<tr>
<td>crude oil</td>
<td>1, 120, 135, 138</td>
</tr>
<tr>
<td>crude tower</td>
<td>68, 231</td>
</tr>
<tr>
<td>cubic equation of state</td>
<td>46</td>
</tr>
<tr>
<td>cubic-average boiling point (CABP)</td>
<td>9</td>
</tr>
<tr>
<td>current FCC simulation</td>
<td>222</td>
</tr>
<tr>
<td>cut points</td>
<td></td>
</tr>
<tr>
<td>– heavy vacuum gas oil</td>
<td>117</td>
</tr>
<tr>
<td>– hydrocracking</td>
<td>396</td>
</tr>
<tr>
<td>– oil fractions</td>
<td>27</td>
</tr>
<tr>
<td>– vacuum distillation unit</td>
<td>126, 135 f</td>
</tr>
<tr>
<td>cycle oil</td>
<td>147 f, 224, 230, 244</td>
</tr>
<tr>
<td>cyclization</td>
<td></td>
</tr>
<tr>
<td>– CCR reforming</td>
<td>255</td>
</tr>
<tr>
<td>– fluid catalytic cracking</td>
<td>147</td>
</tr>
<tr>
<td>cycloalkanes</td>
<td>151 f</td>
</tr>
<tr>
<td>cycloheptane</td>
<td>262</td>
</tr>
<tr>
<td>cyclohexanes</td>
<td>260</td>
</tr>
<tr>
<td>cyclones</td>
<td>159</td>
</tr>
<tr>
<td>(d)</td>
<td></td>
</tr>
<tr>
<td>D-1160 distillation curve</td>
<td>168, 393</td>
</tr>
<tr>
<td>D-86 distillation curve</td>
<td>145, 277</td>
</tr>
<tr>
<td>see also ASTM —, API —</td>
<td></td>
</tr>
<tr>
<td>data</td>
<td></td>
</tr>
<tr>
<td>– atmospheric distillation unit</td>
<td>66</td>
</tr>
<tr>
<td>– continuous catalyst regeneration reforming</td>
<td>280</td>
</tr>
<tr>
<td>– hydrocracking</td>
<td>379</td>
</tr>
<tr>
<td>– vacuum distillation unit</td>
<td>119, 139</td>
</tr>
<tr>
<td>deactivation see also catalysts</td>
<td></td>
</tr>
<tr>
<td>– CatReform model</td>
<td>271</td>
</tr>
<tr>
<td>– continuous catalyst regeneration reforming</td>
<td>253</td>
</tr>
<tr>
<td>– fluid catalytic cracking</td>
<td>164</td>
</tr>
<tr>
<td>– hydrocracking</td>
<td>438</td>
</tr>
<tr>
<td>dealkylation</td>
<td>146, 151 f</td>
</tr>
<tr>
<td>debutanizer</td>
<td></td>
</tr>
<tr>
<td>– continuous catalyst regeneration reforming</td>
<td>275</td>
</tr>
<tr>
<td>– fluid catalytic cracking</td>
<td>145, 183, 230</td>
</tr>
<tr>
<td>– hydrocracking</td>
<td>399</td>
</tr>
<tr>
<td>decyclization</td>
<td>147</td>
</tr>
<tr>
<td>de-emulsification agents</td>
<td>60</td>
</tr>
<tr>
<td>deep-cut operation</td>
<td>117, 135, 139 ff</td>
</tr>
<tr>
<td>default calibration parameters</td>
<td>208</td>
</tr>
<tr>
<td>deheptanizer</td>
<td>275</td>
</tr>
<tr>
<td>dehydrocyclization</td>
<td>257, 263</td>
</tr>
<tr>
<td>dehydrogenation</td>
<td></td>
</tr>
<tr>
<td>– CatReform model</td>
<td>271</td>
</tr>
<tr>
<td>– continuous catalyst regeneration reforming</td>
<td>257–266, 284, 293, 341</td>
</tr>
<tr>
<td>– fluid catalytic cracking</td>
<td>146–151 f</td>
</tr>
<tr>
<td>dehydroisomerization</td>
<td>260</td>
</tr>
<tr>
<td>delta-base vectors</td>
<td></td>
</tr>
<tr>
<td>– continuous catalyst regeneration reforming</td>
<td>305, 308</td>
</tr>
<tr>
<td>– fluid catalytic cracking</td>
<td>145, 192, 246</td>
</tr>
<tr>
<td>– HP hydrocracking</td>
<td>429</td>
</tr>
<tr>
<td>– linear-programming-based production</td>
<td>240</td>
</tr>
<tr>
<td>delumping method</td>
<td></td>
</tr>
<tr>
<td>– fluid catalytic cracking</td>
<td>160</td>
</tr>
<tr>
<td>– Gaussian–Legendre Quadrature</td>
<td>399</td>
</tr>
<tr>
<td>– hydrocracking</td>
<td>399, 433</td>
</tr>
<tr>
<td>density</td>
<td>52</td>
</tr>
<tr>
<td>– atmospheric distillation unit</td>
<td>66, 71, 75 ff, 91–95</td>
</tr>
<tr>
<td>– continuous catalyst regeneration reforming</td>
<td>276</td>
</tr>
<tr>
<td>– fluid catalytic cracking</td>
<td>168–179</td>
</tr>
<tr>
<td>– hydrocarbons</td>
<td>39</td>
</tr>
<tr>
<td>– hydrocracking</td>
<td>394</td>
</tr>
<tr>
<td>– pseudocomponents</td>
<td>8, 39</td>
</tr>
<tr>
<td>depetanizer</td>
<td>258</td>
</tr>
<tr>
<td>desalting</td>
<td>59</td>
</tr>
<tr>
<td>desorption</td>
<td>371</td>
</tr>
<tr>
<td>dewatering</td>
<td>59</td>
</tr>
<tr>
<td>dibenzothiophene</td>
<td>369</td>
</tr>
<tr>
<td>diesel</td>
<td></td>
</tr>
<tr>
<td>– atmospheric distillation unit</td>
<td>66</td>
</tr>
<tr>
<td>– fluid catalytic cracking</td>
<td>170 f, 178, 192, 224</td>
</tr>
<tr>
<td>– HP hydrocracking</td>
<td>428</td>
</tr>
<tr>
<td>– hydrocracking</td>
<td>384, 400</td>
</tr>
<tr>
<td>– hydroprocessing units</td>
<td>363</td>
</tr>
<tr>
<td>– MP hydrocracking</td>
<td>376, 407 ff</td>
</tr>
<tr>
<td>– paraffin/aromatic content</td>
<td>51</td>
</tr>
<tr>
<td>DIPPR (Design Institute for Physical Property Research, American)</td>
<td>31</td>
</tr>
<tr>
<td>dirty-water approach</td>
<td>42</td>
</tr>
<tr>
<td>distillation column</td>
<td></td>
</tr>
<tr>
<td>– atmospheric distillation unit</td>
<td>91</td>
</tr>
<tr>
<td>– hydrocracking</td>
<td>405, 399, 417 f</td>
</tr>
<tr>
<td>– hydroprocessing units</td>
<td>367</td>
</tr>
<tr>
<td>– model development</td>
<td>63</td>
</tr>
<tr>
<td>– vacuum distillation unit</td>
<td>119</td>
</tr>
<tr>
<td>distillation curves</td>
<td>49 ff</td>
</tr>
<tr>
<td>– Aspen HYSYS Oil Manager</td>
<td>100 ff</td>
</tr>
<tr>
<td>– atmospheric distillation column</td>
<td>91</td>
</tr>
<tr>
<td>– continuous catalyst regeneration reforming</td>
<td>253, 268, 276</td>
</tr>
<tr>
<td>– fluid catalytic cracking</td>
<td>168, 175</td>
</tr>
<tr>
<td>– hydrocracking</td>
<td>393, 401 ff, 421</td>
</tr>
<tr>
<td>– interconversion</td>
<td>7 ff</td>
</tr>
<tr>
<td>– liquid HCR products</td>
<td>409</td>
</tr>
<tr>
<td>– oil fractions</td>
<td>25</td>
</tr>
<tr>
<td>– vacuum distillation unit</td>
<td>124 ff</td>
</tr>
<tr>
<td>distillation unit</td>
<td></td>
</tr>
<tr>
<td>– atmospheric</td>
<td>57–116</td>
</tr>
</tbody>
</table>
Subject Index

- fluid catalytic cracking 198
- vacuum 124 ff
downstream fractionation units 148
- continuous catalyst regeneration reforming 254, 344
- fluid catalytic cracking 146
draw rate 113, 399 f
dry gas
- continuous catalyst regeneration reforming 295
- fluid catalytic cracking 181, 189, 199, 224 f
- HP hydrocracking 419 f
duplication 21
duty specifications (ADU) 86

e
- efficiency factor see also Murphree ~, stage efficiency
- atmospheric distillation unit 65
- continuous catalyst regeneration reforming 274
- fluid catalytic cracking 165
effluents
- continuous catalyst regeneration reforming 255
- fluid catalytic cracking 219
- hydrocracking 393, 396, 411, 472
end boiling point (EBP) 3
draw rate 113, 399 f
duty specifications (ADU) 86

f
- feed
- atmospheric distillation unit 58, 66, 105
- continuous catalyst regeneration reforming 253, 276, 282 f, 287, 310, 335
- fluid catalytic cracking 145, 158, 168, 175, 192
- fluid catalytic cracking 208, 214
- hydrocracking 436, 458
- vacuum distillation unit 122
feed flow rate versus product distribution 427
feed lumping technique 270
feed oil 366, 380
feed rate
- fluid catalytic cracking 188, 233, 236
- WHSV 303
feed rate–process yield relation 296
feed sulfur change 189
feed type library (fingerprint) 208 f, 211, 216, 436
feedstock 52
- continuous catalyst regeneration reforming 259 ff
- fluid catalytic cracking 145, 162, 189
- hydrocracking 376, 382
- hydroprocessing units 369
- oil fractions 4
- vacuum distillation unit 117, 126
feedstock quality–process yield relation 300
final column convergence 89
fitting parameters of beta distribution 53
flash point 44, 49
- fluid catalytic cracking 145, 175, 180
- HP hydrocracking 422
- hydrocracking 384, 402
- MP hydrocracking 412 f
- oil fractions 4, 48, 53
flash zone
- atmospheric distillation unit 61, 66, 70
- hydrocracking 399
- vacuum distillation unit 118, 125, 141 f
flow diagram
- Aspen HYSYS Petroleum Refining HCR 367
- continuous catalyst regeneration reforming 256
- HP hydrocracking unit 377
- MP hydrocracking unit 376
- single-stage HCR process 364
- vacuum distillation unit 118, 133
flow rate
- atmospheric distillation unit 70 ff, 102
- continuous catalyst regeneration reforming 281, 311, 321
Subject Index

– fluid catalytic cracking 175, 198
– hydrocracking 380, 388
– hydroprocessing units 365
– vacuum distillation unit 119
flow specifications
– atmospheric distillation unit 86, 88
– hydrocracking 436
flowchart
– Aspen HYSYS 205, 326
– atmospheric distillation unit 62, 80, 103
– downstream fractionation 344
– integrated reformer model 267
– vacuum distillation unit 129, 133
flue gas 147, 99
fluid catalytic cracking (FCC) 145–252
– oil fractions 8, 30
– vacuum distillation unit 117
fluid package 203, 314
fluorescent indicator adsorption (FIA) 370
forward feedstock compositions 369 ff
fractional properties 6
fractionation 52
– atmospheric distillation unit 66
– CatReform model 273 ff
– continuous catalyst regeneration reforming 253, 270–288
– fluid catalytic cracking 165, 175
– MP hydrocracking 376
– oil fractions 8, 42
– vacuum distillation unit 124
fractionators
– fluid catalytic cracking 145, 182, 197, 230
– HP hydrocracking 417
– hydrocracking 381, 393, 398
– hydroprocessing units 363
– MP hydrocracking 405
free-water approach 42
freeze point 50
– HP hydrocracking 422
– hydrocracking 402
– MP hydrocracking 412 f
– oil fractions 4, 48, 53
Froude numbers 161
fuel gas 224 f
fuel properties 48
fuel property index 54
fugacity coefficient 43 ff, 54
fugacity correlation 81
fundamental modeling premise 57

gas oil 66
gas plant 150, 177, 197, 230
gas streams 123
gas yield 356
gasoline
– continuous catalyst regeneration reforming 254, 300
– fluid catalytic cracking 147–152, 163, 178–192, 224
– hydroprocessing units 363
– production scenarios 233
– stabilization column 230
Gauss–Legendre quadrature 396–402, 433
Goosen’s correlation 173
gravity see also specific gravity
– atmospheric distillation unit 70
– continuous catalyst regeneration reforming 268
– fluid catalytic cracking 161
– HP hydrocracking 429
– hydrocracking 396
– hydroprocessing units 370
– vacuum distillation unit 119
Grayson–Streed correlation 45, 81, 92

heat balance 222, 229
heat capacity
– CatReform model 273
– oil fractions 31, 38–42, 53
heat exchangers 81
heat flow 83, 130
heat losses 207
heat recovery 60
heaters 61, 81 f, 323
heavy cycle oil (HCO) 147 f
heavy naphtha 86–99 ff, 111 see also naphta
heavy straight run naphtha (HSR) 62
heavy vacuum gas oil (HVGO) 117, 122, 128, 135 f
Hessian parameters 217
high heating value (HHV) 5
high-pressure hydrocracking (HP HCR) 363–377, 388
hot catalyst 147
how-to scenario 293
hydrocarbon–hydrocarbon interactions 42
hydrocarbons 6 ff, 32–41
– atmospheric distillation unit 66
– continuous catalyst regeneration reforming 268
– fluid catalytic cracking 203
– hydrocracking 396
– molecular weight 32

G

gas composition 105
gas compressor 145
gas flow rates 199
- vacuum distillation unit 118
- hydrocracking (HCR) 363–377
- CatReform model 271
- continuous catalyst regeneration reforming 257–266, 284, 293, 301, 341
- fluid catalytic cracking 147
- high-pressure 363–377, 388
- medium-pressure 363, 366, 376, 383
- oil fractions 30
- hydrodenitrogenation (HDN) 363
- hydrocracking 382, 443
- hydroprocessing units 371, 375
- MP hydrocracking 403
- hydrodesulfurization (HDS) 363
- hydrocracking 382, 443
- hydroprocessing units 371, 374
- MP hydrocracking 403
- hydrogen 147, 307, 356
- hydrogen balance 281 ff, 376
- hydrogen consumption 425
- hydrogen flow rate 404, 416
- hydrogen partial pressure 425
- hydrogen recycle system
 - hydrocracking 437
 - HP hydrocracking 415 ff
 - hydroprocessing units 369
 - MP hydrocracking 403
- hydrogen transfer 146, 151 ff
- hydrogen/oil ratio 425
- hydrogenation 147
- hydrogenolysis 260
- hydrogen-to-hydrocarbon ratio 253, 262, 293 ff, 301, 322, 351 ff
- hydrogen-to-oil ratio vs. product distribution 425
- hydroprocessing 190, 363–478
- hydrotreating 363
- hypothetical components 66, 79

i
- ideal gas heat capacity 31, 38, 43, 53 f
- ignition 49
- impurities 58
- increment factor 458
- index-based approach 49
- indicators 259
- inhibitors 371
- initial assay definition 75
- initial boiling point (IBP) 5
- initial columns 70, 84
- initial components 200, 312
- initial crude processing 59
- initial model solution 217
- initial stream setup 85

inlet streams 381
input feedstock 319
inside-out method 65
Institute of Chemical Engineers database 41
interaction parameter 43
interaction parameters
 - continuous catalyst regeneration reforming 315
 - fluid catalytic cracking 204
 - interconversion of distillation curves 7, 13 ff
 - intrinsic rate constant 372
- isenthalpic/isobaric flashes 44
- isobutane 307
- isomerization
 - CatReform model 271
 - continuous catalyst regeneration reforming 257–266, 284, 341
 - fluid catalytic cracking 146–153
- isoparaffins 260
- isothermal flashes 44
- isothermal plug flow reactors 388
- iteration spreadsheet of MeABP calculation 11

j
- Jacobians 194, 305, 430
- jet fuel 419 ff

k
- kerosene
 - atmospheric distillation unit 62, 66, 98
 - D-86 comparison curve 93, 110
 - fluid catalytic cracking 170 ff
 - paraffin/ aromatic content 51
- kinetic coke 163
- kinetic lumping
 - continuous catalyst regeneration reforming 253, 263–267, 331
 - fluid catalytic cracking 153 ff, 168, 220
 - hydrocracking 395
 - hydrotreating 363, 366
- kinetic models / networks 263
- continuous catalyst regeneration reforming 253
- fluid catalytic cracking 145, 153
- oil fractions 30
- kinetic-to-fractionation lumps conversion 173
- K-value 44 ff, 53
 - atmospheric distillation unit 64, 81
 - continuous catalyst regeneration reforming 268
 - oil fractions 9, 31, 38, 53
Subject Index

l

Langmuir–Hinshelwood–Hougen–Watson (LHHW) mechanism 371
least squares sum 169
Lee-Kesler correlations 32–42, 52
light components 61, 127
light cycle oil (LCO) 147 f, 224, 230, 244
light ends tuning 284
light gas
 – atmospheric distillation unit 78
 – continuous catalyst regeneration reforming 295, 341
 – fluid catalytic cracking 148, 224
 – vacuum distillation unit 123, 127
light gas oil (LGO)
 – atmospheric distillation unit 62
 – D-86 comparison curve 93 ff, 111
 – draw rate 113 ff
light naptha
 – atmospheric distillation column 99 ff, 108
 – D-86 comparison curve 92, 97, 110
light straight run naphtha (LSR) 62
Line search parameters 217
linear programming (LP)
 – continuous catalyst regeneration reforming 305
 – fluid catalytic cracking 145, 190, 240
 – HP hydrocracking 429
liquid density 36, 43, 54
liquid enthalpy 64
liquid feeds 198
liquid heat capacity 43, 53
liquid petroleum gas (LPG)
 – continuous catalyst regeneration reforming 253, 257, 270, 291
 – fluid catalytic cracking 180, 187, 192, 199, 224, 230
 – HP hydrocracking 419 ff
 – MP hydrocracking 377, 407
liquid phases 106
liquid products 311, 409
liquid streams 328
liquid-phase reaction 388
literature
 – continuous catalyst regeneration reforming 263
 – fluid catalytic cracking 153
 – unit-level models 269
lognormal distributions 169
lower heating value (LHV) 5
LPS VAP 419 f
lubricant production 117
lump composition 162
lumped kinetics see kinetic lumping
LVGO 117, 122

m

main fractionator see fractionator
mass balance
 – atmospheric distillation unit 63
 – continuous catalyst regeneration reforming 280 ff
 – fluid catalytic cracking 227
 – hydrocracking 381
mass flow
 – atmospheric distillation unit 58
 – oil fractions 34, 42 f
 – vacuum distillation unit 122
mass vapor fraction 83
mean average boiling point (MeABP) 50
 – hydrocracking 394, 402
 – fluid catalytic cracking 173
 – oil fractions 9, 18, 54
mechanistic FCC models 154
medium-pressure hydrocracking (MP HCR) 363, 366, 376, 383
MESH equations 64
metal coke 162 f
metal functions 261, 266
metal site reaction 372
metallocorphyrin components 137
metals content 198, 210 f, 214
methane 147, 307
methylcyclohexane (MCH) 300
methylcyclopentane (MCP) 262, 300, 305
mixed coefficient approach 43
model applications
 – continuous catalyst regeneration reforming 293
 – fluid catalytic cracking 184, 233 ff
 – hydrocracking 456
 – HP hydrocracking 425–429
 – process optimization 95
 – production planning 190
 – refinery production planning 304
 – vacuum distillation unit 135
model development
 – Aspen HYSYS 75
 – atmospheric distillation 63
 – continuous catalyst regeneration reforming 280, 309
 – fluid catalytic cracking 145–252
 – hydrocracking 378
 – vacuum distillation unit 124
model prediction see prediction
model results see results
molar flow 105
molar-average boiling point (MABP) 9
molecular composition
 – continuous catalyst regeneration reforming 329
 – fluid catalytic cracking 145, 170
 – hydroprocessing units 365
molecular weight 43, 54
 – CatReform model 273
 – continuous catalyst regeneration reforming 276
 – fluid catalytic cracking 173
 – hydrocracking 395
 – oil fractions 31 ff, 39
molecular-type homologous series (MTHS) representation 370
motor octane number (MON)
 – continuous catalyst regeneration reforming 268 ff, 272, 294 ff, 307 f, 350–357
 – delta-base vectors 308 f
 – fluid catalytic cracking 156 f, 175 f, 198, 212 f
 – HP hydrocracking 430
 – oil fractions 6 f
moving-bed catalyst regeneration 255
MS Excel spreadsheet see also Excel
 – gas streams 123
 – interface (ADU) 68
 – mass / hydrogen balance 281
multiscenario delta-base vectors 431
multistage operation modeling 63
Murphree stage efficiency
 – atmospheric distillation unit 65
 – continuous catalyst regeneration reforming 274
 – fluid catalytic cracking 165
 – hydrocracking 398
n
naphtha
 – atmospheric distillation unit 62, 66, 85, 99
 – continuous catalyst regeneration reforming 256
 – D-86 comparison curve 110 f
 – fluid catalytic cracking 170 f, 224, 230, 244
 – HP hydrocracking 419 ff, 427 f
 – hydrocracking 380, 400
 – MP hydrocracking 376, 407 ff
 – paraffin/aromatic content 51
naphthabenzothiophene 369
naphthenes 48
 – CatReform model 274
 – continuous catalyst regeneration reforming 259–264, 280–290, 351
 – fluid catalytic cracking 152 f, 155, 163, 170, 198
 – hydroprocessing units 369 ff
 – oil fractions 6
networks
 – Aspen HYSYS Petroleum Refining HCR 371–376
 – calibration 174
 – continuous catalyst regeneration reforming 264 ff, 286
 – coke balance 163
 – heat-exchanger 61
 – kinetic lumping 30, 162, 253, 261–268, 363
 – reaction 270, 363, 366, 382
nickel contaminants 137
nitrogen 198, 211, 369 f
nomenclature 53, 116, 248, 358, 475
non-linear programming (NLP) 191
objective functions 337, 385, 444–450
octane 151, 254
octane number see also research –, motor octane number
 – continuous catalyst regeneration reforming 293
 – oil fractions 6
oil fractions 1–56, 103 f
Oil Manager (Aspen HYSYS) 75 ff, 100 ff
olefins 147, 151 f, 198
on stage convention 63
operating conditions
 – atmospheric distillation unit 67
 – continuous catalyst regeneration reforming 260, 285
 – fluid catalytic cracking 145, 158, 184, 191, 199, 214
 – hydrocracking 456
 – HP hydrocracking 425
 – hydrocracking 383
 – hydroprocessing units 365
 – vacuum distillation unit 125
organic nitrogen compounds 372
outlet streams 381
outlet temperature
 – atmospheric distillation 61, 70
 – catalyst bed 403, 415
 – preheat train 82, 215
 – riser 84, 184, 199, 216, 233–240
 – T-100 473
 – vacuum distillation unit 118
overall Aspen HYSYS model 177
overall column (stage) efficiency 65, 165, 274, 399
overall modeling strategy 174, 285
overall reaction selectivity 164
overcracking 187
overflash 61, 82, 129, 135
overhead gas compressor 145
overhead vapor 149
overhead wet gas system 230

paraffin-naphthene-aromatic (PNA) content 48 ff see also naphthene, aromatic
– continuous catalyst regeneration reforming 253, 267, 276 ff
paraffins
– CatReform model 271, 274
– continuous catalyst regeneration reforming 254–266, 280, 284, 290
– fluid catalytic cracking 151–156, 163, 170
– hydroprocessing units 369 ff
– oil fractions 6
pathway models 154
Peng-Robinson equation of state (EOS)
– atmospheric distillation unit 81, 92, 109
– liquid density 36
– oil fractions 23
– vacuum distillation unit 126 f
petroleum component list 201
petroleum fractions 1, 51, 120 ff, 171
petroleum gas 147
petroleum oil 365
physical properties
– minimum properties for pseudocomponents 31, 39
– oil fractions 1–56
– refinery modeling 48
– required properties for process modeling (simulation) 31
– thermodynamic approaches 43
PIMS see Aspen PIMS
pinch technology 61
pinning 271
plant data
– atmospheric distillation unit 58, 84, 91, 95, 115
– fluid catalytic cracking 145, 158, 176, 225, 247
– hydrocracking 440 ff
– hydroprocessing 363, 369, 379, 383, 412, 422, 431, 440–455
– Riazi-Daubert correlation 51
– vacuum distillation units 117, 129
platinum 260
plug flow reactors (PFRs)
– hydrocracking 388
– continuous catalyst regeneration reforming 268
– fluid catalytic cracking 159
postconvergence 91
pour point 4
Poynting correction factor 44, 54
predictive modeling
– atmospheric distillation column 92
– continuous catalyst regeneration reforming process 253–362
– fluid catalytic cracking 145–252
– hydroprocessing units 363–478
prefractionation units 81
preheat train 60, 81
preheater 347
pressure
– atmospheric distillation unit 70
– CatReform model 274
– continuous catalyst regeneration reforming 257, 261
– column 85
– critical 34, 54
– fluid catalytic cracking 175, 217, 231 ff
– hydrocracking 380, 395
– vacuum distillation unit 118 f, 125
probability distribution 124
process chemistry
– continuous catalyst regeneration reforming 260
– fluid catalytic cracking 151
– continuous catalyst regeneration reforming 319
– fluid catalytic cracking 198 ff
– hydrocracking 441, 462
– vacuum distillation unit 140
see also plant data, process data, process description
– atmospheric distillation 58
– continuous catalyst regeneration reforming 255, 303, 309
– fluid catalytic cracking 147, 196
– MP hydrocracking 376
– vacuum distillation unit 117
process flow diagrams (PFD) see also flowcharts
– fluid catalytic cracking 196
– hydrocracking 472
– hydroprocessing units 366
– reorganization 104
– vacuum distillation unit 118, 124
process modeling
– atmospheric distillation unit 57
Subject Index

- continuous catalyst regeneration
 - reforming 253
- fluid catalytic cracking 145
- hydroprocessing (hydrocracking and hydrotreating) 363
- vacuum distillation unit 117

process optimization
- continuous catalyst regeneration
 - reforming 293
- fluid catalytic cracking 184, 231
- hydrocracking 456
- HP hydrocracking 425
- model applications 95
- VDU deep-cut operation 135

process thermodynamics
 see thermodynamics

process yields 253 see also product ~, yields

product blending 191

product composition 310
 see also composition

product distribution
- atmospheric distillation unit 74
- continuous catalyst regeneration
 - reforming 351
- feed flow rate 427

product properties 175, 198
- atmospheric distillation unit 58, 111
- HP hydrocracking 422
- hydrocracking 402
- MP hydrocracking 412
- vacuum distillation unit 125

product recovery specifications 86

product yields
- atmospheric distillation column 92
- fluid catalytic cracking 145, 166, 177, 237, 240
- fluid catalytic cracking 219 ff
- HP hydrocracking 419
- hydrocracking 439 ff, 462
- MP hydrocracking 407
- vacuum distillation unit 132, 135 ff

production planning 304

propane 147, 244, 291, 307

properties of refinery process 30

propylene 244

pseudocomponents 52
 - boiling-point ranges 8
 - fluid catalytic cracking 146
 - hydrocracking 393–399, 469 ff
 - oil fractions 26
- vacuum distillation unit 120, 127

reformers
- atmospheric distillation unit 74, 88, 92
- hydrocracking 475

- vacuum distillation unit 119, 132

purge gas 381

q
 quality
 - atmospheric distillation unit 74, 92
 - vacuum distillation unit 137

r
 Rackett parameter 37, 54
 Raoult’s law 43

rate-based approach
- atmospheric distillation unit 63, 87
- continuous catalyst regeneration
 - reforming 264 ff
 - hydrocracking 390 ff

reaction classes
- CatReform model 270
- continuous catalyst regeneration
 - reforming 260 ff
- fluid catalytic cracking 152
- hydrotreating units 372

reaction network see also network
- Aspen HYSYS Petroleum Refining 373
- hydrocracking 382
- hydroprocessing units 363

reactor delta temperature 284

reactor performance
- continuous catalyst regeneration
 - reforming 335
- HP hydrocracking 415 ff
- MP hydrocracking 403

reactor temperature see also temperatures
- continuous catalyst regeneration
 - reforming 304, 318, 322, 351
- HP hydrocracking 425
- hydrocracking 384, 437, 457

reactor–fractionator simulation 465

reactor-regenerator unit 147

reactors
- continuous catalyst regeneration
 - reforming 256, 311–318
- fluid catalytic cracking 196
- hydrocracking 383–392, 433, 441
- hydroprocessing units 363 ff
- oil fractions 30, 42

recalibration 287

reconstructed crude feed 102

recombinator 288, 346

Redlich–Kwong (RK) 46

refining see also Aspen HYSYS Petroleum Refining

- process models 30
- oil fractions 1 ff
Subject Index

– reactors palette 316
reflux ratio
– continuous catalyst regeneration reforming 275
– fluid catalytic cracking 167
– hydrotreating 399
reformate splitter 275
reformer 352
reformer calibration 333
reformer components 313 ff
reforming, continuous catalyst regeneration 253–362
refractive index 51, 54
– atmospheric distillation unit 66
– CatReform model 274
– fluid catalytic cracking 168, 173
– hydroprocessing units 370
– oil fractions 5
regenerators 159 ff, 199, 216, 222, 229
Reid vapor pressure (RVP) 77, 349
remained catalyst life 425
remixing section 287, 345
rescaling spreadsheet 330
research octane number (RON)
– continuous catalyst regeneration reforming 268 ff, 294 ff, 307 f, 350–357
– delta-base vectors 308 f
– fluid catalytic cracking 156 f, 175 f, 198, 212 f
– HP hydrotreating 430
– oil fractions 6 f
residence time 388
residual Hessian parameters 217, 228
residue feed 190, 211
residue oil 419 ff
residue paraffin 163
results
– atmospheric distillation column 91, 109
– continuous catalyst regeneration reforming 287, 326
– fluid catalytic cracking 176, 219, 236 ff
– HP hydrotreating 415
– MP hydrotreating 403
– vacuum distillation unit 143 f
rhenium 260
Riazi-Daubert correlation 51 f
– CatReform model 274
– fluid catalytic cracking 170, 173
– hydrotreating 395 ff
– oil fractions 41
rigorous model
– continuous catalyst regeneration reforming 306
– delta-base vectors 195
– fluid catalytic cracking 146
– vacuum distillation unit 124, 128, 132
ring closure/expansion
– CatReform model 271
– continuous catalyst regeneration reforming 266, 284, 341
ring dealkylation 372
riser 158–161, 199, 215–229
riser outlet temperature (ROT) 84, 184, 199, 216, 233–240
riser-regenerator complex 145 ff
running initial model 324
s
salt removal process see desalting schematics
– catalyst regeneration process 258
– continuous catalyst regeneration reforming 309
– downstream fractionation 149
– fluid catalytic cracking 147
sediments 58
selectivity 164, 174, 260
semiregenerative processes 255
sensitivity 384
separators
– continuous catalyst regeneration reforming 258
– hydroprocessing 380
– hydroprocessing units 369
– MP hydrotreating 376
– oil fractions 30
– vacuum distillation unit 128
side strippers 66–92
side-chain scission 152
simple thermodynamics see thermodynamics
simplified model see model
simulations
– atmospheric distillation unit 73
– continuous catalyst regeneration reforming 306
delta-base vectors 195 see also models
– fluid catalytic cracking 146, 159
– hydrotreating 382
– oil fractions 29
– vacuum distillation unit 124, 128, 132
single-stage hydrotreating 364, 399
slip factor 161
smoke point 4
Soave–Redlich–Kwong (SRK) 46, 81
solid removals 59
solubility 53
solver parameters
– atmospheric distillation unit 84, 104
Subject Index

- continuous catalyst regeneration reforming 321 ff, 342
- fluid catalytic cracking 169 f, 214 ff
- sour gas 224, 407
- space velocity 389
- specific gravity 50, 54
 see also API gravity
- atmospheric distillation column 95
- beta function data fitting 69
- CatReform model 274
- continuous catalyst regeneration reforming 257 ff, 276
- fluid catalytic cracking 170, 192 ff, 198, 211, 242
- HP hydrocracking 422
- hydrocracking 394, 402
- MP hydrocracking 413 f
- oil fractions 4, 15, 39
- vacuum distillation unit 122
- specifications
 - atmospheric distillation unit 73 ff
 - continuous catalyst regeneration reforming 275, 347
- fluid catalytic cracking 167
- main fractionator 231
- rigorous VDU model 132
- T-100 473
- Spencer-Danner method 37
- splitter 275, 369
- sponge oil absorber 145, 230
- spreadsheet
 - atmospheric distillation column 113
 - continuous catalyst regeneration reforming 330
 - distillation curves 7
 - gas streams 123
 - HCR mass balance 382
 - MeABP calculation 11
- square cut yields 219 ff
- stabilization 149
- stage efficiency
 - atmospheric distillation unit 65, 84
 - fluid catalytic cracking 165
 - hydrocracking 398
- stage temperatures 92
- stage-by-stage models 165
- start of run (SOC) 425
- steam rates
 - atmospheric distillation column 91
 - fluid catalytic cracking 199, 215
 - vacuum distillation unit 127, 135 f, 141
- steam stripped side columns 66
- stream composition 468
- stream correlations 90
- stream specifications 347
- strippers
 - fluid catalytic cracking 145, 150, 159 ff, 167, 184, 230
 - hydrocracking 399, 475
 - MP hydrocracking 376, 405
- stripping steam see steam
- structure-oriented lumping (SOL)
- fluid catalytic cracking 154
- hydroprocessing units 366, 379
- sulfides 369
- sulfur content
 - fluid catalytic cracking 175, 193 ff, 198, 211, 242
 - gasoline 189
 - hydrocracking 384
 - hydroprocessing units 365, 369 f
 - oil fractions 4
- superficial gas velocity 161

\(t \) temperature 49 see also weight-average, reactor, stage, riser, outlet
- atmospheric distillation unit 61, 70, 85, 91, 109
- CatReform model 274
- continuous catalyst regeneration reforming 253–261, 274, 284–291, 304, 322
- critical 34
- fluid catalytic cracking 151, 167, 175, 182 ff, 199, 231 ff
- HP hydrocracking 415 ff
- hydrocracking 380, 383, 395
- hydroprocessing units 365
- MP hydrocracking 405
- oil fractions 40
- vacuum distillation unit 118, 125–141 f
temperature–process yield relation 293
ten-lump model 154
tetrahydrobenzothiophenes 369
- thermal cracking
 - fluid catalytic cracking 151
 - vacuum distillation unit 137
- thermodynamic approaches, required physical properties and recommendations 43
- thermodynamics 40–45
- atmospheric distillation unit 63, 78, 81
- continuous catalyst regeneration reforming 312
- fluid catalytic cracking 204 ff
- oil fractions 1–56
- vacuum distillation unit 126
- thermophysical properties
 - CatReform model 273
Subject Index

– crude oil/petroleum fractions 52
– oil fractions 1
thiophene 369
three-layer onion hydroprocessing units modeling 366
time-on-stream catalyst deactivation 163
toluene 253, 284, 290, 300
true boiling point (TBP) 71
– atmospheric distillation 75, 91
– continuous catalyst regeneration reforming 276
– distillation curve 52
– fluid catalytic cracking 160, 168, 173, 226
– hydrocracking 393–397
– oil fractions 5, 8 ff
true crude assays 90
twenty-one-lump kinetic model 162
two-lump scheme 390
Twu correlation 32, 52

u
unit throughput, FCC 187
unit-level models 153, 158, 267
UOP design, FCC 147
utility energy consumption 303

v
vacuum distillation unit (VDU) 7, 117–144
vacuum gas oil (VGO)
– fluid catalytic cracking 147, 170 f, 189, 216
– hydrocracking 376, 383
– hydroprocessing units 364, 371
– vacuum distillation unit 118, 122, 132
– paraffin/aromatic content 51
vacuum residue 189
validation
– atmospheric distillation unit 92
– CCR reforming model 285 ff
– fluid catalytic cracking 177 ff, 227
– hydrocracking 379
valves 159
vanadium contaminants 137
vapor enthalpy 64
vapor pressure 31–45
vapor product rate 112
vaporization 43 ff
– atmospheric distillation unit 60 f
– continuous catalyst regeneration reforming 277
– oil fractions 31, 40, 53
– vacuum distillation unit 118, 135
vapor-liquid crude mixture 60
vapor-liquid equilibrium (VLE)
– distillation columns 8

– hydrocracking 396 ff
– oil fractions 42
vapor-liquid interface 63
vapor-liquid phases 31
vapor-liquid separation 135
Variable Navigator 233, 352
viscosity 51
– atmospheric distillation unit 66
– fluid catalytic cracking 168
– hydroprocessing units 370
– oil fractions 32
viscosity gravity constant (VGC) 170, 173
volatility
– fluid catalytic cracking 177
– hydrocracking 393
– oil fractions 7

w
wash grid 118, 128, 137
water draw stream 106 f
water wash 127, 150
Watson factor 50 ff
– atmospheric distillation column 116
– fluid catalytic cracking 173
– hydrocracking 394, 432
– oil fractions 9, 31, 38 f, 53
weight averaged inlet temperature (WAIT) 262, 293 ff, 301, 322, 351
weight-average reactor temperatures (WART)
– feed flow rate/product distribution 427
– hydrocracking 456
– HP hydrocracking 415 f
– MP hydrocracking 403
weight-averaged bed temperature (WABT) 271
weighted hourly space velocity (WHSV) 271, 296
weighting factors 284, 338
wet gas compressor 150
what-if scenario 293
workflow see also flowchart, schematics
– HCR modeling 378
workshops, hand-on
– applications of HCR model to process optimization 456
– basic FCC model 204
– build atmospheric distillation model using back-blending procedure 98
– build CCR model in Aspen HYSYS Petroleum Refining 309
– build preliminary reactor model for HCR process 433
– build downstream fractionation model for CCR 344
- calibrating basic FCC model 222
- calibrating CCR model 332
- calibrating preliminary HCR reactor model to match plant data 440
- calculate mean-average boiling point of a given assay 18
- case study to vary RON and product distribution profile 351
- connect HCR reactor model to fractionator simulation 465
- deep-cut operation of a vacuum distillation unit 139
- duplicate oil fractions in Aspen HYSYS Petroleum Refining 21
- extrapolate incomplete distillation curve 15
- FCC main fractionator and gas plant system 230
- FCC case study to identify different production scenarios 233
- FCC generation of delta-base vectors for LP-based production planning
- interconvert distillation curves 13
- investigate changes in ADU product profiles with new product demands 111

x
xylenes 253, 272, 284, 290, 300

y
yields see also product yields
- atmospheric distillation column 92, 97
- back-blending 99
- continuous catalyst regeneration reforming 285 ff, 298, 304–312, 327, 351
- fluid catalytic cracking 151 ff, 192 ff, 219, 185
- hydrocracking 385, 427, 439 ff
- vacuum distillation unit 132, 135 f