Contents

Foreword V
Preface to the Second Edition XVII
List of Contributors XIX
List of Symbols and Abbreviations XXIII

Part One Measuring Organic Indoor Pollutants

1 Application of Solid Sorbents for the Sampling of Volatile Organic Compounds in Indoor Air 3

Erik Uhde

1.1 Introduction 3
1.2 Solid Sorbents—A Brief Overview 4
1.3 Active or Passive Sampling 7
1.4 Thermal Desorption or Solvent Extraction 8
1.5 Sampler Design 8
1.6 Breakthrough Volumes 11
1.7 Safe Sampling Volume 11
1.8 Artifacts and Interferences 12
1.8.1 Water Affinity—A Chromatographic Problem 12
1.8.2 Sorbent Degradation Products and Sorbent Background 13
1.8.3 Target Compound Degradation and Artifact Formation 15
1.9 Conclusions 16

2 Sampling and Analysis of SVOCs and POMs in Indoor Air 19

Per Axel Clausen, Vivi Kofoed-Sørensen

2.1 Introduction 19
2.2 Definitions and Properties of SVOCs and POMs 19
2.2.1 Gas/Particle Partitioning in Indoor Air 20
2.2.2 Surface Adsorption 21
2.2.3 Health Related Properties 22
2.3 Compounds and Matrices in the Indoor Environment 22
2.4 Sampling, Transport and Storage of SVOC/POM Samples 23
2.4.1 Preparation of Sampling and Analysis Equipment 23

Organic Indoor Air Pollutants, 2nd Edition. Edited by Tunga Salthammer and Erik Uhde
Copyright © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-31267-2
2.4.1.1 Background Contamination and Loss of Target Compounds 23
2.4.1.2 Cleaning of Filters 24
2.4.1.3 Cleaning of Sorbents 24
2.4.1.4 Cleaning of Glassware and Other Equipment 24
2.4.2 Sampling SVOCs/POMs in Air 25
2.4.2.1 Filter/Sorbent Sampling 25
2.4.2.2 Determination of the Gas/Particle Partitioning: Denuder Sampling 26
2.4.2.3 Artifact Formation Caused by Reactive Gases in Indoor Air 26
2.4.2.4 Air Sampling Pumps 27
2.4.3 SVOCs/POMs in Surface Dust 27
2.4.3.1 Filter Sampling with Vacuum Cleaner 27
2.4.3.2 Specially Designed Dust Sampler 28
2.4.4 SVOCs/POMs in Building Materials and Consumer Products 28
2.4.4.1 Indoor Material Samples Containing SVOCs/POMs 28
2.4.4.2 Testing Emission of SVOCs from Indoor Materials in Chambers 28
2.5 Preparation of SVOC/POM Samples for Analysis 30
2.5.1 Extraction of SVOCs/POMs from Samples 30
2.5.2 Concentrating Extracts of SVOC/POM Samples 32
2.6 Analysis of SVOCs/POMs 32
2.6.1 Gas Chromatography (GC) 32
2.6.1.1 On-Column Injection (OC) 34
2.6.1.2 Large Volume Injection (LVI) 34
2.6.1.3 Thermal Desorption (TD) 34
2.6.1.4 ‘Cold Spots’ and Other Adsorption Problems 35
2.6.1.5 Flame Ionization Detection (FID) 35
2.6.1.6 Mass Spectrometric Detection (MS) 35
2.6.2 High Performance Liquid Chromatography (HPLC) 36
2.6.2.1 HPLC with Fluorescence Detection (HPLC-FD) 36
2.6.2.2 HPLC with Mass Spectrometric Detection (LC-MS) 36
2.6.3 Analysis Sequences 36
2.7 Quality Assurance and Control 37
2.7.1 Method Validation 37
2.7.1.1 Calibration Curves 39
2.7.1.2 Limit of Detection (Ld) and Limit of Quantification (LQ) 39
2.7.2 Controls and Control Charts 41
2.7.3 Documentation 41
References 42

3 Application of Diffusive Samplers 47
Derrick Crump
3.1 Introduction 47
3.2 Principles of Diffusive Sampling 48
3.3 Selection of Appropriate Methods 50
3.4 Performance of Diffusive Samplers for the Measurement of VOCs in Indoor Air 50
4 Real-Time Monitoring of Indoor Organic Compounds 65
Yinping Zhang, Jinhan Mo
4.1 Introduction 65
4.2 Proton Transfer Reaction–Mass Spectrometer (PTR–MS) 66
4.2.1 Detection Principles 66
4.2.2 Measuring Method 68
4.2.3 Accuracy, Linearity, Limits of Detection and Precision 69
4.2.4 Applications of PTR–MS 72
4.3 Photo-acoustic Spectroscopy 73
4.3.1 Detection Principles 73
4.3.2 Measuring System and Method 74
4.3.2.1 Discrete Sampling: Nondispersive PAS 74
4.3.2.2 Discrete Sampling: FTIR/PAS 76
4.3.2.3 Continuous Flow-PAS 76
4.3.3 Selectivity, Sensitivity and Accuracy 77
4.3.4 Applications of PAS 78
4.4 Flame Ionization Detection 78
4.4.1 Detection Principle 79
4.4.2 Measuring System and Method 79
4.4.3 Selectivity and Sensitivity 80
4.4.4 Applications of FID 80
4.5 Photo-ionization Detection 80
4.5.1 Detection Principles 81
4.5.2 Selectivity and Sensitivity 81
4.5.3 Applications of PID 82
4.6 Metal Oxide Sensors 83
4.6.1 Measuring Principle 83
4.6.2 Selectivity and Sensitivity 86
4.7 Air Sampling and Data Recording 87
4.8 Examples of Investigations Using Real-Time Monitoring 87
4.8.1 Laboratory Investigations of VOC Emissions from Building Materials 87
4.8.1.1 Experimental Principle 88
4.8.1.2 Experimental System 88
4.8.2 Organic Compounds in Outdoor Air 90
4.8.3 The Effect of Photocatalytic Oxidation on VOC Removal 91
4.8.3.1 Detection of Harmful By-Product During the Removal of Toluene by PCO 92
4.8.3.2 Evaluating the Formaldehyde Removal Performance of PCO Reactors 94
Contents

4.8.4 Products of Ozone-Initiated Chemistry in a Simulated Aircraft Environment 94

4.9 Concluding Remarks 96

Acknowledgments 97

References 97

5 Environmental Test Chambers and Cells 101

Tunga Salthammer

5.1 Introduction 101

5.2 Characteristics of Chambers and Cells 102

5.3 Sink Effects 105

5.4 Calculation of Emission Rates 106

5.5 Kinetics and Mass Transfer 108

5.6 Application of Test Chambers and Cells 109

5.7 Final Remarks 112

References 113

Part Two Investigation Concepts and Quality Guidelines

6 Standardized Methods for Testing Emissions of Organic Vapors from Building Products to Indoor Air 119

Elizabeth Woolfenden

6.1 Introduction: The Need for Standardization 119

6.2 Materials Emissions Testing: A Challenge for Method Standardization 120

6.2.1 The Range of Products and Materials Requiring Emissions Testing 121

6.2.2 The Range of Potential Target Compounds 121

6.2.3 Method Variability or Uncertainty 130

6.2.4 Nonuniformity of Test Methods 130

6.3 Regulations, Standard Methods and Test/Certification Protocols 131

6.4 Emissions Test Methods for VOCs: An Overview of Basic Principles 133

6.4.1 Standard test Methods for Formal Evaluation and Certification of Emissions 133

6.4.2 Secondary or ‘Screening’ Methods for Materials Emissions 134

6.5 The Total-VOC Debate 137

6.6.1 Typical Conditions for Emissions Testing Using Chambers/Cells 138

6.6.2 Standard Methods: What Can Go Wrong? 139

6.6.2.1 Effect of the Emission Mechanism 139
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.6.2.2 Collection and Transport of Samples Plus Homogeneity Issues</td>
<td>140</td>
</tr>
<tr>
<td>6.6.2.3 Potential Variables Associated with Testing Materials Using Emissions Chambers/Cells: Edge Effects, Sample Orientation and Sample Storage Between Tests</td>
<td>140</td>
</tr>
<tr>
<td>6.6.2.4 Sink Effects</td>
<td>141</td>
</tr>
<tr>
<td>6.6.2.5 Target Analytes and System Calibration</td>
<td>141</td>
</tr>
<tr>
<td>6.6.2.6 Chromatographic Integration and Summation Limit Levels</td>
<td>142</td>
</tr>
<tr>
<td>6.7 Confidence Limits for Emissions Test Data for Individual VOCs</td>
<td>143</td>
</tr>
<tr>
<td>6.8 Concluding Remarks</td>
<td>143</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>144</td>
</tr>
<tr>
<td>References</td>
<td>144</td>
</tr>
<tr>
<td>7 Standard Test Methods for the Determination of VOCs and SVOCs in Automobile Interiors</td>
<td>147</td>
</tr>
<tr>
<td>7.1 Introduction</td>
<td>147</td>
</tr>
<tr>
<td>7.2 Conditioning of the Automobile Interior</td>
<td>149</td>
</tr>
<tr>
<td>7.3 Measurement Procedure</td>
<td>151</td>
</tr>
<tr>
<td>7.3.1 Quantitative Determination</td>
<td>152</td>
</tr>
<tr>
<td>7.3.2 Semi-Quantitative Determination of VOCs (TVOC)</td>
<td>154</td>
</tr>
<tr>
<td>7.3.3 Qualitative Determination of VOCs (Identification)</td>
<td>154</td>
</tr>
<tr>
<td>7.3.4 Identification of SVOCs (Fogging Precipitate)</td>
<td>155</td>
</tr>
<tr>
<td>7.3.5 Measurement of the Sum of Organic Substances (ΣVOC)</td>
<td>155</td>
</tr>
<tr>
<td>7.4 Quantitative and Qualitative Results from Brand New Cars</td>
<td>156</td>
</tr>
<tr>
<td>7.5 Emissions of Organophosphate Esters inside Automobiles</td>
<td>159</td>
</tr>
<tr>
<td>7.6 Conclusion</td>
<td>161</td>
</tr>
<tr>
<td>References</td>
<td>161</td>
</tr>
<tr>
<td>8 Material and Indoor Odors and Odorants</td>
<td>165</td>
</tr>
<tr>
<td>8.1 Introduction</td>
<td>165</td>
</tr>
<tr>
<td>8.2 Odor Evaluation</td>
<td>167</td>
</tr>
<tr>
<td>8.2.1 Indoor Environments</td>
<td>167</td>
</tr>
<tr>
<td>8.2.2 Materials</td>
<td>168</td>
</tr>
<tr>
<td>8.2.3 Panels and Scales</td>
<td>168</td>
</tr>
<tr>
<td>8.3 Odor Analysis—Odorant Identification</td>
<td>172</td>
</tr>
<tr>
<td>8.3.1 Methods</td>
<td>172</td>
</tr>
<tr>
<td>8.3.1.1 Sampling of Volatiles and Odorants from Indoor Environments</td>
<td>174</td>
</tr>
<tr>
<td>8.3.1.2 Sampling of Volatiles and Isolation of Odorants from Materials</td>
<td>175</td>
</tr>
<tr>
<td>8.3.1.3 Identification</td>
<td>175</td>
</tr>
<tr>
<td>8.3.2 Examples</td>
<td>176</td>
</tr>
<tr>
<td>8.3.2.1 Cleaning Products, Detergents, Air Fresheners</td>
<td>176</td>
</tr>
<tr>
<td>8.3.2.2 Carpets</td>
<td>176</td>
</tr>
<tr>
<td>8.3.2.3 Adhesives</td>
<td>177</td>
</tr>
</tbody>
</table>
9 Evaluation of Indoor Air Contamination by Means of Reference and Guide Values: The German Approach 189

Birger Heinzow, Helmut Sagunski

9.1 Introduction 189
9.2 Definition of Terms 190
9.2.1 Indoor Environment 190
9.2.2 Utilization Cycle 190
9.2.3 Volatile Organic Compounds (VOCs) 191
9.3 Values for Evaluating the Indoor Air Quality 191
9.3.1 Toxicologically Based Values 191
9.3.2 Statistically Defined Values 192
9.4 Evaluation of Indoor Air Quality with the Aid of Guide Values 192
9.4.1 Requirements Relating to Guide Values for Indoor Air 192
 9.4.1.1 Health Reference 192
 9.4.1.2 Legal Reference 194
9.4.2 Basic Scheme for Deriving Guide Values for Indoor Air 194
9.4.3 Application of the Guide Values in Risk Management 196
9.4.4 Recommendation 197
9.4.5 Guide Values by the Ad-hoc WG Not Based on RW I and RW II 197
9.5 Health Evaluation with the Aid of the TVOC Concept 198
9.5.1 Recommendation Relating to the Application of TVOC Values 198
9.5.2 Time Curve of Higher TVOC Concentrations 203
9.6 Evaluation of Indoor Air Quality with the Aid of Reference Values 203
 9.6.1 The Current State of Indoor Air Reference Values 204
 9.6.2 Recommendations 204
9.7 Application of Measured Values in Order to Evaluate Indoor Air Quality 206
9.8 Evaluation of Substances Without Reference Values From the IRK/AOLG Ad-hoc Working Group 207

Acknowledgment 208
References 209
Part Three Field Studies

10 Effect of Ventilation on VOCs in Indoor Air 215
 Kwok Wai Tham, S. Chandra Sekhar, Mohamed Sultan Zuraimi
10.1 Introduction 215
10.1.1 Building and Ventilation Characteristics of Office Buildings in a Tropical Climate 216
10.2 VOC Concentration Levels in Eight Singapore Buildings 216
10.2.1 Concentrations 217
10.2.2 Health Effects Caused by VOCs in Singapore Buildings 221
10.2.3 Possible Sources 221
10.3 Apportionment of VOCs Source Strengths in Five Buildings 221
10.3.1 Area-Specific Emission Rates of VOCs 221
10.3.2 Source Apportionment of VOC Sources 225
10.4 Effects of Typical Ventilation Operations on TVOC Levels 227
10.5 Effect of Purging on Indoor TVOC Levels 230
10.5.1 Purging System 230
10.5.2 Building Characteristics 231
10.5.3 Purging Measurements 233
10.6 Summary 236
References 237

11 Occurrence of Semi-Volatile Organic Compounds in the Indoor Environment 239
 Werner Butte
11.1 Introduction 239
11.2 Concentrations of SVOCs in Indoor Air and House Dust 240
11.2.1 Phenols and Their Derivatives (Other than Biocides) 240
11.2.2 Biocides 241
11.2.3 Musk Compounds 242
11.2.4 Organophosphates 243
11.2.5 Organotin Compounds 246
11.2.6 Perfluorinated Compounds 246
11.2.7 Phthalates 248
11.2.8 Polybrominated Diphenyl Ethers 253
11.2.9 Polychlorinated Biphenyls 253
11.2.10 Polychlorinated Dioxins and Furans 256
11.2.11 Polycyclic Aromatic Hydrocarbons 257
11.3 Sources for SVOCs Indoors 260
11.4 The Indoor Environment: A Source for Exposure? 261
11.4.1 Indoor Air and House Dust: Associations to Human Biomonitoring 261
11.4.2 Indoor Biocides: A Reason for Health Impairments? 262
11.4.3 Reference and Guideline Values 263
12 Indoor Pollutants in the Museum Environment 273
 Alexandra Schieweck, Tunga Salthammer, Simon F. Watts
 12.1 The Museum Environment: An Introduction 273
 12.2 Climatic Conditions 276
 12.2.1 Humidity 277
 12.2.2 Temperature 278
 12.3 Inorganic Atmospheric Compounds 278
 12.4 Formaldehyde, Organic Acids (Formic Acid, Acetic Acid) 281
 12.5 Volatile Organic Compounds (VOCs) 284
 12.6 Semi-volatile Organic Compounds (SVOCs) 287
 12.7 Occurrence of Biocides in the Museum Environment 288
 12.8 The Role of People 291
 12.9 Risk Assessment and Preservation Strategies 292
 12.9.1 Recommendations and Guidelines 293
 12.10 Conclusion 293
 References 296

13 Indoor Organic Chemistry 301
 Glenn Morrison
 13.1 Introduction 301
 13.2 Relevance of Chemistry Using Indoor Air Models 302
 13.3 Homogeneous Chemistry 303
 13.3.1 Gas-Phase Organic Oxidation Chemistry: Ozone 303
 13.3.2 Gas-Phase Organic Oxidation Chemistry: Hydroxyl Radical 308
 13.3.3 Gas-Phase Organic Oxidation Chemistry: Nitrate Radical 309
 13.3.4 Condensed-Phase Chemistry: Oxidation 310
 13.3.5 Condensed-Phase Chemistry: Hydrolysis 311
 13.4 Heterogeneous Chemistry 313
 13.4.1 Heterogeneous Chemistry: Ozone and Fresh Indoor Surfaces 313
 13.4.2 Heterogeneous Chemistry: Ozone and Soiled Surfaces 316
 13.4.3 Heterogeneous Chemistry: Acid–Base 318
 13.5 Concluding Remarks 319
 References 320

14 Human Responses to Organic Air Pollutants 327
 Lars Mølhave
 14.1 Introduction 327
 14.2 VOC Exposures Indoors 329
 14.2.1 Health Effects of Indoor Air Pollution 330
 14.2.2 Indicators of Indoor Air Quality and Health 332
 14.2.3 Classes of Indoor Air Pollutants 334
 14.2.4 The TVOC Indicator 336
14.3 Summary of Experimental Evidence of Health Effects of VOC Exposure
14.3.1 Symptoms Relevant to VOCs
14.3.2 Effect of Exposure Types
14.4 Conclusions
References

Part Four Emission Studies

15 Volatile Organic Ingredients in Household and Consumer Products
Godwin A. Ayoko
15.1 Introduction
15.2 Literature Survey
15.3 Product Classes
15.3.1 Newspaper and Journals
15.3.2 Insecticides
15.3.3 Air Fresheners and Deodorizers
15.3.4 Cleaning Agents
15.3.5 Polishes
15.3.6 Products for Personal Hygiene and Cosmetics
15.3.7 Incenses
15.3.8 Perfumes and Fragrances
15.3.9 Cooking and Cooking Related Products
15.3.10 Miscellaneous Products and Studies
15.4 Conclusion
References

16 Building Products as Sources of Indoor Organic Pollutants
Stephen K. Brown
16.1 Introduction
16.2 Organic Pollutants Emitted from Major Building Products
16.2.1 Building Products
16.2.2 Organic Pollutants
16.2.3 VOC Emissions Levels Over Time
16.2.4 VOC Emission Limits/Labels
16.2.5 TVOC Emissions from Building Materials
16.3 Interior Paints
16.3.1 Water-Based Paints
16.3.2 Solvent-Based Coatings
16.3.3 'Natural' Paints
16.3.4 Low-VOC/VOC-Free Paints
16.4 Floor Covering Systems
16.4.1 Adhesives
Contents

16.4.2 Carpets and Underlays 389
16.4.3 Plastic Floorcoverings 392
16.5 Concrete and Plaster Products 393
16.6 Wood-Based Panels 394
16.7 Natural Wood 396
16.8 Ovens and Heaters 397
16.9 Concluding Remarks 399
References 400

17 Emission of VOCs and SVOCs from Electronic Devices and Office Equipment 405
 Tobias Schripp Michael Wensing
17.1 Introduction 405
17.2 Test Procedures 408
17.3 VOC and SVOC Emissions from Various Devices 414
 17.3.1 Printers and Copiers 414
 17.3.2 Personal Computers 419
 17.3.3 Television Sets and Computer Monitors 421
17.4 Ultra-Fine Particle Emission from Office Devices 425
References 427

Index 431