Achilles tendinopathy, 287, 288
Achilles tendon (AT), 66, 283
 overuse injuries and Haglund’s disease
definitions, 287
epidemiology, 287–8
rehabilitational concepts, 288
tears
epidemiology, 283
etiology, 284
extrinsic factors affecting AT, 284
intrinsic factors affecting AT, 284
posttreatment, orthotic device for, 284–5
rehabilitational concepts, 284
tensile stress, during rehabilitation, 285–7
Achilles tendon force (ATF), 66, 140
 in different sport activities, 180
 in heel–toe running, 177, 178
 hopping and jumping, 141
 in normal locomotion and exercise, 179
 passively induced stretch reflexes on, 26
 peak ATFs
 during cycling, 142, 143
 during maximal counter movement (CMJ) and
 squatting (SJ) jumps, 141, 142
 potentiation, during reflex-induced mechanical
 response, 29
 response to stretch, 28
 during walking at different speeds, 139
Achilles tendon insertional tendinopathy, 287
aerodynamic forces, 91, 92, 99
aging and underlying neuromuscular factors, in sport
performance, 270
factors affecting performance, 274
 maximal running speed with aging, determinants of,
 279–80
 muscle mass, composition, and contractility,
 276–8
 muscle strength and power, 274–6
 neural activation, 278–9
record performances, 271–4
agonist muscles activation, change in, 227
 motor unit level, 228–31
 whole-muscle level, 227–8
alpha motor neuron, 2, 4, 257
alpine skiing, 78
carving techniques, biomechanics of, 81–6
dynamics, 78
forces while skiing a turn, 80–81
 gliding across slope, 79–80
 straight gliding down the fall line, 78–9
recreational skiing, muscle functions and muscle
fatigue in, 86–9
ankle bracing, 294, 296
ankle extensors, 38, 63
ankle inversion injury, 291
ankle ligaments
 chronic lateral ankle instability, 294
epidemiology, 290–91
general considerations, 290
injury mechanisms, 291–2
preventive measures
 braces and tape, 294
 sensorimotor training, 294
rehabilitational concepts, 292–4
ankle sprain, 176, 290, 292, 293, 294
ankle strategy, 256
ankle taping, 294
antagonist coactivation, changes in, 231–2
anterior cruciate ligament (ACL), 167
 displacement and strain measurements, 174
 injury, 295
anterior talofibular ligament (ATFL), 167, 291
aponeuroses, 172
apparent efficiency, 103
“Armstrong’s model”, 204
average power, 217
B-mode US, 168
background EMG activity (BGA), 122
balance disturbances, compensating, 255–6
balance training, 254, 259
neural adaptations to SMT, 260–61
SMT Sequences, 259–60
strength and power, 261–6
basal ganglia, for postural control, 258
basic biphasic pattern, of SSC fatigue, 192–4
biological tissues, neuromechanical loading of, see neuromechanical loading, of biological tissues
biphasic SSC recovery, 206–7
body mass index (BMI), 91
brain stem, in postural control, 257
braking phase
EMG activity during, 158
of muscle action, 105
of running, 17, 161
in SSC action, 107, 109
buckle transducer, 136–8, 166–7
advantages and disadvantages, 142–3
in different locomotor activities, 138
C-reactive protein (CRP), 204, 205
carving techniques, biomechanics of, 81–6
cerebellum, in postural control, 257–8
cervicomedullary motor-evoked potential (CMEP), 123–4
cervicomedullary stimulation (CMS), 123–4
challenged populations, cycling in, 73–4
chronic lateral ankle instability, 294
circular coil, 117, 118
coa ctivation, definition of, 231
collagen fibers, 169, 171, 172
concentric contraction, 218, 219, 221
concentric muscle action, 6, 7, 16
versus eccentric muscle actions, 33, 104
electromyographic (EMG) force relationship in, 13
F–V relationship in, 10
models, 7
connective tissues, 164, 169, 173, 185, 277
constant load, 219
“contractile mechanism”, 183
correction and loading technique, 218–19
corticomotoneuronal system, anatomy of, 118
corticosteroids, 288, 290
counter movement jump (CMJ), 22, 141, 142, 144, 146
coupling time, 17, 18, 19, 244
cross-country skiing, 32, 49–50, 188, 189, 233, 270
SSC in, 33
EMG and GRF evidence, 36–40
kinematic evidence, 33–6
mechanical and metabolic power implications, 42–5
ski tester to simulate SSCs, 45–8
ultrasound measurements on muscle fascicles as evidence, 40–41
cycling task, neuromechanics of, 52
ATF action, 142, 143
in challenged populations, 73–4
kinematics, 53–5
mechanical work and power, 59–60
muscle mechanics
MTU and muscle fascicle length and velocity changes, 64–9
muscle activity patterns, 60–64
muscle moments, 58–9
neural control, 69–73
pedal reaction forces, 55–8
cyclists with a transfemoral amputation (CTFA), 73–4
cyclists with transtibial amputation (CTA), 73
“damage–inflammation–repair” pathway, 204
delayed onset muscle soreness (DOMS), 45, 184, 185, 186, 193–4, 207
delta efficiency, 103
differential variable reluctance transducers (DVRTs), 166, 167, 168
direct force transducers, 166
direct variables, of neuromechanical loading, 165
DOMS, see delayed onset muscle soreness (DOMS)
downhill skiing, see alpine skiing
drag coefficient, 79
drop jump (DJ), 19, 20, 109, 156, 157
breaking point in, 21
drop and rebound intensity-specific muscle behavior during, 159
fascicle–tendon interaction in, 158
short-latency reflex (SLR) response, 29
in SSC demonstration, 22
dynamic movements, 154, 177, 178
dynamometer arm, 185
eccentric/concentric cycle (ECC), 33, 186
eccentric contraction, 218, 219, 221, 239
eccentric muscle action, 6, 16
and concentric muscle action
comparison between, 104
functional differences between, 33
electromyographic (EMG) force relationship in, 13
eccentric training, 186, 288, 290
“effectiveness”, definition of, 103
electroencephalography (EEG), 258
electromyographic (EMG) activity, 8, 136
in SSC prediction improvement, 36–40
elite athletes, 270, 271
EMG–force relationship, 104
EMG patterns during propulsion, 61–3
energy expenditure before, during, and after marathon, 112
excitatory postsynaptic potential (EPSP), 118, 128
“extensor bottom transition muscle”, 72
fascicle–tendinous behavior, in isolated muscle actions, 152–3
fascicle–tendon interaction, 203
Lachman test, 175, 176
lateral force transmission, 245
leukocyte concentration, 205
ligament talofibulare anterius (LTFA), 176
ligaments, 174
 ankle ligaments, 290
 chronic lateral ankle instability, 294
 epidemiology, 290–91
 general considerations, 290
 injury mechanisms, 291–2
 preventive measures, 294
 rehabilitational concepts, 292–4
 direct insertion, 169
 foot and ankle, 176–7
 indirect insertions, 169–70
 knee joint, 174–6
 knee ligaments, 295–6
 mechanical properties, 170–71
 morphology and function, 169–70
 liquid metal gauge transducers, 166
 loading technique, 219
 locomotion and exercise, neuromechanical tissue
 loading in, 174
 ligaments, 174
 foot and ankle, 176–7
 knee joint, 174–6
 muscles and tendons
 foot and ankle, 177–9
 knee joint, 177
 long intracortical inhibition (LICI), 125
 long jump, ATFs in, 141–2
 long-lasting SSC performances, 188–9
 magnetic stimulation, 116
 marathon, mechanical efficiency during, 112
 marathon run model, 191
 master athletes, sport performance in, 270
 factors affecting performance, 274
 maximal running speed with aging, determinants of,
 279–80
 muscle mass, composition, and contractility,
 276–8
 muscle strength and power, 274–6
 neural activation, 278–9
 record performances, 271–4
 masters’ competitions, 270
 maximal and submaximal SSC testing conditions,
 196–8
 maximal force, 216, 224, 225
 and muscle activation, 194–6
 maximal RFD, 224–6
 maximal running speed with aging, determinants of,
 279–80
 maximal versus endurance-type isometric tests,
 200–201
 maximal versus submaximal SSC dynamic contractions,
 201–2
 maximal voluntary contraction (MVC) force, 194, 195,
 216, 221, 228, 229, 239
 maximal voluntary isometric contractions, 110
 mechanical efficiency (ME) of SSC exercise, 13, 103
 EMG activity patterns, 110
 human movements
 background studies, 104
 Jyväskylä studies, 104–7
 during marathon, 112
 total SSC exercise, 107–10
 training adaptation, 111–12
 mechanical stress concept, 185
 “mechano growth factor”, 240
 medial collateral ligament (MCL), 171
 medial gastrocnemius (MG) muscle
 behavior during running and walking, 155
 fascicles, 26, 155, 156, 157, 158, 160
 stiffness regulation, 160–61
 ultrasonographic images of, 152
 moderate-volume training, 218
 motor cortex
 in muscle function, 123
 cervicomedullary stimulation, 123–4
 H-reflex, 124
 ipsilateral TMS, 127–8
 SICI and ICF, 125–7
 transcranial electrical stimulation, 123
 for postural control, 258–9
 sensory input at, 207–9
 motor unit
 adaptation, training effects on, 235–6
 functional significance, 2–4
 impulses, synchronization of, 230
 levels, 228–31
 recruitment and rate coding, 222–4
 synchronization, 229–30
 motor-evoked potentials (MEPs), 115, 118–20
 comparison with other evoked potentials
 cervicomedullary stimulation, 123–4
 H-reflex conditioning by subthreshold TMS,
 128–9
 H-reflex stimulation, 124
 SICI and ICF, 125–6
 transcranial electrical stimulation (TES), 123
 muscle activity effect on, 122
 mTOR pathway, 240
 muscle, contractile properties of, 235–6
 muscle action, types of, 6–7
 muscle activation, maximal capacity for, 224
 maximal force, 224, 225
 maximal RFD, 224–6
 muscle activity changes, during 3h skiing session, 88
 muscle activity patterns, during pedaling cycle, 60–64
EMG patterns, 61–3
SOL and GAST activity, 63–4
muscle architecture modification, by strength training, 239
muscle atrophy, 277
muscle control by the nervous system, 1
muscle coordination, change in, 232
muscle fascicle–tendon model, 153
muscle fiber adaptations, 239–40
muscle mass, 238–9
age-related loss of, 276–8

muscle mechanics
force–length relationship, 8–10
force–time characteristics, 7–8
force–velocity relationship, 10–13
muscle action, types of, 6–7
muscle moments, during pedaling cycle, 58–9
muscle power, 216–17
in aging, 274–6
muscle size and strength, relation between, 236–8
association between, 236
specific tension, 236–8
muscle stiffness, 25, 174
muscle strength, 216
in aging, 274–6
muscle–tendon complex (MTC), 23, 146
muscle–tendon mechanics, 4–6
muscle–tendon stiffness, 244
muscle–tendon unit (MTU), 6
length change pattern, 64–9
muscle tissue, 169
“muscle wisdom”, 205
muscles
mechanical properties, 173–4
morphology and function, 173
muscles and tendons
foot and ankle, 177–9
knee joint, 177
muscular adaptations, 235
muscle and motor unit contractile properties, 235–6
muscle fiber adaptations, 239–40
muscle size and strength, relation between, 236–8
whole muscle mass and architecture, change in, 238–9
muscular efficiency, 103
MVO₂, 44
MyHC isoforms, 276, 277
MyHC-IIa fibers, 276
MyHC-IIx fibers, 276
naproxen, 288
“negative work”, 42, 45, 106, 107
net efficiency, 103
neural and mechanical recoveries, parallelism between, 194
neural activation
in master athletes, 278–9
reflex adjustments of, 206–7
neural adaptations, 226
agonist muscles activation, change in, 227
motor unit level, 228–31
whole-muscle level, 227–8
antagonist coactivation, changes in, 231–2
coordination between muscles, changes in, 232
potential locations for, 232
spinal level, 233–4
supraspinal level, 232–3
to sensorimotor training, 260
spinal adaptations, 260–61
supraspinal adaptations, 261
neural mechanisms, in SSC-type fatiguing exercises, 205
fusimotor–muscle spindle function, specific alteration in, 206
motor cortex level, influence of sensory input at, 207–9
neural activation, reflex adjustments of, 206–7
neuromechanical loading, of biological tissues, 164
and mechanical properties
morphology, 169–74
normal locomotion and exercise, neuromechanical tissue loading in, 174–80
methods, 165–9
variables of, 165
neuromuscular adaptation, 235, 266
neuromuscular fatigue, 112
during isolated eccentric actions, 184–6
NSAIDs (nonsteroidal anti-inflammatory drugs), 288
OF transducer, 136, 167
Ohm’s law, 222
one- and two-joint muscles, motor neuron pools of, 71
one-legged cycling, 72
1-repetition maximum (1-RM), 220
onset of blood lactate accumulation (OBLA), 45
open surgical intervention, 284
optic fiber (OF) technique, 136, 143, 177
forces, examples of, 144–6
pros and cons, 146–7
optical dimension analysis, 166
overload principle, 217
overuse tendon injuries and ligament failures, rehabilitation of, 283
Achilles tendon (AT), 283
AT tears, 283–7
Haglund’s disease, 287–8
ankle ligaments, 290–94
knee ligaments, 295–6
patellar tendinopathy, 288–90
oxygen consumption (VO₂)–power relationship, 104
paracetamol, 288
passive reflex testing conditions, 198
passive tension, 2, 174
patella tendon force (PTF), 144, 145, 146
patellar tendinopathy, 288
definition, 288–9
etiology, 289
proximal patellar tendon, in vivo evaluation of load distribution in, 290
rehabilitation concepts, 289–90
peak force reduction (FFR), 197
peak power, 12, 13, 217
pedal reaction forces, 55–8
pedaling cycle, 55, 65, 73
angular displacement of the hip and knee for, 54
major skeletal muscles and ATF measurement during, 143
mean joint angles for ankle, 55
muscle moments during, 58–9
performance deterioration and recovery, with exhaustive SSC exercise, 203
neural changes, potential sources of, 205
muscle activation, fusimotor–muscle spindle function, specific alteration in, 206
motor cortex level, influence of sensory input at, 207–9
neural activation, reflex adjustments of, 206–7
structural changes and subsequent inflammation/remodeling process, 204–5
performance determination in master athletes, factors affecting, 274
maximal running speed with aging, determinants of, 279–80
muscle mass, composition, and contractility, 276–8
muscle strength and power, 274–6
neural activation, 278–9
performance potentiation, in SSC, 17–21
phase-contrast magnetic resonance imaging (PC-MRI), 168, 177
plyometrics, 219, 220, 245
position sense test, 203
positive work
 efficiency of, 42
 mechanical efficiency of, 106–7
positron emission tomography (PET), 258
POST testing, 197
posterior cruciate ligament (PCL), 167, 168
postoperative rehabilitation, 284
postural control, 254
and information processing, 256
 basal ganglia, 258
 brain stem, 257
cerebellum, 257–8
 motor cortex, 258–9
 spinal cord, 257
 presynaptic inhibition (PSI), 210, 257
 progressive overload, see progressive resistance exercise
 progressive resistance exercise, 217
 prostaglandin E2 (PG E2), 204
 protein kinase B, 240
 proximal patellar tendon, 290
push-off intensity
 effects on fascicle–tendon interaction, 158
 effects of variation of, 158
push-off phase, 105
 of muscle action, 105
 in running, 17
rate of force development (RFD), 217, 263, 264
 and speed of movement, 219
reactive jump abilities, and SMT, 263–6
record performances, 271–4
recreational skiing, 86–9
rehabilitation concepts
 of ankle ligaments, 292–4
 of AT tears, 284
 of Haglund’s disease, 288
 of knee ligaments, 295–6
 of patellar tendinopathy, 289–90
repeated SSC loading, fatigue definition applied to, 186–7
resistance training, 232
resting motor threshold (rMT), 116, 120
resting tension, 2
RFD, and speed of movement, 219
running
 braking phase of, 17
 push-off phase of, 17
 SSC of triceps surae muscle in, 16
running, in vivo tensile measurements in, 138–40
satellite cells, 240
seat height, 53–4, 66
seated cycling, 66
sense of position and velocity, delayed influence on, 202–3
sensorimotor integration, 258
sensorimotor training (SMT), 259, 294, 296
neural adaptations, 260
spinal adaptations, 260–61
supraspinal adaptations, 261
sequences, 259–60
strength and power, 261
neuromuscular adaptation, specificity on, 266
reactive jump abilities, 263–6
strength and power adaptations, 262–3
serum creatine kinase (S-CK) activity, 204, 205
Sharpey’s fibers, 172
short intracortical inhibition (SICI), 125–6
short- and long-term SSC fatiguing protocols, 188–90
short-latency stretch reflex (SLR), 23, 26, 28, 160
short-range elastic stiffness (SRES), 140
“short-range stiffness”, 16
short-term SSC exercise protocols, 189–90
silent period (SP), 122–3
simulated takeoffs, 98
“size principle”, 222
skeletal muscle, 2, 4, 6
force and power potential of, 15
mechanical properties, 169
morphology and function, 173
ski jumping, kinetics and muscular function in, 91
angular momentum, 93–4, 95, 98–9
BMI rule, effect of, 91
optimal aerodynamic position after takeoff, 95
simulated takeoffs, 98
take-off technique
duration, 99
kinematic characteristics of, 92–5
kinetics, 95–101
wind tunnel experiments, 99–101
ski tester, to simulate SSCs, 45–9
skidding angle β, 84, 85
sledge jump, 108–9
soft connective tissue, mechanical properties of, 170–71
soleus (SOL) muscles, 23
mean length, velocity, and EMG for, 67
muscle stiffness versus force in, 25
rectified and averaged EMG pattern of, 29
sonomicrometer, 168–9
“specific tension”, 236–8
speed-related properties, changes in, 241–3
calcium-related changes, 243–4
MyHC composition, 243
myosin ATPase activity, 243
“spike-triggered averaging”, 236
“spike triggers”, 236
spinal adaptations, associated with SMT, 260–61
spinal cord, 257, 262
spinal-level adaptation, 233–4
spinal stretch reflex, 233, 234
squatting jump (SJ), 22, 141, 142
stationary bicycles, 52, 175
strain gauge transducers, 166
strength and power training
main parameters for, 218
contraction and loading technique, type of, 218–19
magnitude, of load, 218
RFD and speed of movement, 219
training volume, 218
muscle power, 216–17
muscle strength, 216
overload principle, 217
rate of force development (RFD), 217
training effects, specificity of, 219–22
stretch- and H-reflex responses, 198–200
stretch reflex activity, during normal dynamic actions, 160–61
stretch reflexes, in SSC, 23
functional significance, 24, 27–8
intervention, 23–4
during treadmill running, 24
stretch-shortening cycle (SSC), 6, 7, 13, 154, 156
braking phase, 17
in cross-country skiing, 32–3, 49–50
EMG and GRF evidence, 36–40
kinematic evidence, 33–6
mechanical and metabolic power implications, 42–5
ski tester to simulate SSCs, 45–9
ultrasound measurements on muscle fascicles as evidence, 40–41
definition, 16
demonstration, 21–2
effective SSC action, 23
exercise, mechanical efficiency of, 103
human movements, 104–7
total SSC exercise, 107–10
training adaptation, 111–12
and fascicle–tendon interaction, 156–8
instantaneous force–velocity relationship during, 23, 24
in locomotion, 17
performance potentiation in, 17–21
push-off phase, 17, 158
stretch reflexes, 23–4, 24–8
task-dependent modulation of reflex gain, 28–9
stretch-dependent modulation of reflex gain, 28–9
stretch-shortening cycle (SSC) fatigue, 183
experimental settings
short- and long-term protocols, 188–90
testing problematic, 190–92
functional influences
basic biphasic pattern, 192–4
contralateral influence, 202
fascicle–tendon interaction, 203
sense of position and velocity, delayed influence on, 202–3
stretch-shortening cycle (SSC) fatigue (continued)
“testing-task” influence on activation pattern, 200–202
“time-dependent” effect, 194–200
neuromuscular fatigue, during isolated eccentric actions, 184–6
performance deterioration and recovery, with exhaustive SSC exercise, 203
neural changes, potential sources of, 205–9
structural changes and subsequent inflammation/remodeling process, 204–5
repeated SSC loading, fatigue definition applied to, 186–7
striated muscle, 169
submaximal running, 16–17
supraspinal adaptations, to SMT, 261
supraspinal level adaptation, 232–3
“suprathreshold stimulation”, 120
take-off technique, of ski jumpers, 91
duration, 99
kinematic characteristics of, 92–5
kinetics, 95–101
wind tunnel experiments, 99–101
tendinous tissues (TTs), 10, 146, 147
tendon–aponeurosis stiffness, 244–5
tendon length, definition of, 153
tendon stiffness, 244, 277
tendons
mechanical properties of, 172–3
morphology and function of, 171–2
tensile stress
in normal locomotion and exercise, 179
“testing-task” influence, on activation pattern, 200
maximal versus endurance-type isometric tests, 200–201
maximal versus submaximal SSC dynamic contractions, 201–2
“time-dependent” effect, 194
maximal and submaximal SSC testing conditions, 196–8
maximal force production and muscle activation, 194–6
stretch- and H-reflex responses, 198–200
“top transition-extensor muscle”, 72
torque, 216
training adaptation, of neuromuscular system, 216
motor unit recruitment and rate coding, 222–4
muscle activation, maximal capacity for, 224–6
muscular adaptations, 235
force transmission, changes in, 244–5
hyperplasia, 241
hypertrophy mechanisms, 240–41
muscle and motor unit contractile properties, 235–6
muscle fiber adaptations, 239–40
muscle size and strength, relation between, 236–8
speed- and power-related properties, changes in, 241–4
whole muscle mass and architecture, change in, 238–9
neural adaptations, 226
agonist muscles activation, change in, 227–31
antagonist coactivation and coordination between muscles, changes in, 231–2
potential locations for, 232–4
strength and power training
main parameters for, 218–19
muscle power, 216–17
muscle strength, 216
overload principle, 217
rate of force development (RFD), 217
training effects, specificity of, 219–22
transcortical longloop reflexes, 258
transcranial electrical stimulation (TES), 115, 123
transcranial magnetic stimulation (TMS), 115, 258
during movement, 129–30
physiological background, 118
corticomotoneuronal system, anatomy of, 118
effect of muscle activity on MEP, 122
input–output relationship, 120–22
motor cortex role in muscle function, evaluation of, 123–9
motor-evoked potential, 118–20
silent period (SP), 122–3
technical background for, 116–18
trunk extensors (ES), 38
turn radius, 81
two-legged cycling, 72
type I collagen, 170, 172
ultramarathon run, 188
ultrasound (US), 150
dynamic movements including SSC actions, 154
fascicle–tendon behavior during isolated muscle actions, 152–3
fascicle–tendon interaction
with aging and training, 161
effects of push-off intensity on, 158
and SSC task intensity, 156–8
historical development, 150–51
impact and push-off intensities, effects of variation of, 158
measurements, 40–41
movement specificity, 154–6
muscle specificity, 158–60
musculoskeletal US, 151
stretch reflex activity during normal dynamic actions, 160–61
undisturbed stance, organization of, 255

variable load training, 219
Vario-Stabil boot, 285
vertical ski forces, 188

walking, 22, 138, 139, 155–6
whole muscle mass, change in, 238–9
whole-muscle level, 227–8
work efficiency, 103
work–velocity relationships, 18, 19
World Masters Track and Field Championships, 270

Young’s modulus, of tendon, 172, 173