Index

4-D process 412
Aarhus Convention 14
ABE see acetone butanol ethanol
above-ground MBP landfills 796–7
absorbable organic halogens (AOX) 73
absorbed water 717
absorption cooling 377–8
absorption processes see sorption processes
acetogenesis 584–5, 589–90, 596–7, 701, 775
acetone butanol ethanol (ABE) fermentation 647
acid gas neutralization 403–10
mass flows/balances 425–9
solid residues 433–4, 437, 441–3, 454, 457
acid neutralization capabilities (ANC) 437, 441, 446–8
acid rock drainage (ARD) 762
acid scrubbing 404–5, 425–8, 433–4, 635
acidic phase 776, 782
acidification 121–2, 176–8
acidity 761, 763, 767–9
see also pH effects
actinomycetes 517
activated carbon 869–72, 890, 894
activated sludge 883–5, 890, 893
active biomass 611
active gas management 845–6, 847–9
actual combustion temperatures 373
adiabatic temperatures 373
adsorbable organic halogens (AOX) 859–60, 863, 890–2
adsorption processes see sorption processes
advection processes 817–19
advertising material 193–4
aerated lagoons 881–3
aerated pile composting 555–6
aeration 541–6, 553–6
aerobic conditions 774, 877–88, 891
aerosols 575
AF see aggregated annualization factor
afterburning chambers 385
aftercare of landfills 693, 932–3, 941–5
ageing processes 446–8, 742
agglomeration techniques 345
aggregated annualization factor (AF) 44
aggregates 246–9, 464–9
agricultural applications 612, 665–82
air classifiers 332–7, 967
air emissions
anaerobic digestion 624–6
composting 573–5
incineration 393–4, 417–18, 480–1, 482
limit values 393–4, 417–18
mechanical biological treatment 633–5
monitoring 925–6
air intrusion phase 776
air pollution control (APC) technologies
emissions 397, 417–18
aired bed classifiers 336–7
alkaline scrubbing 405–6, 425–8
alkalinity
characterization of waste 74
landfilling 761, 763, 767–9
leachates 859, 881
see also pH effects
allocation 123–4, 140
ALT-MAT field testing program 470
aluminum
incineration 423
landfilling 765
mechanical treatment 355, 357
production 236–7
remanufacturing 237–9
solid fuels from waste 489–90
solid residues 448
ammonia
anaerobic digestion 620–1
composting 574–6, 598–9
landfilling 701
leachates 859–60, 863–6, 869, 878–81, 886–92
Index

anaerobic digestion 584–5, 589–90, 596–7
acetogenesis 584–5, 589–1, 591–5, 611–13, 615–16, 618–27
definitions 583–6
digest residue 583, 586, 611, 612, 615–17, 626
economic factors 604, 607
energy balances 584, 612, 622–4
environmental factors 624–6
examples of facilities 614–17
fermentation 584–5, 587–8
hydrolysis 584–5, 586–7
inhibitory factors 597–9
landfilling 790–1
leachates 877–8, 881, 882, 888–91
life cycle assessment 156, 167, 172
mass balances 618–20
mechanical biological pretreatment 790–1
methanogenesis 584–5, 590–1, 596–7
odor problems 612–13, 615, 617
operating parameters 595–9, 604–6
planning and design 601–4
pretreatment of waste 607–10, 614–16
process 583–600
reception of waste 606–7, 614–15
small, low-tech solutions 602–3
storage and feeding systems 610–11
systems 606–13
technology 601–17
unit process inventories 626–7
use and disposal of end products 603–4, 612, 615–17, 653, 667
waste types 602–3, 605
ANC see acid neutralization capabilities
animal feed 998
animal slurries 667
annualization 31, 44
AOX see adsorbable organic halogens
APC see air pollution control
applied stress 737
ARD see acid rock drainage
Arthrobacter spp. 522
asbestos 964
Aspergillus spp. 522, 529
asphalt 469, 471–2
assessments criteria 120–2
attributional life cycle assessment 118–19
authorization procedures 913
autoclaving 957
automatic turning machines 555–6
auxiliary burners 385–6
auxiliary chemical combustion 424
availability tests 451–2
backfill for planting 660
backyard composting 533
bacteria 516–17, 527–9
see also anaerobic digestion
bag openers 608
baled MBP landfills 796–7
ballistic separators 337–8
banned substances 963
barrier layers 831–3, 834
base maps 903–4
Basel Convention 13, 53, 55, 56–7
BAT see best available technology
batch leaching studies 978
batch leaching tests 453
batch tests 908–9
batteries 991–4
bentonite/bentonite–sand mixtures 802
benzene 699
berms 808
best available technique reference (BREF) notes 57–8
best available technology (BAT)
incineration 418
leachates 858
regulatory factors 57
waste electrical and electronic equipment 966
bin bags 254–5, 265, 306–7, 309
bins 255–8, 265, 306
bioaerosols 575
biochemical methane potentials 81
biochemicals 647–9
biocidal inhibition 597
biocovers 836–7
biodegradability 12
anaerobic digestion 593, 603
collection 255, 262–5, 301
composting 539, 653, 655
landfilling 735–6, 843–4, 858, 933–4
leachates 873
plastic 224, 647–9
waste minimization and prevention 194–6
biodiesel 646
biodrying 629–32
bioethanol 639–43
biofiltration 535–7, 613
biofuels 639–46
anaerobic digestion 612
biodiesel 646
bioethanol 639–43
biohydrogen 643–6
challenges and possibilities 643, 645–7, 649
landfilling 854
biogas
landfilling 831–4, 836–9
mechanical biological pretreatment 791–6
see also landfill gas
biogenic carbon 168, 696
biohazards 952–3
biohydrogen 643–6
biological degradation 357
biological drying 357
biological oxygen demand (BOD)
characterization of waste 79
landfilling 779, 781
leachates 859–61, 876, 878–80, 882–3, 886–92
biological posttreatment 874, 890
biological treatment 20
activated sludge 883–5, 890, 893
aerated lagoons 881–3
agricultural applications 665–82
benefits 668–9
biological properties 672–4
chemical properties 674–5
combination treatments 891–4
constraints 670–1
denitrification 878, 881–94
dissolved air flotation 885–6
economic factors 679–80
environmental factors 669, 675–8
fertilizer value 674–5
fixed film reactors 888–91
future developments 680
leachates 875–94
nitrification 880–94
physical properties 672
practical utilization 679–80
preservative treated wood 975
rotating biological contactors 889–91
sequencing batch reactors 875–7, 885–8
waste parameters 671–5
see also anaerobic digestion; composting; mechanical biological treatment
biomass-based energy 208
bioplastics 224
bioreactor landfills 686, 772–4, 782–5
biosolids 674–6
biostatic inhibition 597–9
biotic carbon 140–1
biowaste
anaerobic digestion 625
composting 539, 542, 547, 559–61, 570–2
biowindows 836–7
bird nuisance 702, 923
BOD see biological oxygen demand
boiler ash 432
boiler systems 386–9, 852–4
bottle recycling 213
bottom ash
aggregates 464–9
bound utilization 469–72
California bearing ratio 467–8
compaction of waste 466–7
durability 467, 468–9
environmental factors 472–4
hydraulic conductivity and moisture retention 469–70
landfilling 763–8
particle size distribution 464–7
resilient modulus 469
treatment 455–9
unbound utilization 469–71
utilization in construction 463–74
bottom linings 800–20
advection processes 817–19
construction 808–13
design 804–8
diffusion processes 812–17
functions 803–4
geosynthetic barriers 800, 802–9, 811–12, 815–17, 819
monitoring 927
natural barrier materials 801–2, 804–9, 811–12, 815–18
protection and repair 812
sorption processes 819–20
transport of leachate through liners 812–20
bound utilization 469–72
bovine spongiform encephalopathy (BSE) 998
box composting 557
BREF see Best available technique reference
brick reuse 246
Brikollari composting 556
briquette presses 346
BSE see bovine spongiform encephalopathy
bucket screens 331
buffer zones 911
building construction 912
building waste 104–6
build-up agglomeration 345
1004 Index

bulk density 920
bulk mail 193–4
bulking agents 540–1, 550–1
bulky waste
 collection 284–5, 294
 residential waste 86, 92, 94
bunkers 606–7
butanol production 647
byproducts 58–9

C&D see construction and demolition
C/N see carbon/nitrogen
calcium-based scrubbers 407–10, 425–6, 433–4
calcium residues 447
California bearing ratio (CBR) 467–8
calorific values 80
Campbell equation 722
Campbell van Genuchten equation 723
canyon/depression method 917
capacity needs 899–900, 912
capillary barriers 835
capital costs 30
capital recovery factor (CRF) 31, 44
capping landfills 933–5
car batteries 992–3
carbon degradation 518–21, 527, 535, 543
carbon dioxide
 anaerobic digestion 584–5, 587, 592, 595, 620–2
 biological treatment 668
 composting 573–5
 landfilling 687, 696–7, 776, 778–9, 841, 852, 854
carbon sinks 140–1
carbon/nitrogen (C/N) ratios 527, 535, 543, 545–6, 550, 577
carbonation 761
cardboard 203–10, 351–2
cascade mills 325–6
catalytic oxidation 613
cathode ray tubes (CRT) 965
causality webs 126–8, 132
CBA see cost–benefit analysis
CBR see California bearing ratio
CCA see chromated copper arsenates
CEA see cost-effectiveness analysis
cell composting 554–5
cell geometry 918–19
cement industry case study 481–4
cement kilns 497, 499, 988
central vacuum systems 275
CFC see chlorofluorocarbons
carbonization of impacts 126, 128–30
characterization of solid waste 63–84
analyses and testing 69–81
chemical analyses 72–80
commercial and institutional waste 97–9
concepts 64–5
construction and demolition waste 104–9
data evaluation 81–3
industrial waste 100–3
performance testing 81
physical analyses 69–72
residential waste 85–96
plastic 230–1
chemical analyses 72–80
chemical mechanical re-pulping 206–7
chemical oxygen demand (COD)
 anaerobic digestion 585
characterization of waste 74, 79
 landfilling 779, 781, 783, 792–3
 plastic 230–1
chemical pulping 203–4
chemical scrubbers 613
chemical treatment
 batteries 993–4
 hazardous waste 990
 preservative treated wood 975
chlorides 396–7, 404–5, 425–8
chlorofluorocarbons (CFC) 698, 964
CHP see combined heat and power
chromated copper arsenates (CCA) 972, 974, 977–9
 citizen responsibilities 15
CJD see Creutzfeldt–Jakob disease
classification of impacts 121–2, 126, 128
clay liners 801, 804–9, 811, 815–18, 832–4
clean production 184
clean technology 184, 188–90
clean-up technology 184
climatic conditions 882
clinker 482–4
closed loop recycling 965
Clostridium spp. 647
closure of landfills 932–7
co-combustion 476–85
 assignment principles 480–4
 cement industry case study 481–4
 criteria 480–1, 482–4
 facilities 479–80
 purpose 476–7
 solid fuels from waste 497, 499
Index 1005

waste types 477–9
co-current gasification 509
co-disposal 751
co-treatment 863
coal fired power plants 497–8
COD see chemical oxygen demand
collapse of components 744
collection
biodegradable waste 255, 262–5
compaction of waste 266–8
crew size and truck capacity 290
delivery systems 311–13
economic factors 34–6, 46–7, 253, 291–4, 305, 316–18
environmental factors 281, 285–7, 305
equipment and vehicles 253–76
fee schemes 291–4
frequency 289
hazardous waste 984–5
healthcare risk waste 954–6
kitchen grinders 276
life cycle assessment 164–6, 170–2
occupational health 254–5, 263, 287–8
organization 288–91
public attitudes 298–9, 308–9
public awareness programs 294–5
public/private responsibility 288
quality management and customer relations 290–1
receptacles for waste 254–66, 306
recycling 255, 258–9, 261–2, 282, 285, 293, 297–301
regulatory issues 288, 297
route planning 289
segregation potential, efficiency and purity 302–5
siting and design issues 315–16
source segregation 257, 262–6, 278, 293, 296–310
special technologies 275–6
system performance 303–4
systems and organization 277–95
transfer stations 311–18
transport 285–7, 314–15
vacuum systems 275–6
waste collection systems 277–85, 306–7
waste collection vehicles 266–75, 290, 306
waste engineering 17–18, 19
collection centers 19, 280, 282–3, 285, 305
collection packaging 954–5
collection points 265, 280, 282, 300, 304
color development 578
column leaching studies 453, 978
combined heat and power (CHP) 389–90, 498, 851
combined residue streams 434
combustion air 372, 385
combustion products 395–9, 404, 407, 411–16
combustion temperatures 373
commercial waste 97–9
collection 294
composition 98–9
data application 98
unit generation rates 97–8
comminuted MRFs 352–6, 361
common ion effects 762
common sense approach 11
compaction of waste 345–7
collection 266–8
incineration 466–7
landfilling 737, 742, 778, 809, 915–16, 918–19
waste transfer stations 313
company level waste prevention 187
compliance tests 908–9
composite liners 805–7
composting
anaerobic digestion 612
biofiltration 535–7
carbon degradation 518–21, 527, 535, 543
classification of technologies 547–9
curing, refinement and storage 652–5
declaration, guidelines and marketing 655–9
definitions 515–16
degradation rates 518–19, 521, 524
design and space considerations 551
developing countries 538
economic factors 38–9, 45, 560–4, 651–2
electrical conductivity 657–9, 660
enclosed technologies 547–9, 554–6
energy release and temperature development 523–5
environmental factors 535–8, 560–4, 573–5
examples of facilities 559–65
fate of mass 519–20
feedstocks 534–5
landfilling 790–1, 838–9
life cycle assessment 154–5, 166–7, 170–1
mass balances 569–73
maturity of compost 577–9
mechanical biological pretreatment 790–1
microbial biomass 516–17
nitrogen degradation 521–2, 527, 535, 543, 572–3
odor problems 523, 535–7, 548, 551, 573–5, 577
open technologies 547–9, 551–4
operating parameters 524, 525–6, 529–31, 534–5, 539–46
pathogens 527–31, 542
pre- and post-processing technologies 547–51, 570
process 515–32
composting (Cont.)
 process control 545–6
 quality management 576–80
 reactor technologies 556–9
 regulatory factors 579–80, 655–9
 respiration tests 521, 578
 sanitization 529
 socioeconomic factors 538
 stoichiometry 518
 succession 516–17
 sulfur degradation 522
 systems 545–51
 technology 533–68
 unit process inventories 575–7
 use and disposal of end products 539, 560–5, 576–80, 651–64, 667, 675
compressibility tests 81
compression 744, 746
concrete waste 246, 248–9
condensates 573–4, 635
consequential life cycle assessment 118–19
consolidation 744–5
constant head permeameters 810–11
constraint maps 903–4
constructed wetlands 874–7
construction and demolition (C&D) waste 104–9
 buildings 104–6
 composition 105–6
 deconstruction of buildings 244
 excavations 107–8
 landfilling 699
 mechanical treatment 359
 recycling 243–9
 reuse of bricks 246
 roads and pavements 106–7
 sorting plants 244–5
 unit generation rates 104–5
 upgrading 244–6
construction quality assurance (CQA) 812
consumer price indexes 32
container composting 557
container systems 266–7, 273–4
contaminated soils 107–8, 705, 826
continuously stirred tank reactor (CSTR) model 691
controlled landfills 686
conventional reactor landfills 772–82
cooling white goods 964
coordination chemistry 449–50, 762
corrosion, incineration 388–9
corrosion problems 855
cost–benefit analysis (CBA) 30, 46, 114
cost-effectiveness analysis (CEA) 30, 46, 114
counter-current gasification 508–9
CQA see construction quality assurance
crane trucks 274
crawler tractors 915–16
creosotes 972
Creutzfeldt–Jakob disease (CJD) 998
CRF see capital recovery factor
critical exposures 676, 678–9
critical reviews 134
cross-border transport 55, 56–7
cross-current air classifiers 336–7
cross-flow filtration 867–8
CRT see cathode ray tubes
CSTR see continuously stirred tank reactor
cullet recycling 213, 216
curbside collection 278–81
curing of compost 652–3
customer relations, collection 290–1
cutters/shredders 322–3, 325
cyclones 400
DAF see dissolved air flotation
daily cover 920
daily soil covers 777
damage modeling 126, 128
Damköehler numbers 758
dangerous goods see hazardous waste
Darcy’s Law 720, 810
dark fermentation 644–6
data application 98, 102–3
data collection 124–5
data evaluation 81–3
data quality 125
databases 125–6
declaration parameters 655–6
decommissioning of landfills 937
decomposition settlement 744
deforestation of buildings 244
deep well injection 987, 989
degradable plastics 224
degradation rates 518–19, 521, 524
delivery systems 311–13
demolition waste see construction and demolition waste
denitrification 783, 878, 881–94
density separation 341–2
density of waste 736–9
deposit-refund systems 48
glass recycling 213
plastic recycling 232
waste minimization and prevention 198–9
Index 1007

design processes
anaerobic digestion 601–4
capacity sectioning and time-phasing 912
classification of waste 908–9
collection 315–16
composting 551
earth works and soil balancing 912–13
geotechnology 738–9, 741, 743–4, 747–51
incineration 382–6
landfilling 804–8, 821–4, 898, 899, 907–13
landscaping and final use 910
layout and facilities 910–12
material recovery facilities 360–1
mechanical biological pretreatment 795–7
mechanical treatment 360–1
permits and authorization 913
technology 909–10
transfer stations 315–16
waste acceptance criteria 908–9
detection limits 82
detergents 677
detoxification 975, 990
dewatering processes 626
diffuse air emissions 626
diffusion processes 812–17
diffusion-controlled leaching 454
diffusivity 596
digest residue 583, 586, 611, 612, 615–17, 626
dilution of vent air 613
dioxins 229
dioxins see polychlorinated dibenzoparadioxins/furans
direct evaporation 866
direct material input (DMI) 6–7
direct microbial conversion (DMC) 641–2
disc screens 331
discounting 32–4
disk screens 609
dissolution 761
dissolved air flotation (DAF) 885–6
dissolved organic carbon (DOC)
 incineration 450–1, 454–5
 landfilling 756, 762–3, 765, 769, 779, 781
distillation 643
distribution processes 119–20
divided bins/containers 261–2, 306
DMC see direct microbial conversion
DMI see direct material input
DOC see dissolved organic carbon
dose-response approach (DRA) 42
downstream system boundaries 138–9
DRA see dose-response approach
drainable voids 717–19
drainage layers 831–4
drainage systems 911
drug metabolites 677
dry digestion 605, 615–16, 620, 625
dry stabilization 487
dry tombs 686, 827
dry wastes 540
dump trucks 915–16
dust nuisance 575, 702, 922
dust removal 397–403
dynamic dilution olfactometry 699–700
dynamic stability 746–7
earth works 912–13
EASEWASTE model 144, 150–2, 155–6, 162, 166–9, 178, 669
economic factors 9, 13, 29–51
 anaerobic digestion 604, 607
 assessment methods 30, 46
 biological treatment 679–80
 co-combustion 476
 collection 253, 291–4, 305, 316–18
 composting 538, 560–4, 651–2
 fee schemes 291–4
 healthcare risk waste 958–9
 incineration 499–500
 instruments 46–9, 53
 landfilling 837–8, 905–6, 944–5
 life cycle assessment 157–9
 private costs 29, 30–40
 recycling 207–8, 214–17, 226–30, 239–40, 243
 regulatory issues 53, 55
 solid fuels from waste 499–500
 waste electrical and electronic equipment 965
 waste minimization and prevention 188
 welfare costs 40–6
economies of scale 36
 economizer ash 432
 ecotoxicity 122, 176–8
 eddy current separators 338–40, 967
 EDIP method 121, 130–1
 EDV see electrodynamic venturi
 EIA see environmental impact assessment
 electrical conductivity 657–9, 660
 electrical power only incineration 389–90
 electricity generation 162–4, 175, 851–2
Index

<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>electrodynamic venturi (EDV)</td>
<td>403</td>
</tr>
<tr>
<td>electron beam irradiation</td>
<td>413</td>
</tr>
<tr>
<td>electronic noses</td>
<td>700</td>
</tr>
<tr>
<td>electrostatic precipitators (ESP)</td>
<td>400–1, 406</td>
</tr>
<tr>
<td>elemental balances</td>
<td>571–3, 620</td>
</tr>
<tr>
<td>embankments</td>
<td>808</td>
</tr>
<tr>
<td>emission accounts</td>
<td>23–5</td>
</tr>
<tr>
<td>emission prices</td>
<td>45</td>
</tr>
<tr>
<td>enclosed composting technologies</td>
<td>547–9, 554–6</td>
</tr>
<tr>
<td>enclosed flares</td>
<td>849–50</td>
</tr>
<tr>
<td>end of waste criteria</td>
<td>59</td>
</tr>
<tr>
<td>endpoint modeling</td>
<td>126, 128</td>
</tr>
<tr>
<td>energy balances</td>
<td>390–1, 584, 612, 622–4</td>
</tr>
<tr>
<td>energy budgets</td>
<td>22–3</td>
</tr>
<tr>
<td>energy conversion</td>
<td>389–40</td>
</tr>
<tr>
<td>energy recovery</td>
<td>375–8, 386–9, 510–11</td>
</tr>
<tr>
<td>energy release</td>
<td>523–5</td>
</tr>
<tr>
<td>energy substitution</td>
<td>175</td>
</tr>
<tr>
<td>energy systems</td>
<td>162–4, 175</td>
</tr>
<tr>
<td>energy-using products (EuP)</td>
<td>962</td>
</tr>
<tr>
<td>engineering see waste engineering</td>
<td></td>
</tr>
<tr>
<td>Environmental Assessment of Solid Waste Systems and Technologies (EASEWASTE) model</td>
<td>144, 150–2, 155–6, 162, 166–9, 178, 669</td>
</tr>
<tr>
<td>environmental factors</td>
<td>9</td>
</tr>
<tr>
<td>anaerobic digestion</td>
<td>624–6</td>
</tr>
<tr>
<td>batteries</td>
<td>994</td>
</tr>
<tr>
<td>biological treatment</td>
<td>669, 675–8, 680</td>
</tr>
<tr>
<td>co-combustion</td>
<td>476–7</td>
</tr>
<tr>
<td>collection</td>
<td>281, 285–7, 305</td>
</tr>
<tr>
<td>composting</td>
<td>535–8, 560–4, 573–5</td>
</tr>
<tr>
<td>economic factors</td>
<td>13, 29, 40–2</td>
</tr>
<tr>
<td>food waste</td>
<td>999</td>
</tr>
<tr>
<td>incineration</td>
<td>369, 393–420, 472–4</td>
</tr>
<tr>
<td>landfilling</td>
<td>686–8, 695–708, 767–9, 826–7, 838, 905–6, 921–3</td>
</tr>
<tr>
<td>mechanical biological treatment</td>
<td>633–5</td>
</tr>
<tr>
<td>polyvinylchloride</td>
<td>997</td>
</tr>
<tr>
<td>pyrolysis and gasification</td>
<td>511</td>
</tr>
<tr>
<td>recycling</td>
<td>209–10, 216–18, 230–2, 240–1, 247–9</td>
</tr>
<tr>
<td>regulatory issues</td>
<td>55</td>
</tr>
<tr>
<td>tires</td>
<td>996</td>
</tr>
<tr>
<td>waste electrical and electronic equipment</td>
<td>967–8</td>
</tr>
<tr>
<td>waste engineering</td>
<td>22–3, 28</td>
</tr>
<tr>
<td>see also life cycle assessment</td>
<td></td>
</tr>
<tr>
<td>environmental impact assessment (EIA)</td>
<td>113, 115, 128</td>
</tr>
<tr>
<td>environmental risk assessment (ERA)</td>
<td>113, 115, 128</td>
</tr>
<tr>
<td>EPS see expanded polystyrene</td>
<td></td>
</tr>
<tr>
<td>ERA see environmental risk assessment</td>
<td></td>
</tr>
<tr>
<td>erosion control</td>
<td>661, 804</td>
</tr>
<tr>
<td>errors</td>
<td>81</td>
</tr>
</tbody>
</table>

Escherichia coli 667, 673

ESP see electrostatic precipitators

ethanol production 639–43, 647

EuP see energy-using products

European Waste Catalogue (EWC) 59

eutrophication 122, 177

evaporation processes 865–6, 894

evapotranspiration 710, 713–14, 728, 835–6, 943

event waste 195–6

EWC see European Waste Catalogue

excavation waste 107–8

evacuations 808

excavators 915–16

expanded polystyrene (EPS) 221–2, 226–7

explosion hazards 702–3, 922

external costs 42–3, 44–6, 55

extraction systems 847–8

extrusion molding compaction 346–7

fabric filters 401–2

falling head permeameters 810–11

FBC see fluidized bed combustion

federal regulations 14

fee schemes 291–4

feeding systems 610–11

feedstocks 534–5

fencing 911

fermentation

anaerobic digestion 584–5, 587–8, 775

biochemicals 647

biofuels 641–6

fertilizer value 674–5

Fick’s laws 812–15

field capacity 718

filling sequences 915–18

filter systems 871

final storage quality 689

final use planning 937–41

fire hazards 702–3, 922

fixed film reactors 888–91

flame retardants 967–8

flaring systems 849–51

flat matrix presses 347

flat rate fees 47

flexible membrane liners (FML) 802

float–sink methods 341–2

floating surface aerators 887

flotation 341

flue gas cleaning systems 393, 397–416

acid gas neutralization 403–10, 425–9
dust removal 397–403
energy recovery 390
mass balances 424–9
mechanical biological treatment 633–5
pyrolysis and gasification 510
solid residues 433–4
flue gas properties 373, 378–9
flue gas recirculation 384–5
fluidized bed combustion (FBC) 381–2, 497–8, 988–9
fluidized bed gasification 509
fluorescent tubes 965–6
flushing bioreactor landfills 772–4, 783, 784–5
fly ash 378
composition 437, 441–3
dust removal 398–400
flue gas cleaning systems 407
landfilling 766–8
leaching properties 451–4
mass flows/balances 423, 425–6
treatment 457, 459–60
types and quantities 432–4
FML see flexible membrane liners
food waste
collection 301
composting 535, 538, 653, 657
environmental factors 999
management options 998
special wastes 997–9
waste minimization and prevention 198
forced aeration 541–6, 553–6
forestry land applications 668–71
fouling 388–9
foundation failures 747
foundation layers 831–3, 834
free acid/base inhibition 598–9
Freundlich isotherms 870–1
front-loading collection trucks 258, 271–3
fuel cells 854–5
fuel combustion 162–4, 175
fuel consumption 285–7
full service collection 278–9
functional units 117–18
fundamental variation 64
fungi 517, 527–9, 579
furans see polychlorinated dibenzoparadioxins/furans

garage facilities 912
garden waste 86, 90–4
collection 285, 294, 309
composting 534–5, 547, 561–3, 571, 653, 657
landfilling 839
mechanical treatment 352
gas chromatography (GC) 593–4, 700–1
gas collection 611
layers 831–3, 834, 845–6
see also biogas; landfill gas
gas volume 368–9, 371–2
gasification 502–12
benefits and drawbacks 503
definition 20
energy recovery 510–11
environmental factors 511
flue gas cleaning systems 510
material recovery 511
parameters and properties 505–8
pressure 508
processes 503–4, 505
technologies 508–10
temperature and heating rates 507–8
waste properties 506–7
GC see gas chromatography
GCL see geosynthetic clay liners
GDP see gross domestic product
geographic information systems (GIS) 903–4
geographical factors 901
geological factors 901
gemembranes 802, 804–7, 812, 815, 819, 832–4
geonets 803–4, 806, 823
geosynthetic barriers 800, 802–9, 811–12, 815–17, 819
geosynthetic clay liners (GCL) 802–5, 808–9, 811, 816, 832, 834
geosynthetic drainage materials 821
geotechnology 734–54
analytical methods 737–8, 740–6
case histories 748–51
classification of waste 734–6
density and unit weight of waste 736–9
design considerations 738–9, 741, 743–4, 747–51
hydraulic conductivity 741–4
landfilling 905–6
leachates 763, 765
settlement 744–6, 751, 927–8, 933–5, 939, 943
shear strength 739–41, 749
stability 746–51
waste heterogeneity and structure 738–9
geotextiles 803, 806, 832–3
germination tests 579
GHS see Global Harmonized System
Giroud’s equation 823
GIS see geographic information systems
Index

glass
 collection 285
 mechanical treatment 344
 recycling 211–19, 262–4, 299–300, 965
 remanufacturing 213–14
Global Harmonized System (GHS) 57
global impacts 120
global positioning systems (GPS) 925, 928
global warming
 landfiling 696–7
 life cycle assessment 121, 129–30, 170–5, 177
 recycling 218
glucose degradation 644–5, 648
glucose fermentation 587–8
goal definitions 117
GPS see global positioning systems
 graphical evaluations 903–4
 grate siftings 432
 gravity separation 608–9
 green boxes 308–9
 greenhouse gases 23–4, 696–7
generators 607
gross domestic product (GDP) 6–7, 42
gross intrinsic value (GVI) 968
groundwater
 landfiling 704–6, 826, 926–7, 943
 life cycle assessment 178
 pollution monitoring 926–7
 growing media 656, 663
guidelines for usage 656–9
 GVI see gross intrinsic value
gypsum 407, 423, 434, 463
hammer mills 323–4
hand sorting 609
hazardous substances 962–3, 967–8, 974
hazardous waste 982–90
 characterization 982–4
 collection 285, 297, 302, 984–5
 definition 4–5
 landfiling 691, 756, 826
 packaging and labeling 985–6
 quantity per capita 983–4
 regulatory factors 985–7
 regulatory issues 55
 residential waste 86
 sources 983
 transport 986–7
 treatment and disposal 987–90
 waste management systems 9
HDPE see high density polyethylene
head on the liner 927
healthcare risk waste 951–9
 collection 955–6
 definition 952–3
 economic factors 958–9
 internal handling 953–6
 sources and quantities 952–3
 transport 955–6
 treatment 956–8
heat output
 anaerobic digestion 612
 composting 523–5
 landfiling 851–2
 heating values 80, 367–72, 477–8
 heating white goods 964
heavy metals
 anaerobic digestion 621
 biological treatment 675–7
 co-combustion 477–8
 composting 579
 incineration 406, 414, 417, 423, 426–8, 441–3
 landfiling 765–7, 769, 781, 785, 819–20
 leachates 859–60, 868–9, 878
 solid fuels from waste 495
 waste electrical and electronic equipment 967
HELP model 727–9
high density polyethylene (HDPE) 221–3, 225–7
high pressure steam boilers 378
high-rate degradation 545
horizontal-flow steam boilers 875–6
horizontal gas extraction systems 848
horticultural applications 651–64
hot water boilers 387
household goods 49
household hazardous chemicals 86, 92–5
household waste 85–6, 87–90
 collection 284, 291–3, 298–302, 305
 mechanical treatment 353, 360
 human toxicity 122, 156, 176–8
 hydration, landfiling 761
 hydraulic conductivity
 incineration 469–70
 landfiling 721–2, 741–4, 810–11, 818, 823–4, 835
 hydrocyclones 342
 hydrogen peroxide injection 413
 hydrogen production 643–6, 777
 hydrogen sulfide 598–9
 hydrogeological factors 902
 hydrology 709–33
 changes in water content 715–19
 chemical and microbial consumption 710, 714
evapotranspiration 710, 713–14, 728
gas production 710, 714, 726
HELP model 727–9
leachates 709–11, 730
managed water input 710, 714–15
models of landfills 726–9
MODFLOW model 729
precipitation 710–11
surface water inflow 710, 711–12
surface water runoff 710, 712–13, 728
SUTRA model 728–9
top covers 727, 830–1, 835–6
waste heterogeneity and structure 724–6
water balance 709–19, 727
water flow 719–26, 728–9
hydrolysis 584–5, 586–7, 641–3
hygienization 609, 615–16

ID see induced draught
impact assessment see environmental impact assessment;
 life cycle impact assessment
impact potentials 128, 132, 170–5
in-house collection 19
in-place density 736
incineration
 absorption cooling 377–8
 acid gas neutralization 403–10, 425–9, 433–4, 437, 441–3, 454, 457
 ageing processes in solid residues 446–8
 air emission limit values 393–4, 417–18
 anaerobic digestion 613
 auxiliary chemicals 424
 cement industry case study 481–4
 chemical composition of solid residues 434–44
 chemistry of combustion process 421–4
 co-combustion 476–85, 497, 499
 coal fired power plants 497–8
 combustion air 372, 385
 combustion products 395–9, 404, 407, 411–16
 combustion technology 379–86
 definition 20
 design and layout 382–6
 dust removal 397–403
 economic factors 37, 39, 45, 499–500
 energy balance 390–1
 energy conversion 389–90
 energy recovery 375–8, 386–9
 environmental factors 369, 393–420, 472–4
 flue gas cleaning systems 390, 393, 397–416, 424–9, 433–4
 flue gas properties 373, 378–9
fluidized bed furnaces 381–2
fouling and corrosion 388–9
fuel properties of waste 366–74
furnace characteristics 384–6
gas volume 368–9, 371–2
hazardous waste 987, 989–9
healthcare risk waste 956–7
heating values 367–72
historical development 366
inorganic material combustion 423, 436–9, 441–4
leachates 446, 448–56, 472–3
life cycle assessment 139, 140, 157–9, 165, 168–9, 171–3, 176–8
mass balances 421–9
mass flows 397, 424–6
metals 238, 241
moving grate furnaces 365–6, 380, 382–6
organic material combustion 421–2, 439–40, 444
physical and geotechnical properties of solid residues 444–6
plant capacity 374
plastic 228–31
polyvinylchloride 997
preservative treated wood 976–9
pretreatment 379–80
process and technology 365–92
public attitudes 366
Rankine cycle 376, 389
regulatory factors 393–4, 416–18
rotary kiln furnaces 380–1
solid fuels from waste 486–501
solid residues 378, 430–62, 763–8
 stack 416–17
 treatment of residues 455–60
 unit process inventories 428–9
 utilization of solid residues 463–75
 waste electrical and electronic equipment 963, 967
indirect evaporation 866
individually transported containers 259–61
induced draught (ID) fans 397–8
industrial waste 100–3
 collection 294
 composition 102
 data application 102–3
 mechanical treatment 359
 sources 100–1
 unit generation rates 101–2
industrial waste management systems 9
industry responsibilities 15
inert waste 756, 769, 826
infection vectors 8
infiltrometers 811
inflation 32
infrastructures 911–12
inhouse waste handling 9
initial aerobic phase 774
initial methanogenic phase 776, 782
inner cycles 481–2
inorganic content 80
inorganic macromolecules 781
inorganic material combustion 423, 436–9, 441–4
input-specific emissions 25
insect nuisance 702, 923
institutional waste 97–9
composition 98–9
data application 98
unit generation rates 97–8
integrated pollution prevention and control (IPPC) 15, 53
integrated product policy (IPP) 190–1
integrated solid waste management (ISWM) model 143, 147–9, 153–5
integrated waste management (IWM) 137, 533
Integrated Waste Management-2 (IWM-2) model 142, 145–6
internal collection 955
international regulations 13–15, 53
international toxic equivalents (TEQ) 395–6
interpretation phase 133–4
interspecies hydrogen transfer 590
inventory analysis 124–6
IPP see integrated product policy
IPPC see integrated pollution prevention and control
iron
landfilling 765, 789
mechanical treatment 357
production 234–5
remanufacturing 237–9
solid fuels from waste 489–90
solid residues 448
iso-pressure curves 847
ISWM see integrated solid waste management
items 65
IWM see integrated waste management
IWM Canada model 142, 145
IWM-2 see Integrated Waste Management-2
jaw crushers 326
John Deere presses 346
junk mail 193–4
ketone production 647
kitchen grinders 276
Kjeldahl nitrogen 891
Kyoto Protocol 14
L/S see liquid/solid
labeling, hazardous waste 985–6
lagoon-based SBR 886–7
land use 122, 130
landfill gas (LFG)
active gas management 845–6, 847–9
aftercare 942
biofuels 854
boiler systems 852–4
corrosion problems 855
direct usage 853–4
electricity and heat production 851–2
emissions and time frames 686–7, 693, 851
environmental factors 696–9, 702–3
extraction systems 847–8
extraction and utilization 841–57
final use of landfills 939–40
flaring systems 849–51
fuel cells 854–5
hydrology 710, 714
management systems 845–9
mechanical biological pretreatment 791–4
modeling LFG production 841–4
monitoring 925–6
natural gas distribution network 854
passive gas management 846
pump and regulation systems 848–9
reactor landfills 774–9
top covers 831–4, 836–9
utilization systems 851–5
vegetation damage 935–6, 942
landfilling
aftercare 693, 932–3, 941–5
anaerobic digestion 610, 612
batteries 992
biological pretreatment 790–1
bottom liners 927
bottom linings 800–20
capacity needs 899–900, 912
case histories 748–51
chemical reactions 760–2
classification of waste 734–6, 908–9
closure 932–7
compaction of waste 915–16, 918–19
composting 549
concepts and challenges 685–94
construction and demolition waste 243, 248–9
daily cover 920
Index 1013

decommisioning 937
density and unit weight of waste 736–9
design 795–7, 898, 899, 907–13
economic factors 37–8, 45, 837–8, 905–6, 944–5
electricity and heat production 851–2
emissions 139, 154–5
end of aftercare 944–5
environmental factors 686–8, 695–708, 767–9, 826–7, 838, 905–6, 921–3
equipment 915
failure modes 747–51
filling sequences and waste placement 915–18
final storage quality 689
final use 910, 937–41
fire and explosion hazards 702–3, 922
flaring systems 849–51
gas extraction and utilization 841–57
geotechnology 734–54, 905–6, 927–8, 933–5
glass 216
hazardous waste 987, 988
healthcare risk waste 958
historical development 685–6
hydraulic conductivity 741–4
hydrology 709–33, 830–1, 835–6
landscaping 902–3, 910, 940–1
life cycle assessment 128–9, 139–41, 154–5, 165–6, 167–8, 170–2, 176–8
mass balances 784–5
mass flows 692
mechanical biological pretreatment 788–99
mechanical biological treatment 628, 632–4
mechanical pretreatment 789–90
mechanical treatment 356–7
methane utilization 154
mineral waste landfills 755–71
models of landfills 726–9
moisture content 737, 777, 795–7, 809, 929
monitoring and maintenance 782–3, 914, 923–9, 941–5
multibarrier concept 688
nuisances 702, 921–3
odor problems 696, 699–701, 791–2, 849, 922
operation 795–7, 914–23
ozone depletion 696, 698
paper and cardboard 210
permanent installations 936–7
planning 898–901
plastic 230
political frameworks 900–1
polyvinylchloride 997
preservative treated wood 977–9
public health issues 702, 921
reactor landfills 686, 772–87
safety and security 921
settlement 744–6, 751, 927–8, 933–5, 939, 943
shear strength 739–41, 749
site-specific risk assessments 689–90
siting 898, 900–7
solid fuels from waste 486–7
solid residues 444–6
specific weight 920
stability 746–51
storm water management 921
technical control options 767–9
temperature control 777, 929
time frames 686–8
top covers 830–40, 845
transport of leachate through liners 812–20
vegetation damage 703, 935–6, 942
waste acceptance criteria 690–2, 908–9
waste characteristics 794–5
waste electrical and electronic equipment 963
waste engineering 18, 20
waste input control 921
water balance 709–19, 727
water flow 719–26, 728–9
see also landfill gas; leachates
LandGem model 842
landscaping applications 651–64
landscaping of landfills 902–3, 910, 940–1
large containers 258–61
large events 195–6
LCA see life cycle assessment
LCA-IWM model 144, 148–50
LCC see life cycle costing
LCRS see leachate collection and removal system
LDCRS see leakage detection, collection and removal systems
LDPE see low density polyethylene
leachate collection and removal system (LCRS) 800–1, 803, 820–6
construction and operation 824–6
design 821–4
materials 803–4, 820–1
regulatory factors 822–3, 826–7
saturation and clogging 824–6
leachates
activated sludge 883–5, 890, 893
aerated lagoons 881–3
aerobic treatment 877–88, 891
Index

<table>
<thead>
<tr>
<th>Leachates (Cont.)</th>
<th>sorption processes 869–72, 890</th>
</tr>
</thead>
<tbody>
<tr>
<td>aftercare 942–3</td>
<td>stripping processes 863–5, 894</td>
</tr>
<tr>
<td>ageing processes 446</td>
<td>temporal variations 758–9, 861</td>
</tr>
<tr>
<td>anaerobic treatment 877–8, 881, 882, 888–91</td>
<td>top covers 836</td>
</tr>
<tr>
<td>availability tests 451–2</td>
<td>transport through liners 812–20</td>
</tr>
<tr>
<td>biological treatment 877–94</td>
<td>treatment 858–97</td>
</tr>
<tr>
<td>characteristics and composition 859–61</td>
<td>water percolation and temporal variations 452–4</td>
</tr>
<tr>
<td>chemical reactions 760–2</td>
<td>wetlands and reed beds 874–7, 885</td>
</tr>
<tr>
<td>co-treatment with sewage 863</td>
<td>LeachXS model 763, 765</td>
</tr>
<tr>
<td>combination treatments 891–4</td>
<td>leakage detection, collection and removal systems (LDCRS) 805</td>
</tr>
<tr>
<td>composting 535, 572–4</td>
<td>legislative issues see regulatory issues</td>
</tr>
<tr>
<td>construction and demolition waste 248</td>
<td>LFG see landfill gas</td>
</tr>
<tr>
<td>contaminated soils 107–8</td>
<td>LHV see lower heating value</td>
</tr>
<tr>
<td>coordination chemistry 449–50</td>
<td>life cycle assessment (LCA) 12–13</td>
</tr>
<tr>
<td>denitrification 878, 881–94</td>
<td>all potential environmental impacts 175–8</td>
</tr>
<tr>
<td>description and prediction of behaviour 762–3</td>
<td>allocation 123–4, 140</td>
</tr>
<tr>
<td>diffusion-controlled leaching 454</td>
<td>applications in waste management 137–60</td>
</tr>
<tr>
<td>dissolved air flotation 885–6</td>
<td>assessment criteria 120–2</td>
</tr>
<tr>
<td>dissolved organic carbon 450–1</td>
<td>attributional 118–19</td>
</tr>
<tr>
<td>emissions and timeframes 686–8, 693</td>
<td>biological treatment 669, 680</td>
</tr>
<tr>
<td>environmental factors 472–3, 704–6, 767–9</td>
<td>case studies 152–9</td>
</tr>
<tr>
<td>evaporation processes 865–6, 894</td>
<td>consequential 118–19</td>
</tr>
<tr>
<td>final use of landfills 939–40</td>
<td>data collection and processing 124–6</td>
</tr>
<tr>
<td>fixed film reactors 888–91</td>
<td>development and principles 113–15</td>
</tr>
<tr>
<td>flow variations 860</td>
<td>environmental assessment tools 114–15</td>
</tr>
<tr>
<td>hydrology 709–11, 730</td>
<td>functional units 117–18</td>
</tr>
<tr>
<td>kinetic versus equilibrium approach 757–8</td>
<td>future developments 159</td>
</tr>
<tr>
<td>leaching tests 81, 451, 908–9</td>
<td>goal and scope definition 116–24</td>
</tr>
<tr>
<td>liquid/solid ratios 758–9</td>
<td>impact assessment 126–33</td>
</tr>
<tr>
<td>mechanical biological pretreatment 792–6</td>
<td>impact categories 121–2, 126, 128</td>
</tr>
<tr>
<td>mechanical biological treatment 635</td>
<td>interpretation phase 133–4</td>
</tr>
<tr>
<td>membrane processes 866–8, 886</td>
<td>inventory analysis 124–6</td>
</tr>
<tr>
<td>mineral waste landfills 757–69</td>
<td>landfilling 782</td>
</tr>
<tr>
<td>monitoring 925</td>
<td>limitations 134</td>
</tr>
<tr>
<td>nitrification 880–94</td>
<td>methodology 116, 138–41</td>
</tr>
<tr>
<td>organic contaminants 454–5</td>
<td>models of waste management 141–52, 161–79</td>
</tr>
<tr>
<td>oxidation processes 871–4, 890, 893–4</td>
<td>paper recycling 209–10</td>
</tr>
<tr>
<td>pH effects 446, 449</td>
<td>potential global warming impacts 170–5</td>
</tr>
<tr>
<td>polishing plants 875–7, 885–6, 893</td>
<td>preservative treated wood 979</td>
</tr>
<tr>
<td>preferential flow 759–60</td>
<td>reporting and critical reviews 134</td>
</tr>
<tr>
<td>preservative treated wood 977–9</td>
<td>sensitivity analysis 133–4, 173–6</td>
</tr>
<tr>
<td>properties 763–7</td>
<td>solid residues 473–4</td>
</tr>
<tr>
<td>quality management 688–90</td>
<td>system boundaries 118–20, 137–9, 146–53, 161–4, 178</td>
</tr>
<tr>
<td>reactor landfills 774–8, 779–82</td>
<td>technological scope 122–3</td>
</tr>
<tr>
<td>recirculation 836</td>
<td>technologies of waste management 164–9</td>
</tr>
<tr>
<td>redox potentials 449</td>
<td>time scales 122, 139</td>
</tr>
<tr>
<td>rotating biological contactors 889–91</td>
<td>waste electrical and electronic equipment 968</td>
</tr>
<tr>
<td>sequencing batch reactors 875–7, 885–8</td>
<td>waste management systems 169</td>
</tr>
</tbody>
</table>
welfare costs 41
life cycle costing (LCC) 30, 46, 115
life cycle impact assessment (LCIA) 126–33
 characterization 126, 128–30
 classification 121–2, 126, 128
 normalization 126, 130–1
 weighting 126–8, 131–3
lighting equipment 965–6
lignocellulose 587, 639–43
liquid digest 611, 612
liquid emissions 573–4
liquid/solid (L/S) ratios 758–9, 767–8
lithosphere 438
litter nuisance 702, 922
littering 9
local impacts 120
loss on ignition (LOI) 378, 439–40, 456
low density polyethylene (LDPE) 221–3, 225–7, 229
low permeability soils 801
low pressure steam boilers 387–8
lower heating value (LHV) 421–2
magnetic iron 789
magnetic separation 338, 608, 967
managed water input 710, 714–15
Manning’s equation 824
manometric analysis 593
manual sorting 70–1, 226, 342–4, 966–7
manually handled receptacles 254–8
manufacturing processes 119
market factors see economic factors
market failure 43, 55
marketing 659
mass balances 421–9
 anaerobic digestion 618–20
 composting 569–73
 landfilling 784–5
 mechanical biological treatment 629, 632
 waste engineering 21
mass flows 397, 424–6
 co-combustion 481–2
 landfilling 692
 life cycle assessment 166–7
mass reduction 67
mat composting 553
material flow analysis (MFA) 5–7, 115, 208
 co-combustion 481–2, 484
 recycling 216, 217, 227, 229
 waste engineering 21
material fractions 19, 65, 70–80
 commercial and institutional waste 98–9
construction and demolition waste 105–6
 industrial waste 102
 mechanical treatment 351–2
 residential waste 89–90, 91–3
 solid residues 464–5
 source segregation 299
material recovery facilities (MRF) 349–62
co-mingled MRFs 352–6, 361
definition 349–50
economic factors 40–1
facility design 360–1
historical development 350
mass and energy balance 358
mechanical–biological treatment 356–60
mixed waste MRFs 356–7
pyrolysis and gasification 511
single MRFs 351–2
types 351–60
material structure 541–2
maturity of compost 577–9
MBP see mechanical biological pretreatment
MBS see mechanical biological stabilization
MBT see mechanical biological treatment
MEA see multilateral environmental agreements
mechanical biological pretreatment (MBP) 169, 628–9, 635–7
 biological pretreatment 790–1
design and operation 795–7
gas production 791–6
landfilling 788–99
leachates 792–6
mechanical pretreatment 789–90
 regulatory factors 789
waste characteristics 794–5
mechanical biological stabilization (MBS) 169, 628
mechanical biological treatment (MBT) 356–60, 628–38
 air emissions 633–5
 biodrying 629–32
 environmental factors 633–5
 mass balances 629, 632
 pretreatment of waste 628–9, 635–7
 solid fuels from waste 486–90, 493
 stabilization 628
 technology 628–31
 unit process inventories 636–7
 wastewater treatment 635
mechanical pretreatment 966–7
mechanical pulping 203
mechanical re-pulping 206
mechanical treatment 20
air classifiers 332–7
ballistic separators 337–8
cascade ball mills 325–6
commingled MRFs 352–6, 361
compaction of waste 345–7
cutters/shredders 322–3, 325
density separation 341–2
eddy current separators 338–40
facility design 360–1
flotation 341
hammer mills 323–4
impact crushers 324–5
jaw crushers 326
magnetic separators 338
manual sorting 70–1, 226, 342–4
mass and energy balance 358
material recovery facilities 349–62
mixed waste MRFs 356–7
occupational health 343
optical sorting 340–1
preservative treated wood 975
screens 329–32
separation processes 70–1, 226, 327–44
single MRFs 351–2
size reduction 321–6
unit processes 321–48
membrane processes 866–8, 886
mercury removal 404–5, 406, 425–8, 494
mesophilic digestion 517, 605, 624
metalloids 675–7
metals
mechanical treatment 355, 357
recycling 234–42, 301
remanufacturing 237–9
methane
anaerobic digestion 584–5, 587, 591–5, 618–23
composting 573–6
oxidation 836–9
potentials 591–4
utilization 154
see also landfill gas
methanogenesis 584–5, 590–1, 596–7, 645, 775–7, 782–3
MFA see material flow analysis
microbial biomass 516–17
microbial competition 530–1
microfiltration 867, 883, 894
microwave treatment 958
midpoint modeling 126–8
mineral waste landfills 755–71
chemical reactions 760–2
environmental factors 767–9
kinetic versus equilibrium approach 757–8
leachates 757–69
liquid/solid ratios 758–9
preferential flow 759–60
regulatory factors 756–7
technical control options 767–9
temporal variations 758–9
waste types 755–7
mineralogy of incineration residues 434–6
missing values 83
mixed waste 356–7, 769, 778
mixing of compost 653–5
mixing tank systems 871
mobile vacuum systems 275–6
MODFLOW model 729
modified SCR 413
modified waste bins/containers 261
Mohr–Coulomb failure criteria 739
moisture content
anaerobic digestion 618
characterization of waste 72, 74
composting 526, 530, 535, 540–1, 545–6, 550, 570–3
landfilling 737, 777, 795–7, 809, 929
moisture retention curves 469–70
moisture/temperature/gas (MTG) sensors 923–4
MOLOK system 266–7, 274
monetary costs 29
monitors 965
mono-combustion 498–9
monofills 755
Montreal Protocol 13
motorgraders 915–16
moving grate furnaces 365–6, 380, 382–6
MRF see material recovery facilities
MSW see municipal solid waste
MSW-DST see municipal solid waste decision support tool
MSWMS see Municipal Solid Waste Management System
MSWG see moisture/temperature/gas
mulch compost 656, 660
multi-point allocation 140
multiharrier concept 688
multicompartment trucks 275
multicriteria evaluations 903–6
multilateral environmental agreements (MEA) 55
municipal regulations 14–15
municipal solid waste decision support tool (MSW-DST) 143, 147–9
municipal solid waste management (MSWM) systems 9, 10
Municipal Solid Waste Management System (MSWMS) Assessment Tool 144, 148–50
municipal solid waste (MSW)
anerobic digestion 603
biological treatment 668, 677, 679
co-combustion 477–9, 484
composting 534, 538–9, 547, 550, 563–5
incineration 377, 380, 434, 437, 441–5, 450, 453, 457, 463
landfilling 699, 718–19, 735, 737–41, 745–8, 757, 759, 762–9, 788–9, 792–4
life cycle assessment 155–6, 162–4
pyrolysis and gasification 505–7
solid fuels from waste 486–7, 493
special wastes 991

nanofiltration 866–8
national regulations 14
natural barrier materials 801–2, 804–9, 811–12, 815–18
natural drainage materials 821
natural gas distribution network 854
NCV see net calorific value
negative sorting 343–4
net calorific value (NCV) 488
net present value (NPV) 33–4
nitrates/nitrites 886–9, 891–2
nitrification 880–94
Nitrobroater spp. 522
nitrogen degradation 521–2, 527, 535, 543, 572–3, 781, 792–3
nitrogen oxides 395, 412–16, 573–6
noise nuisance 81
composting 538
landfilling 702, 921–2
transfer stations 316
nonhazardous waste 4–5, 691, 756, 826
nonmonetary costs 29
nonpacking plastic 225
nonvolatile solids (NV) 519–20
normalization 126, 130–1
NPV see net present value
nutrient cycles 666–7, 705–6, 777
nutrient demands 527, 543, 595
nutrient enrichment 122, 177
nutrient-rich compost 539
NV see nonvolatile solids

OCA see opportunity cost approach
occupational health
1018 Index

packaging
 hazardous waste 985–6
 healthcare risk waste 954–5
 mechanical treatment 353–6
 recycling 225, 301
 waste minimization and prevention 195–6, 198
packed column scrubbers 403–4
PAH see polyaromatic hydrocarbons
pans 915
paper
 bin bags 254–5, 265, 309
 collection 285
 incineration 422
 mechanical treatment 344, 351–2
 production, waste minimization and prevention 189
 recycling 203–10, 300
 remanufacturing 205–7
parasites 527–9
particle size distribution 71, 321–6, 398, 464–7
 composting 541–2, 551
 landfilling 735, 789
 pyrolysis and gasification 507
 see also size reduction
particulate organic matter (POM) 762
passive gas management 846
pathogens 8
 anaerobic digestion 597
 biological treatment 670–1, 673
 composting 527–31, 542
 pavement waste 106–7
 pay as you throw (PAYT) 47–8, 291–3
PCB see polychlorinated biphenyls; printed circuit boards
PCC see pulverized coal combustion
PCDD/F see polychlorinated dibenzoparadioxins/furans
PCP see pentachlorophenol
PE see polyethylene
peak hour operations 315–16
pellet presses 346–7
pentachlorophenol (PCP) 973, 975–7
percolation tests 908–9
performance matrices 904–6
performance testing 81
permanent installations 936–7
permeameters 810–11
permits 913
persistent organic pollutants 55
pesticides 678, 874
PET see polyethylene terephthalate
pH effects
 anaerobic digestion 598–9
 characterization of waste 74
 composting 544, 546
 landfilling 761, 763, 767–9
 leachates 446, 449, 880–1
pharmaceutical wastes 677
PHB see poly(3-hydroxybutyric acid)
photochemical ozone formation (POF) 121, 177
physical analyses 69–72
physical planning 901
physicochemical treatment 990, 993–4
PIC see prior informative consents; products of incomplete combustion
picking analysis 70–1
pipe systems 821, 825
planning processes
 anaerobic digestion 601–4
 collection 289
 final use of landfills 937–41
 landfilling 898–901
 landscaping 940–1
 waste engineering 28
plant capacity 374
plastic
 bin bags 254–5, 265, 307, 309
 biochemicals 647–9
 biodegradable 647–9
 incineration 422
 mechanical treatment 355–6
 recycling 220–33, 301
 remanufacturing 222–6
 waste electrical and electronic equipment 967
POC see points of compliance
POF see photochemical ozone formation
points of compliance (POC) 690–1
police filters 411
polishing plants 875–7, 885–6, 893
political frameworks 55, 900–1
polluter pays principle (PPP) 15, 53
poly(3-hydroxybutyric acid) (PHB) 648–9
polychlorinated biphynls (PCB) 73
biological treatment 667, 677
incineration 411, 444
preservative treated wood 972–3, 976
waste electrical and electronic equipment 964, 967
polychlorinated dibenzoparadioxins/furans (PCDD/F)
 395–9, 404, 407, 411–13, 416, 426–8, 444
 landfilling 699
 leachates 888
 pyrolysis and gasification 511
polycyclic aromatic hydrocarbons (PAH) 73
 biological treatment 677
 incineration 395, 398, 411, 440, 444
polyethylene (PE) 220–7
polyethylene terephthalate (PET) 221, 222, 225–7, 232
polystyrene (PS) 220–2, 225–7
polyvinylchloride (PVC) 227–9, 488, 493, 996–7
POM see particulate organic matter
positive sorting 343–4
post-processing technologies 547–51, 570
PPP see polluter pays principle
PR see producer responsibility
pre-processing technologies 547–51, 570
precious metals 962, 967–8
precipitation 710–11, 761, 868–9, 943
preferential flow 759–60
preheating of waste 611
preservative treated wood 971–81
active ingredients 972
characterization 973–5
hazardous potential 972–3
treatment and disposal 975–9
press separation 609
pressurized screens 331–2
pretreatment of waste
 anaerobic digestion 607–10, 614–16
 biofuels 641
 incineration 379–80
 mechanical biological treatment 628–9, 635–7
prevention see waste minimization and prevention
pricing market goods 42
printed circuit boards (PCB) 964, 965, 967
prior informative consents (PIC) 55
private costs 29, 30–40
process-specific emissions 25
process steam and power 390
procurement 197–8
producer responsibility (PR) 15, 56, 962–3
product associated disposal fees 48–9
product inhibition 599
product quality 481, 482–3
products of incomplete combustion (PIC) 395
protection layers 831–3
PS see polystyrene
psychrophilic digestion 596–7
psychrophilic bacteria 517
public access 912
public attitudes
 incineration 366
 landfilling 906–7
 source segregation 298–9, 308–9
public awareness programs 294–5
public collection points 265, 280, 282, 300, 304
public facilities 197–8
public health issues 8
 biological treatment 670–1
 collection 263, 289
 composting 542
 healthcare risk waste 952
 landfilling 702, 921
 pulp production 203–5
 pulpers 608
 pulverized coal combustion (PCC) 497–8
pump systems 821, 848–9
PVC see polyvinylchloride
pyrolysis 502–12
 benefits and drawbacks 503
 definition 20
 energy recovery 510–11
 environmental factors 511
 flue gas cleaning systems 510
 material recovery 511
 parameters and properties 505–8
 pressure 508
 processes 503–5
 technologies 508–10
 temperature and heating rates 507–8
 waste properties 506–7
quality management 655–6
 biological treatment 678–9
 co-combustion 481, 482–3
 collection 290–1
 composting 576–80
 landfilling 689, 812
 solid fuels from waste 491–6
quantitative risk assessments 690
quotes for environmentally weighted recyclability
 (QWERTY) 968
radiative sterilization 958
railroad transport 314
random sampling 65–6
Rankine cycle 376, 389
ranking procedures 904–6
raveling settlement 744
raw material extraction 119
RBC see rotating biological contactors
RBTS see reed bed treatment systems
RCM see replacement cost method
RDF see refuse-derived fuel
reactor composting technologies 556–9
reactor landfills 772–87
bioreactor landfills 686, 772–4, 782–5
controlling factors 777
conventional landfilling 772–82
degradation processes 774
flushing bioreactors 772–4, 783, 784–5
gas production 774–9
leachates 774–8, 779–82
monitoring and maintenance 782–3
phases in life cycle 774–6
semaerobic bioreactors 772–4, 783–5
rear-loading collection trucks 268–71
receptacles for waste 254–66, 306
biodegradable waste 255, 262–5
large containers 258–61
manually handled 254–8
recycling 255, 258–9, 261–2
underground 265–6
recovery
batteries 993–4
tires 995
waste electrical and electronic equipment 962, 966, 968
recycling 9, 11
batteries 992–3
closed loop 965
collection 255, 258–9, 261–2, 282, 285, 293, 297–301
construction and demolition waste 243–9
environmental factors 209–10, 216–18, 230–2, 240–1, 247–9
fee schemes 293
glass 211–19, 262–4, 299–300
grading and categorization 205–6
metals 234–42, 301
open-loop 139–40
paper and cardboard 203–10, 300
plastic 220–33, 301
polyvinylchloride 997
production rates 203–5, 211–12, 215, 220–2, 234–7, 239
public attitudes 298–9
remanufacturing 205–7, 213–14, 222–6, 237–9
source segregation 297, 298–301
symbol and numbering systems 225
tires 994–6
upgrading 244–6
waste electrical and electronic equipment 965–8
waste engineering 18, 20
waste minimization and prevention 185–6, 189, 198–9
recycling stations see collection centers
recycling, utilization and landfilling (RUL) 18, 20
redox potentials 449
redox reactions 762
reed bed treatment systems (RBTS) 874–7, 885
refinement of compost 653–5
refining processes 967
refuse-derived fuel (RDF) 20, 486–501
characterization 491–2
classification 494–6
co-combustion 477–8, 497, 499
c coal fired power plants 497–8
definition 486
economic factors 499–500
landfilling 789
life cycle assessment 163–5, 168, 169
mechanical biological treatment 628–32
mechanical treatment 346–7, 358
mono-combustion 498–9
physical and chemical properties 491–4
production 487–90
quality management 491–6
test instructions 496
utilization 497–500
regenerative thermal oxidation (RTO) 633–5
regional impacts 120
regional regulations 14–15
regulation systems 848–9
regulatory factors 52–9
air emission limit values 393–4, 417–18
BREF notes 57–8
byproducts and waste 58–9
c o-combustion 477
collection 288, 297
composting 579–80, 655–9
end of waste criteria 59
hazardous waste 985–7
incineration 393–4, 416–18
institutions and roles 13–15
instruments 53
producer responsibility 56
responsibility for waste management 56
shipment of waste 56–7
waste electrical and electronic equipment 962–3
waste minimization and prevention 188–90
relative permeability 723, 725
Index 1021

remanufacturing 205–7, 213–14, 222–6, 237–9
renewable resources 133
replacement cost method (RCM) 43
reporting 24, 134
re-pulping 206–7
residence level waste prevention 187–8
residential waste 85–96
bulky waste 86, 92, 94, 284–5, 294
collection 284–5, 291–4, 298–302, 305, 309
composition 89–90, 91–3
composting 534–5, 547, 561–3, 571, 653, 657
definition 85–6
developing economies 86–7
food waste 653, 657
household hazardous chemicals 86, 92–5
landfilling 839
mechanical treatment 352–3, 360
unit generation rates 85–9, 90–1
see also garden waste; household waste
residue streams 434
resilient modulus 469
resource consumption 133
resource recovery 9, 11
respiration tests 81, 521, 578
return of investment factor (ROIF) 44
return systems 9, 48
glass recycling 213
plastic recycling 232
waste minimization and prevention 198–9
reuse
construction and demolition waste 246
contaminated soils 107–8
glass recycling 213
plastic 232
preservative treated wood 975
tires 994–6
waste minimization and prevention 196–7
revegetation 935–6
revenues 31, 40–1
reverse osmosis plants 865, 866–8, 891–4
ring matrix presses 347
risk assessments 689–90
risk screening 690
road construction 911, 920–1, 995
road transport 314
road waste 106–7
ROAD-RES model 473–4
rodent nuisance 702, 923
ROIF see return of investment factor
roll-off containers 259–60, 266–7, 273–4
rotary air classifiers 334–6
rotary kiln furnaces 380–1, 988
rotary kiln gasification 509–10
rotating biological contactors (RBC) 874, 889–91
rotating drum composting 557–8
rotational failures 747
route planning 289
RTO see regenerative thermal oxidation
RUL see recycling, utilization and landfilling
run off 573–4
Saccharomyces cerevisiae 640, 642–3
sacks 254–5, 265
Salmonella spp. 529
sampling 65–9
number of samples 67–9
sample size 66
strategies 65–6
subsampling 66–8
sanitary landfills 686
sanitization 529
satellite vehicles 273
saturated flow 719–20, 728–9
SBR see sequencing batch reactors
scale economies 36
scales 912
scarce resources 968
Schwanecke’s equation 371
scope definitions 117–24
SCR see selective catalytic reduction
scrap metal 237–40
scrapers 915
screens 329–32
secondary combustion zones 385
section geometry 778
selective catalytic reduction (SCR) 415–16
selective noncatalytic reduction (SNCR) 386, 413–14
self-healing tests 578
semiaerobic bioreactor landfills 772–4, 783–5
sensitivity analysis 133–4, 173–6
separate hydrolysis and fermentation (SHF) 641–2
separation layers 804
separation processes 327–44
air classifiers 332–7
anaerobic digestion 608–9
ballistic separators 337–8
density separation 341–2
eddy current separators 338–40
flotation 341
healthcare risk waste 953–4
magnetic separators 338
separation processes (Cont.)
 manual sorting 70–1, 226, 342–4
 optical sorting 340–1
 recovery, purity and efficiency 327–8
 screens 329–32
 solid fuels from waste 487
 solid residues 457–8, 459
 waste electrical and electronic equipment 966–7
 see also material recovery facilities; source segregation
sequencing batch reactors (SBR) 875–7, 885–8
settlement 744–6, 751, 927–8, 933–5, 939, 943
sewage sludge
 biological treatment 667, 670–1, 673–5
 co-treatment with leachates 863
 landfilling 838–9
SFA see substance flow analysis
shear strength 739–41, 749
shear wave velocity 746
SHF see separate hydrolysis and fermentation
shipment of waste 55, 56–7
shredding 322–3, 325
 anaerobic digestion 607
 batteries 994
 landfilling 778
 waste electrical and electronic equipment 966
side-loading collection trucks 271–2
sieve separation 608
signage 911
silicon residues 447–8
simultaneous saccharification and fermentation (SSF)
 641–2
single component liners 804–7
single MRFs 351–2
single step waste prevention 186
sintering 458–9, 465
site-specific risk assessments 689–90
siting processes
 collection 315–16
 evaluation/selection procedure 903–6
 geographical and geological factors 901
 hydrogeological factors 902
 landfilling 898, 900–7
 landscaping and volume estimation 902–3
 physical planning 901
 public attitudes 906–7
 waste transfer stations 315
size reduction 321–6
 anaerobic digestion 608
 cascade ball mills 325–6
 composting 655
 cutters/shredders 322–3, 325
 hammer mills 323–4
 impact crushers 324–5
 jaw crushers 326
 sampling 67
 skips 258–9
 slag 426–7
 sliding failures 747, 749–51
 small household appliances 964–5
 small source handling 955
SNCR see selective noncatalytic reduction
societal substance flow 481, 484
socioeconomic factors 538
SOD see stratospheric ozone depletion
sodium hydrogen carbonate-based scrubbers 407–8, 410
software tools 125–6
soil
 air phase 776
 balancing 912–13
 biology 672
 contamination 107–8, 705, 826
 fertility 672
 functionality 670
 improvers 659–60
 investigations 808
 mechanics 715–19
 structure 672
 see also geotechnology
solid digest 611, 612
solid recovered fuel (SRF) 486–501
 characterization 491–2
 classification 494–6
 co-combustion 477–8, 497, 499
 coal fired power plants 497–8
 definition 486
 economic factors 499–500
 mechanical biological treatment 628–32
 mono-combustion 498–9
 physical and chemical properties 491–4
 production 487–90
 quality management 491–6
 test instructions 496
 utilization 497–500
solid residues 378, 430–62
 ageing processes 446–8
 air pollution control technologies 430, 432–6, 440–4, 445–6, 453–4, 456–7, 459–60
 anaerobic digestion 610
 California bearing ratio 467–8
 chemical composition 434–44
 combined residue streams 434
 compaction of waste 466–7
durability 467, 468–9
environmental factors 472–4
flue gas cleaning systems 433–4
hydraulic conductivity and moisture retention 469–70
inorganic material combustion 436–9, 441–4
landfilling 763–7
leachates 446, 448–56, 472–3
mineralogy 434–6
organic material combustion 439–40, 444
particle size distribution 464–7
physical and geotechnical properties 444–6
pyrolysis and gasification 511
resilient modulus 469
treatment 455–60
types and quantities 431–4
utilization in construction 463–75
see also bottom ash; fly ash
solid waste, definition 3–5
solidity 355–6
source packaging 954
source segregation 19
collection 257, 262–6, 278, 293, 296–310
criteria 297–302
guidelines 308–9
hazardous waste 302
healthcare risk waste 953–4
life cycle assessment 164–5, 168, 169
material recovery facilities 361
public attitudes 298–9, 308–9
purpose and advantages 297
receptacles for waste 306
segregation efficiencies 304–5
segregation potentials 302–4
segregation purities 305
special fractions 301
system performance 303–4
waste collection systems 306–7
waste collection vehicles 306
spatial variations 64, 87
special fractions 301
special wastes 294
batteries 991–4
food waste 997–9
healthcare risk waste 951–9
polyvinylchloride 996–7
preservative treated wood 971–81
tires 994–6
waste electrical and electronic equipment 234, 960–70
see also hazardous waste
specific weight 920
spontaneous combustion 542
SSF see simultaneous saccharification and fermentation
stability of landfills 746–51
stabilization processes 458, 459–60, 487, 628
stable methanogenic phase 776, 782
stack 416–17
stainless steel 239
standardization 69
starch/sucrose energy crops 639–40
start-up burners 385–6
static pile composting 552–3
statistical analysis 81–3
steel
mechanical treatment 355
production 234–5
remanufacturing 237–9
sterilization processes 957–8
storage
anaerobic digestion 610–11
composting 655
healthcare risk waste 955–6
landfilling 911
stored toxicity 178
storm water management 921
strategic waste prevention 186–7
stratified random sampling 65
stratospheric ozone depletion (SOD) 121
landfilling 696, 698
life cycle assessment 177
stripping processes 863–5, 894
Student’s t-test 67, 69
subbase preparation 808
subsampling 66–8
subsidiary containers 258–9
subsidies 49, 604
substance flow analysis (SFA) 115, 481, 484
substances 19, 65
succession 516–17
suction hoods 335
suitability maps 903–4
sulfate 448, 775, 777
sulfur degradation 522
surface layers 831–3
surface spreading 472
Index

surface water
 inflow 710, 711–12
 landfilling 826, 943
pollution 705, 826
runoff 710, 712–13, 728, 795–6
sustainability 11–12
sustainable procurement 197–8
SUTRA model 728–9
synthrophic consortia 590
system boundaries 118–20, 137–9, 146–53, 161–4, 178
systematic random sampling 66
tank-based SBR 887–8
Tanner’s diagram 367
taxes 31, 40, 48
 life cycle assessment 157–9
 waste minimization and prevention 188
TDR see time domain reflectometry
TDS see total dissolved solids
technical guidelines 53
technological scope 122–3
TEF see toxic equivalency factors
televisions (TV) 965
temperature control
 anaerobic digestion 596–7, 612
 composting 523–6, 529, 530, 542–3, 545–6
 landfilling 777, 929
temporal variations 64
 collection 277–8
 landfilling 758–9
 leachates 452–4, 861
 life cycle assessment 128–9
 residential waste 87–8, 91–2
 temporary roads 920–1
 temporary storage 955
TEQ see international toxic equivalents
test instructions 496
theoretical methane potentials 591–2
tire disposal 976–7
thermal treatment see gasification; incineration; pyrolysis
thermal treatments, solid residues 458–9, 460
thermal utilization 976
thermophilic digestion 517, 605, 625–6
thermoplastics 220–1
Thermoselect process 506–7
thermosets 220–1
tile waste 246
time domain reflectometry (TDR) 927
time-phasing 912
time scales 122, 139
tipping places 606–7
tires 994–6
titanium dioxide 55
TKN see total Kjeldahl nitrogen
TMR see total mass requirement
TOC see total organic carbon; total organic content
top covers 830–40
 alternative concepts 834–9
 barrier layers 831–3, 884
 capillary barriers 835
 components 831–4
 drainage layers 831–4
 economic factors 837–8
 environmental factors 838
 evapotranspiration cover concept 835–6
 foundation layers 831–3, 834
 gas collection layers 831–3, 834, 845–6
 hydrology 830–1, 835–6
 leachate recirculation 836
 methane oxidation 836–9
 models 727
 placement 933–5
 protection layers 831–3
 surface layers 831–3
topsoils 653–5, 660–3
total average landfill density 736–7
total dissolved solids (TDS) 453–4
total Kjeldahl nitrogen (TKN) 781
total mass requirement (TMR) 968
total organic carbon (TOC)
 characterization of waste 74, 79
 incineration 375, 378, 395, 422, 439–40, 448, 456
 landfilling 756, 769, 779, 781
 leachates 870–3, 878
tower composting 558–9
toxic equivalency factors (TEF) 395–6
trace organics 780–1, 878–9
tradable permits 49
trans-esterification 646
transfer stations 19, 311–18
 delivery systems 311–13
 economic factors 316–18
 landfilling 912
 siting and design issues 315–16
 transfer systems 313
translational failures 747
transport
 collection 285–7, 314–15
 economic factors 36
 equipment and vehicles 253
 hazardous waste 986–7
 healthcare risk waste 955–6
life cycle assessment 164–6, 170–2
packaging 955
regulatory issues 55, 56–7
waste engineering 17–18, 19
triglycerides 646
trommel screens 329–30
truck wash facilities 912
tunnel composting 556–7
turf products 656, 661–3, 995–6
TV see televisions
two-stage digestion 606
ultrafiltration 866–8, 883–4, 893–4
unaddressed advertising 193–4
unbound utilization 469–71
uncertainty variation 64
underground receptacles 265–6
underground sources of drinking water (USDW) 989
unit generation rates 65
commercial and institutional waste 97–8
construction and demolition waste 104–5
industrial waste 101–2
residential waste 85–9, 90–1
unit process inventories (UPI) 26–7
anaerobic digestion 626–7
composting 575–7
incineration 428–9
mechanical biological treatment 636–7
recycling 204, 212, 214, 222–3, 236–7
unit weight of waste 736–9
unmanaged waste 9
unsaturated flow 720–2, 728–9
upgraded C&D waste 244–6
UPI see unit process inventories
upstream emissions 25
upstream system boundaries 138–9
urban constructions 660–2
usage guidelines 656–9
USDW see underground sources of drinking water
utilities supply 912
utility theory 905
vacuum systems 275–6
valuable substances 962, 967–8
value markets 652
van Genuchten equation 722
variable costs 31
vegetation damage 703, 935–6, 942
vehicle fuel see biofuels
venturi aerators 888
venturi scrubbers 402–3
vermicomposting 553–4
VFA see volatile fatty acids
vinyl chloride 699, 778–9
viruses 527–9
viscosity 596, 744
vitrification 458
VOC see volatile organic compounds
volatile fatty acids (VFA) 74, 587, 589, 598–9, 777
volatile organic compounds (VOC) 121
anaerobic digestion 621
hazardous waste 989
landfilling 696, 699
volatile solids (VS) 74, 79, 519–21, 535, 570–2, 619, 622
volume estimation 902–3
volume markets 652
volume/space issues 8
volumetric analysis 593
volumetric water content 715–19
voluntary agreements 53, 188–9
VS see volatile solids
waste acceptance criteria 690–2, 908–9
waste ageing 742
waste categories 19, 64
waste characterization see characterization of solid waste
waste collection vehicles 266–75
compaction of waste 266–8
crane trucks 274
crew size and truck capacity 290
front-loading collection trucks 258, 271–3
multicompartment trucks 275
rear-loading collection trucks 268–71
roll-off containers 273–4
satellite vehicles 273
side-loading collection trucks 271–2
source segregation 306
waste composition 162, 173–5
waste density 71–3
waste electrical and electronic equipment (WEEE) 234, 960–70
characterization 960–2
composition 962
economic factors 965
environmental factors 967–8
quantities 960–1
regulatory factors 962–3
treatment categories 963–6
treatment technologies 966–7
waste engineering 17–28
collection and transport 17–18, 19
emission accounts 23–5
waste engineering (Cont.)
energy budgets 22–3
material flow analysis and mass balances 21
other aspects 28
recycling, utilization and landfilling 18, 20
terminology 17–20
treatment 17–18, 19–20
unit process inventories 26–7
waste generation 17–19
waste generation 5–7, 17–19
waste heterogeneity and structure 724–6, 738–9
waste hierarchy approach 11
waste input control 921
waste management principles
approaches 11–13
criteria 10–11
current practice 13
definitions 3–5
institutions and regulations 13–15
issues with solid waste 8–9
material flow 5–7
systems 9–10
waste minimization and prevention 183–92
advertising material 193–4
biodegradability 194–6
case studies 193–200
clean production and technology 184, 188–90
definitions 183–5
food waste 198
instruments 188–90
integrated product policy 190–1
large events 195–6
life cycle assessment 138
public facilities 197–8
recycling 185–6, 189, 198–9
return systems 198–9
reuse 196–7
steps and strategies 186–7
waste generators’ perspective 187–8
waste placement 915–18
waste policies 283–4
waste prevention see waste minimization and prevention
waste quantities 19, 64
Waste and Resource Assessment Tool for the
Environment (WRATE) 144, 151–3
waste treatment see treatment
waste types 19, 64
waste wood ash 977
wastewater emissions 406–7
wastewater sludge 446, 602, 612
wastewater treatment
biofuels 643–5
landfilling 796
mechanical biological treatment 635
water balances 709–19, 727, 942
water content 715–19
water flow 719–26, 728–9
water percolation 452–4
water soluble nitrate 579
waterway transport 314
WEEE see waste electrical and electronic equipment
weighbridges 606
weighting 126–8, 131–3
welfare costs 29, 40–6
wet digestion 605, 614–16, 619, 625–6
wet mass 570–1, 618
wet scrubbers 402–7, 424–5, 427–9, 433–4, 441–3, 453–4
wetlands 874–7
wheeled bins 255–8
willingness to accept (WTA) 42
willingness to pay (WTP) 42
Windrow composting 551–2
WISARD model 143, 148, 150
World Trade Policy 55
wormeries 553–4
WRATE model 144, 151–3
WTA see willingness to accept
WTP see willingness to pay
yard waste see garden waste
zero waste approach 11, 12
zigzag air classifiers 334–5