Contents

List of Contributors xiii
Preface xvii
About the Editors xxi

1 Effects of Organic Pollutants on Photosynthesis 1
Rupal Singh Tomar, Bhupendra Singh, and Anjana Jajoo
1.1 Introduction to Organic Pollutants 1
1.2 Characteristics of the Organic Pollutants 3
1.3 Sources of Organic Pollutants 3
1.4 Uptake and Accumulation of Organic Pollutants in Plants 4
1.5 Effects of Organic Pollutants on Plant Growth 5
1.6 Effects of Organic Pollutants on Photosynthesis 7
1.6.1 Effects of Pesticides on the Light Reactions 7
1.6.2 Effects of Pesticides on the Dark Reactions 9
1.6.3 Effects of Antibiotics on the Light Reactions 11
1.6.4 Effects of Antibiotics on the Dark Reactions 13
1.6.5 Effects of Bisphenol A on the Light Reactions 13
1.6.6 Effects of Bisphenol A on the Dark Reactions 14
1.6.7 Effects of Polycyclic Aromatic Hydrocarbons on the Light Reactions 14
1.6.8 Effects of Polycyclic Aromatic Hydrocarbons on the Dark Reactions 16
1.7 Conclusion and Future Prospects 17
References 18

2 Cold Stress and Photosynthesis 27
Aditya Banerjee and Aryadeep Roychoudhury
2.1 Introduction 27
2.2 Primary Targets of Cold Stress in Plants 27
2.3 Cold Stress Distorts the Chloroplast Membrane Integrity 28
2.4 Cold Stress Damages the Photosynthetic Apparatus 28
2.5 Cold Stress Affects Carbon Dioxide (CO₂) Fixation 31
2.6 Strategies to Ameliorate Cold Stress and Improve Photosynthesis 32
2.7 Conclusion and Future Perspectives 33
Acknowledgements 33
References 33
Contents

3 High-Temperature Stress and Photosynthesis Under Pathological Impact 39
Murat Dikilitas, Eray Simsek, Sema Karakas, and Parvaiz Ahmad

3.1 Introduction 39
3.2 High-Temperature Stress on Crop Plants 41
3.3 High-Temperature Stress on Photosynthesis Mechanisms 43
3.4 Impact of Pathogens on Photosynthesis Mechanisms Under Temperature Stress 45
3.5 Genomic, Biochemical, and Physiological Approaches for Crop Plants Under Temperature and Pathogenic Stresses 51
3.6 Conclusions and Future Prospects 55
References 55

4 Effect of Light Intensity on Photosynthesis 65
Rinukshi Wimalasekera

4.1 Introduction 65
4.2 Characteristics of Light 66
4.2.1 Photosynthetically Active Radiation (PAR) 66
4.3 Light Absorption and Pigments 67
4.3.1 Dissipation of Excess Light Energy 67
4.3.2 Photoinhibition 68
4.4 Light Absorption by Leaves 68
4.4.1 Light Absorption and the Anatomy, Morphology, and Biochemical Characteristics of Leaves 68
4.4.2 Light-Mediated Leaf Movement 69
4.4.3 Light Absorption by Sun and Shade Adapted Leaves 69
4.5 Light and Photosynthetic Responses 70
4.6 Conclusion and Future Prospects 70
References 71

5 Regulation of Water Status, Chlorophyll Content, Sugar, and Photosynthesis in Maize Under Salinity by Mineral Mobilizing Bacteria 75
Yachana Jha

5.1 Introduction 75
5.2 Mineral Mobilizing Bacteria 76
5.3 Isolation and Identification of Mineral Mobilizing Bacteria 77
5.4 Mineral Mobilizing Bacteria Maintain the Photosynthetic Efficiency of Maize Under Salinity 78
5.5 Mineral Mobilizing Bacteria Maintain the Photosynthetic Efficiency of Plants by Regulating Chlorophyll Content 79
5.6 Mineral Mobilizing Bacteria Maintain the Photosynthetic Efficiency of Plants by Regulating Relative Water Content 80
5.7 Mineral Mobilizing Bacteria Maintain the Photosynthetic Efficiency of Plants by Regulating Stomatal Behavior 82
5.8 Mineral Mobilizing Bacteria Maintain Photosynthesis to Regulate Soluble Sugar by Altering Vascular Tissue 83
5.9 Mineral Mobilizing Bacteria Maintain the Photosynthetic Efficiency of Plants by Accumulating Various Osmoprotectants 84
References 84
5.10 Mineral Mobilizing Bacteria Maintain the Photosynthetic Efficiency of Plants by Regulating Sugar Biosynthesis 87
5.11 Mineral Mobilizing Bacteria Maintain the Photosynthetic Efficiency of Plants by Reducing Ethylene Biosynthesis 88
5.12 Mineral Mobilizing Bacteria Maintain the Photosynthetic Efficiency of Plants by Inducing Various Signaling Molecule 89
5.13 Conclusion 90
References 90

6 Regulation of Photosynthesis Under Metal Stress 95
Mumtaz Khan, Neeha Nawaz, Ifthekhar Ali, Muhammad Azam, Muhammad Rizwan, Parvaiz Ahmad, and Shafaqat Ali
6.1 Introduction 95
6.2 Effects of Metals on Photosynthesis 96
6.2.1 Reduction in CO₂ Stomatal Conductance and Mesophyll Transport 96
6.2.2 Inhibition of Biosynthesis of Photosynthetic Pigments 97
6.2.3 Changes in Leaf Morphology and Chloroplast Ultrastructure 97
6.2.4 Induction of Reactive Oxygen Species 98
6.2.5 Metal-Induced Hormonal Changes 98
6.2.6 Alterations in Photosynthetic Enzymes 99
6.3 Mechanisms of Photosynthesis Regulation under Metal Stress 99
6.3.1 Cell Signaling and Growth Hormones 99
6.3.2 Avoiding and Scavenging Reactive Oxygen Species 100
6.3.3 Interconversion of Chlorophylls 101
6.3.4 Role of Alleviatory Agents in Photosynthesis Regulation 101
6.3.5 Photosynthesis Regulation Through Overexpression of Genes 102
6.4 Conclusions 102
References 102

7 Heavy Metals and Photosynthesis: Recent Developments 107
Zahra Souri, Amanda A. Cardoso, Cristiane J. da-Silva, Letúzia M. de Oliveira, Biswanath Dari, Debjani Sihi, and Naser Karimi
7.1 Introduction 107
7.2 Heavy Metals and Hyperaccumulation 109
7.2.1 Characteristics of Hyperaccumulator Plants 110
7.2.2 Hyperaccumulation and Photosynthesis 112
7.3 Heavy Metals and Chloroplast Structure 113
7.4 Heavy Metals and Gas-Exchange 115
7.5 Heavy Metals and Photosynthetic Pigments 115
7.6 Heavy Metals and Photosystems (PSI and PSII) 117
7.7 Heavy Metals and Key Photosynthetic Enzymes 120
7.8 Heavy Metals and Antioxidant Defense Mechanism of the Photosynthetic System 121
7.9 Conclusion and Further Prospects 123
References 125
8 Toward Understanding the Regulation of Photosynthesis under Abiotic Stresses: Recent Developments 135
Syed Sarfraz Hussain
8.1 Introduction: Abiotic Stresses, Photosynthesis and Plant Productivity 135
8.1.1 Impact of Abiotic Stress on the Photosynthetic System of Plants 137
8.1.2 Drought Stress 137
8.1.3 Salinity Stress 139
8.1.4 Cold Stress 142
8.1.5 Heat Stress 144
8.2 Overexpression of Photosynthesis Related Genes and Transcription Factors 145
8.3 Conclusions and Future Perspectives 146
References 147

9 Current Understanding of the Regulatory Roles of miRNAs for Enhancing Photosynthesis in Plants Under Environmental Stresses 163
Syed Sarfraz Hussain, Meeshaw Hussain, Muhammad Irfan, and Bujun Shi
9.1 Introduction: Interaction Between miRNAs and Plant Growth/Functional Diversity of miRNAs and Their Impact in Plant Growth 163
9.2 miRNAs Involved in Photosynthesis and Other Downstream Biological Processes 165
9.3 Abiotic Stresses Dramatically Affect Photosynthesis and Plant Productivity 166
9.4 Genome Wide miRNA Profiling Under Abiotic Stresses 168
9.5 Functional Characterization of miRNAs Associated with Photosynthesis 170
9.6 miRNAs and Shoot/Tiller Development 172
9.7 miRNAs in Root Development 173
9.8 miRNAs in Controlling Stomatal Density 175
9.9 miRNAs in Hormone Signaling 175
9.10 miRNAs in Controlling Nodule Development in Leguminous Crops 176
9.11 Conclusion and Future Perspective 177
References 178

10 Mineral Mobilizing Bacteria Mediated Regulation of Secondary Metabolites for Proper Photosynthesis in Maize Under Stress 197
Yachana Jha
10.1 Introduction 197
10.2 Isolation and Inoculation of Mineral Mobilizing Bacteria 198
10.2.1 Mineral Mobilizing Bacteria Mediated Regulation of Nutrients for Secondary Metabolites Production and Photosynthesis 200
10.2.2 Mineral Mobilizing Bacteria Mediated Regulation of Chlorophyll Content for Secondary Metabolites Production and Photosynthesis 201
10.2.3 Mineral Mobilizing Bacteria Mediated Regulation of Carbon/Sugar Metabolites for Secondary Metabolites Production and Photosynthesis 203
10.2.4 Mineral Mobilizing Bacteria Mediated Regulation of Nitrogen Metabolites for Secondary Metabolites Production and Photosynthesis 206
10.2.5 Mineral Mobilizing Bacteria Mediated Regulation of Secondary Metabolites Production and Photosynthesis Under Biotic Stress 207
10.2.6 Mineral Mobilizing Bacteria Mediated Regulation of Secondary Metabolites Production and Photosynthesis Under Abiotic Stress 207
10.2.7 Mineral Mobilizing Bacteria Mediated Regulation of Gene Expression for Secondary Metabolites Production and Photosynthesis 208
10.3 Conclusion 210
References 210

11 Role of Plant Hormones in Improving Photosynthesis 215
Belur Satyan Kumudini and Savita Veeranagouda Patil
11.1 Introduction 215
11.2 Phytohormones: Watchdogs of Plant Growth and Development 216
11.2.1 Auxins 216
11.2.2 Gibberellins or Gibberellic Acids 217
11.2.3 Cytokinins 217
11.2.4 Ethylene 218
11.2.5 Abscisic Acid 218
11.2.6 Jasmonic Acid 220
11.2.7 Salicylic Acid 220
11.2.8 brassinosteroids 220
11.2.9 Strigolactones 221
11.3 Photosynthesis 221
11.3.1 Role of Plant Hormones in Photosynthesis 222
11.4 Phytohormones and Abiotic Stress Tolerance vis-à-vis Photosynthesis 223
11.4.1 Heavy Metals 223
11.4.2 Salinity 224
11.4.3 Drought 225
11.5 Deciphering the Role of Phytohormones in Perceiving Photosynthesis During Biotic Stress 225
11.6 Interplay Between the Phytohormones to Facilitate Photosynthesis Under Stress 227
11.7 Conclusion and Future Prospects 228
Acknowledgments 228
References 228

12 Promising Monitoring Techniques for Plant Science: Thermal and Chlorophyll Fluorescence Imaging 241
Aykut Saglam, Laury Chaerle, Dominique Van Der Straeten, and Roland Valcke
Abbreviations 241
12.1 Introduction 241
12.2 Thermal Imaging 242
12.2.1 Plant Water Status and Drought Stress 243
Contents

12.2.2 Salt Stress 245
12.2.3 Herbicide Stress 245
12.2.4 Air Humidity and Air Pollutants 245
12.2.5 Ice Nucleation and Freezing 246
12.2.6 Plant–Pathogen Interactions 247
12.2.7 Herbivory Effects 249
12.3 Chlorophyll Fluorescence Imaging 249
12.3.1 Drought Stress 251
12.3.2 Light Stress 252
12.3.3 Herbicide Stress 252
12.3.4 Air Pollutants 254
12.3.5 Mineral Deficiency and Toxicity 255
12.3.6 Pathogen Effects 256
12.3.7 Herbivory Effects 258
12.4 Conclusions and Future Perspectives 259
References 260

13 Introggression of C4 Pathway Gene(s) in C3 Plants to Improve Photosynthetic Carbon Assimilation for Crop Improvement: A Biotechnological Approach 267
Sonam Yadav and Avinash Mishra
13.1 Introduction 267
13.2 Carbon Assimilation 268
13.2.1 CO2 Assimilation in C3 Plants: Photorespiration a Major Constraint 268
13.2.2 CO2 Assimilation in C4 Plants: Efficient Photosynthesis 269
13.2.3 C3 vs. C4 Plants 271
13.3 Evolution of C4 Metabolism in Higher Plants 271
13.3.1 Environmental Imperatives/Obligations 272
13.3.2 Evolution of C4 Photosynthesis Gene(s) 272
13.4 Effect of Elevated CO2 on C3 and C4 Plants 273
13.5 Ectopic Expression of C4 Photosynthesis Genes in C3 Plants 274
13.5.1 Single Gene Introgression 274
13.5.2 Double Gene Introgression 275
13.6 Conclusion 275
Acknowledgment 276
References 276

14 Interaction of Photosynthesis, Productivity, and Environment 283
Ulduza Ahmad Gurbanova, Tofiq Idris Allahverdiyev, Hasan Garib Babayev, Shahnigar Mikayil Bayramov, and Irada Mammad Huseynova
14.1 Introduction 283
14.2 Plant Materials 286
14.3 Effect of Drought Stress on Some Physiological Traits, Yield, and Yield Components of Durum (Triticum durum Desf.) and Bread (Triticum aestivum L.) Wheat Genotypes 286
14.4 Subcellular Localization of the NADP-Malic Enzyme and NAD-Malic Enzyme Activity in the Leaves of the Wheat Genotypes Under Soil Drought Conditions 299
14.5 Physico-Chemical Parameters of NADP-Malic Enzyme and NAD-Malic Enzyme in the Leaves of the Barakatli 95 and Garagylchyg 2 Genotypes Under Soil Drought Conditions 302
14.6 Conclusion 310
Acknowledgement 311
References 311

Index 315