Contents

Contributors xi
Preface xv

1 Flood tolerance mediated by the rice SUB1A transcription factor 1
KENONG XU, ABDELBAGI M. ISMAIL, and PAMELA RONALD

1.1 Introduction 1
1.2 Isolation of the rice SUB1 locus 3
1.3 Sub1 rice in farmers’ fields 5
1.4 The SUB1 effect 7
1.5 The SUB1-mediated gene network 7
1.6 Conclusion 11

2 Drought tolerance mechanisms and their molecular basis 15
PAUL E. VERSLUES, GOVINAL BADIGER BHASKARA, RAVI KESARI, and M. NAGARAJ KUMAR

2.1 Introduction 15
2.1.1 The water potential concept 15
2.1.2 Escape, avoidance, and tolerance strategies of drought response 16
2.1.3 What is drought tolerance? 17
2.1.4 Responses to longer-term moderate water limitation versus stress shock and short-term response 18
2.1.5 Natural variation and next generation sequencing 19
2.2 Some key drought tolerance mechanisms 20
2.2.1 Osmoregulation/osmotic adjustment 20
2.2.2 Regulated changes in growth 22
2.2.3 Redox buffering and energy metabolism 24
2.2.4 Senescence and cell death 27
2.2.5 Metabolism 28
2.3 Emerging drought tolerance regulatory mechanisms 28
2.3.1 Drought perception and early signaling 29
2.3.2 Alternative splicing 31
2.3.3 Post-translational modification: ubiquitination and sumoylation
2.3.4 Kinase/phosphatase signaling
2.4 Conclusion

3 Stomatal regulation of plant water status
YOSHIYUKI MURATA and IZUMI C. MORI

3.1 Stomatal transpiration and cuticular transpiration
3.2 Abiotic stress
 3.2.1 Drought
 3.2.2 Light and heat
 3.2.3 Carbon dioxide
 3.2.4 Ozone
3.3 Abiotic stress and biotic stress
 3.3.1 Interaction between ABA signaling and MeJA signaling
 3.3.2 Interaction with other signaling
3.4 C4 plants and crassulacean acid metabolism
3.5 Conclusion

4 Root-associated stress response networks
JENNIFER P.C. TO, PHILIP N. BENFEY, and TEDD D. ELICH

4.1 Introduction
4.2 Root organization
 4.2.1 Root developmental zones
 4.2.2 Root tissue types
4.3 Systems analysis of root-associated stress responses
4.4 Root-tissue to system-level changes in response to stress
 4.4.1 Nitrogen
 4.4.2 Salinity
 4.4.3 Root system architecture in stress responses
4.5 Conclusion

5 Plant low-temperature tolerance and its cellular mechanisms
YUKIO KAWAMURA and MATSUO UEMURA

5.1 Introduction
5.2 Chilling injury
 5.2.1 Cold inactivation of vacuolar H⁺-ATPase
 5.2.2 Lipid phase transition (Lα to Lβ)
 5.2.3 Chill-induced cytoplasmic acidification
 5.2.4 Light-dependent chilling injury
5.3 Freezing injury
 5.3.1 Freeze-induced ultrastructures in the plasma membrane 117
 5.3.2 Another freeze-induced injury of the plasma membrane 118
5.4 Cold acclimation
 5.4.1 Lipid composition of the plasma membrane during cold acclimation 119
 5.4.2 Changes in plasma membrane proteins during cold acclimation 120
 5.4.3 Compatible solute accumulation during cold acclimation 120
5.5 Freezing tolerance
 5.5.1 Membrane cryostability due to lipid composition 122
 5.5.2 Membrane cryostability due to hydrophilic proteins 122
 5.5.3 Compatible solutes and freezing tolerance 123
 5.5.4 Membrane cryodynamics and membrane resealing 124
 5.5.5 Other membrane cryodynamics 124
5.6 Conclusion 126

6 Salinity tolerance 133
JOANNE TILBROOK and STUART ROY

 6.1 Plant growth on saline soils 133
 6.1.1 Effects of salt stress on plant growth 135
 6.1.2 Osmotic stress 136
 6.1.3 Ionic stress 137
 6.2 Tolerance mechanisms 138
 6.2.1 Osmotic tolerance 138
 6.2.2 Ionic tolerance 139
 6.2.3 Ion exclusion 139
 6.2.4 Ion tissue tolerance 140
 6.3 Identification of variation in salinity tolerance 140
 6.3.1 Variation in current crops 140
 6.3.2 Variation in near wild relatives 141
 6.3.3 Variation in model species 143
 6.3.4 New phenomic approaches to identify variation in salinity tolerance 144
 6.4 Forward genetic approaches to identify salinity tolerant loci and candidate genes 144
 6.4.1 QTL mapping 144
 6.4.2 Transcriptomics 148
 6.4.3 Proteomics 149
 6.4.4 Metabolomics 150
6.5 Known candidate genes for salinity tolerance 151
 6.5.1 The high-affinity potassium transporter family 152
 6.5.2 The salt overly sensitive pathway 153
 6.5.3 Vacuolar Na⁺/H⁺ antiporters and vacuolar pyrophosphatases 154
 6.5.4 Osmoprotectants 155
 6.5.5 Calcium signaling pathways 155
6.6 Prospects for generating transgenic crops 156
 6.6.1 Overexpression of genes involved with the transport of ions 158
 6.6.2 Manipulation of genes involved in signaling pathways 159
 6.6.3 Altering the expression of genes involved in compatible solute synthesis 159
 6.6.4 The need for cell-type- and temporal-specific expression 159
6.7 Conclusion 161

7 Molecular and physiological mechanisms of plant tolerance to toxic metals 179
MATTWHE J. MILNER, MIGUEL PIÑEROS, and LEON V. KOCHIAN

 7.1 Introduction 179
 7.2 Plant Zn tolerance 181
 7.2.1 Physiology of Zn tolerance 181
 7.2.2 Molecular biology of Zn tolerance 185
 7.2.3 Role of metal-binding ligands in Zn tolerance 188
 7.3 Plant Cd tolerance 190
 7.4 Plant aluminum tolerance 190
 7.4.1 Physiology of Al tolerance 190
 7.4.2 Molecular biology of Al tolerance 194
 7.5 Conclusion 196

8 Epigenetic regulation of abiotic stress responses in plants 203
VISWANATHAN CHINNUSSAMY, MONIKA DALAL, and JIAN-KANG ZHU

 8.1 Introduction 203
 8.2 Epigenetic controls of gene expression 204
 8.2.1 Establishment of histone code 205
 8.2.2 DNA cytosine methylation 205
 8.3 Epigenetic regulation of abiotic stress responses 210
 8.3.1 Stress regulation of genes for histone modification and RdDM 211
<table>
<thead>
<tr>
<th>Chapter No.</th>
<th>Title Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.2</td>
<td>Gene regulation mediated by stress-induced histone modifications</td>
<td>212</td>
</tr>
<tr>
<td>8.3.3</td>
<td>Gene regulation mediated by stress-induced changes in DNA methylation</td>
<td>218</td>
</tr>
<tr>
<td>8.3.4</td>
<td>Stress-induced transposon regulation</td>
<td>219</td>
</tr>
<tr>
<td>8.4</td>
<td>Transgenerational inheritance and adaptive value of epigenetic modifications</td>
<td>220</td>
</tr>
<tr>
<td>8.5</td>
<td>Conclusion</td>
<td>221</td>
</tr>
<tr>
<td>9</td>
<td>Genomics of plant abiotic stress tolerance</td>
<td>231</td>
</tr>
<tr>
<td>9.1</td>
<td>Genomics in plant research—an introduction</td>
<td>231</td>
</tr>
<tr>
<td>9.2</td>
<td>Plant genomes 2012—a transient account</td>
<td>236</td>
</tr>
<tr>
<td>9.3</td>
<td>Genomes, transcriptomes, and bioinformatics</td>
<td>237</td>
</tr>
<tr>
<td>9.4</td>
<td>Genomes that inform about abiotic stress</td>
<td>240</td>
</tr>
<tr>
<td>9.5</td>
<td>Plants evolved for salinity tolerance</td>
<td>242</td>
</tr>
<tr>
<td>9.6</td>
<td>ARMS genomes—Thellungiella genome sequences</td>
<td>244</td>
</tr>
<tr>
<td>9.6.1</td>
<td>Lineage-specific gene duplications</td>
<td>244</td>
</tr>
<tr>
<td>9.6.2</td>
<td>Divergence of transcriptome profiles and responses</td>
<td>247</td>
</tr>
<tr>
<td>9.6.3</td>
<td>Lineage-specific genes</td>
<td>249</td>
</tr>
<tr>
<td>9.7</td>
<td>A breeding strategy for abiotic stress avoidance</td>
<td>249</td>
</tr>
<tr>
<td>9.8</td>
<td>Conclusion</td>
<td>250</td>
</tr>
<tr>
<td>10</td>
<td>QTL and association mapping for plant abiotic stress tolerance: trait characterization and introgression for crop improvement</td>
<td>257</td>
</tr>
<tr>
<td>10.1</td>
<td>Introduction</td>
<td>257</td>
</tr>
<tr>
<td>10.2</td>
<td>Genetic mapping of abiotic stress tolerance traits</td>
<td>260</td>
</tr>
<tr>
<td>10.2.1</td>
<td>Quantitative trait loci</td>
<td>260</td>
</tr>
<tr>
<td>10.2.2</td>
<td>QTL for abiotic stress tolerance</td>
<td>262</td>
</tr>
<tr>
<td>10.3</td>
<td>Association mapping of abiotic stress tolerance traits</td>
<td>263</td>
</tr>
<tr>
<td>10.3.1</td>
<td>Linkage disequilibrium and population structure</td>
<td>263</td>
</tr>
<tr>
<td>10.3.2</td>
<td>Association study of abiotic stress tolerance</td>
<td>264</td>
</tr>
<tr>
<td>10.4</td>
<td>Transfer of QTL findings to breeding programs</td>
<td>265</td>
</tr>
<tr>
<td>10.5</td>
<td>Issues in genetic analysis of abiotic stress tolerance</td>
<td>268</td>
</tr>
<tr>
<td>10.5.1</td>
<td>Phenotyping methods</td>
<td>268</td>
</tr>
<tr>
<td>10.5.2</td>
<td>Selection of germplasm for genetic analysis</td>
<td>270</td>
</tr>
<tr>
<td>10.5.3</td>
<td>Stability of QTL across environments</td>
<td>272</td>
</tr>
</tbody>
</table>
10.6 Current directions of quantitative genetics for abiotic stress tolerance 274
 10.6.1 Physiological components of abiotic stress tolerance QTL 274
 10.6.2 Integration of physiological components into abiotic stress tolerance QTL 275
 10.6.3 Meta QTL 276
 10.6.4 New population designs for QTL mapping 276
10.7 Conclusion 279

Index 289

Color plate section is located between pages 132 and 133.