Index

3D computational fluid dynamics (CFD) simulations, 634

α-Fe$_2$O$_3$, see hematite

α-Fe$_2$O$_3$ films, 359
 AFM images, 385
 current-potential curves, 385
 nanostructured films, 349, 359
 morphology, 359
 Zn-doped α-Fe$_2$O$_3$, 355, 372
 photocurrent-density-voltage, 355
 Zn-dotted islands, schematic diagram of, 381
α-Fe$_2$O$_3$ nanorod array, 540
 normal L-emission spectra, 540
 optical absorption spectroscopy, 540
α-Fe$_2$O$_3$ photoelectrodes, nanostructured, 349, 352
 donor density, 365–368
 flatband potential, 365–368
 hydrogen production, 352
 preparation techniques/photoelectrochemical response, 353
 atmospheric pressure chemical vapor deposition (APCVD), 358–360
 electrodeposition, 364–365
 potentiostatic anodization, 363–364
 RF sputtering, 362–363
 sol-gel (SG), 360–362
 spray pyrolysis (SP), 353–356
 ultrasonic spray pyrolysis (USP), 356–358
μ-Formate species, 216, 228
 coordination, ball and stick model, 208
 formation, 228
 photodegradation, 216

$ab\ initio$ molecular dynamics, 65
 acetone, 205, 222, 223, 224, 229
 adsorption reaction pathways, 204, 223
 schematic picture, 223
 FTIR spectra, 229
 photodegradation, 223
 photo-oxidation, 220, 224
 IR spectroscopy studies, 224
 schematic picture, 223
 vibrational bands, intensity, 205
 acetone-oxygen complex, 222
 adatoms reaction, O$_2$ and H, 106
 intermediate steps, 106–111
 coadsorbed water, role, 106–111
 adsorbents, 54, 55
 optimized structures, 55
 types, 54
 advanced light source (ALS), 128, 129
 beamline, 7.0.1, schematic diagram, 129
 advanced photon source (APS), 165, 170
 beamline, 11-ID-D, XTA setups, 170
 aging processes, 528
 anatase, absorption-emission spectrum, 134
 anatase TiO$_2$ nanoparticles, 134, 207,
 224, 226
 acetone adsorption, DRIFT spectra,
 224, 226
 bandgaps, 135
 conduction band (CB), 207
 density of states, 207
 O K-edge XAS/XES spectra, 134
 valence band (VB), 207
 anodic electrodeposition methods, 295
anodization, 272–274, 292
metallic layers, 292
two-electrode configuration, 272
anodized aluminum oxide (AAO), 472
porous templates, 481, 485, 487
production, 485
atmospheric pressure chemical vapor deposition (APCVD), 358
atomic orbital (AO), 562
projected DOS (PDOS), 581
Au/TiO₂ system, 112
catalysts, 84
library, SEM images, 449
samples, high-throughput zero-bias photocurrent screening, 450
automated spray-pyrolysis, schematic presentation, 423
automated vapor deposition, commercial systems, 417
AXXIS™ deposition system, 417
azimuthal angle, FT-RAIRS spectra, 209

bandgap
autocorrelation function, 61
energies, 241, 334
layer, 645
semiconductor, 270
direct/indirect, 270
energy vs. crystal momentum, schematic illustration, 270
band-mapping technique, 127
Bethe–Salpeter equation (BSE), 66
bicarbonate complexes, 218
formation, 227
infrared absorption bands, 218
vibrational mode assignment, 218
Bohr–Oppenheimer approximation, 67, 174
Boltzmann constant, 256
bridging bidentate formate, 220
adsorption energies, 220
bond electron population, 220
bridging ligands (BL), 590
Brillouin zone (BZ), 196, 269
bulk carrier transport, 411–412
Butler–Volmer equation, 293
calcination process, 241
carbonate complexes, 218, 220, 228
adsorption energies, 220
bond electron population, 220
formation, 228
infrared absorption bands, 218
vibrational mode assignment, 218
carbon-modified TiO₂ nanotubes, 286
photocurrent-potential characteristics, 287
XPS spectrum, 286
carbon nanotubes (CNTs), 66
Car–Parinello method, 65
catalyst films, diffuse reflectance UV-visible spectra, 511
schematic structure, 508
catalytic dehydration reaction mechanism, 209
CdS coating cycles, 245, 249
CdSe, 321, 322, 517, 518
atomic structure, 517
morphology, 517
nanoribbons, 516
nanowire annealing of, 321
arrays, 322
photochemical hydrogen generation, 517
CdS nanocrystalline films, 243, 244, 248, 250
absorption spectra, 243, 248, 250
X-ray diffraction patterns, 244
cetyltrimethylammonium bromide (CTAB), 309
charge equilibration method, 65
charge-separation process, 248, 371
chemical vapor deposition (CVD), 291, 462
colloidal soft-template methods, 490
colloidal/wet chemical methods, 488
combinatorial chemistry, 401
concentrated solar power (CSP) systems, 624
concentrating solar thermal (CST) systems, 8
electrolysis systems, 9
conduction band (CB), 59, 127
density of states (DOS), 127
conduction band minimum (CBM), 46, 152, 271, 428
experimental energetic positions, 152
spatial plot, 46
configuration interaction (CI) method, 52, 66
continuous monitoring system, 436
copper indium gallium selenide (CIGS), 291
cost-effective technique, 524–529
advanced semiconductor nanostructures design, 524
aqueous chemical growth, concepts/experimental set-up, 524–528
crystal structure tailoring, 528
morphology tailoring, 526
orientation tailoring, 526
highly oriented metal-oxide arrays, aqueous
design achievements, 528–529
Coster–Kronig process, 133
Coulomb interactions, 63, 146
matrix elements, 63
crystallographic shear-plane (CSP), 110, 361
C_{Ti}-doped cells, optimized structure, 42
Damascene process, 292
Deacon’s rule, 215
Debye–Scherrer formula, 244
decoherence time, 61, 62
individual atoms, contributions, 62
Degussa P25 nanoparticles, 215
DRIFT spectra, 215
density functional theory (DFT) method, 93, 177,
562, 566
calculations, 102, 105, 108, 111, 538
formalism, 64
functional improvement, 39, 64
potential energy diagram, 110
theory, 39
density of states (DOS), 271
plots, 41
depletion region, see space-charge
region (SCR)
differential scanning calorimetry (DSC), 535
differential thermal analysis (DTA), 535
diffuse reflectance FTIR spectroscopy
(DRIFTS), 193, 194, 202, 221
Harrick, 2D attachment, optical diagram, 194
reaction cell, 193
signal, 194
diffusion-mediated photoreaction pathway, 229
diffusion reaction model, 228
dimethyl sulfoxide (DMSO), 297
direct solar-to-hydrogen generation, 523
quantum-confined visible-light-active
metal-oxide nanostructures, 523
dissolution-recrystallisation process, 528
doped GaN, 568
band structure model, 568
divalent metal-ion, 564, 567
photoluminescence spectra, 567
light-absorption threshold, 568
doped iron-oxide quantum-rod arrays, 541, 544
energy-dependent resonant inelastic X-ray
scattering spectra, 541
high-resolution transmission electron
microscopy (HRTEM), 541
photoelectrochemical characterization, 544
UV-visible optical absorption, 544
doped TiO$_2$ systems, 39–50
C-doped TiO$_2$, 41–45
first-principle calculations on TiO$_2$, 39–40
Nb-doped TiO$_2$, 45–50
d-TiO_2 film, 254
AFM image, 255
thickness, 255, 257, 258
FTO electrode, cyclic voltammograms, 256
layer, 255, 257, 258
scanning profile, 254
shunt resistance, 258
dye-sensitized solar cell (DSSC), 58–63, 303,
313, 462. see Gratzel cell
conventional sensitizers, 58–59
organic dyes/ruthenium compounds, 58
PbSe QDs, electronic states, 60
theoretical estimation of decoherence
time, 60–63
quantum dots, multiexciton generation, 59–60
semiconductor, 132
dye sensitization, 374
TiO_2, 37
earth, black-body representation, 7
electrocatalysts, 412
library, 431
electrochemical corrosion, definition, 461
electrochemical deposition system, 419, 420
components, 419
fundamentals, 292–294
electrochemical impedance spectroscopy, 285
electrochemical methods, 292, 298
electrochemical probe, photograph, 428
electroluminescence, 297
electrolytes, 286
anodization, photocurrent density of, 286
estimated surface band-edge
positions, 151–153
electron diffraction (ED) pattern, 487
electron diffusion, 314, 318, 319
electron energy loss spectroscopy (EELS),
52, 538
electron-hole pairs, 12, 18, 125, 282, 288
recombination, 85, 288, 323
electron paramagnetic
resonance (EPR), 51, 222
lattice/surface defects, 271
conduction band minimum (CBM), 271
valence band maximum (VBM), 271
electron transport, 314, 319
properties, 318
simple qualitative model, 319
electrophoresis, 483
electrophoretic deposition methods, 292
emission control processes, 634
energy dispersive X-ray spectrometer (EDS), 434
energy-dispersive X-ray spectroscopy (EDXS), 310
energy-gap law, 177
energy-transfer reactions, 239, 592
evaporation-induced self-assembly (EISA), 308

Faraday’s first law, 292
F-doped tin oxide (FTO), 296
electrolyte interface investigation method, 254
Fermi–Dirac distribution, 49
Fermi levels, 279, 323
field emission scanning electron microscopy (FE-SEM), 241, 242, 465
fluorescence-yield X-ray absorption spectroscopy (FY XAS), 158
fluorine-doped tin-oxide (FTO), 254, 418, 446, 484
glass, 254
substrate, 363
formate, 205, 208, 212, 214, 216, 217, 221, 225, 227
concentration, 227
dehydration reaction, 208
in situ infrared spectra, 214, 216
mode assignments compilation, 212
photo-oxidation, 217
photodegradation, 216
Va(OCO) bands, 223
vibrational bands, intensity, 205
vibrational frequencies compilation, 212
visible-light-driven photo-oxidation rate, 221
formic acid (HCOOH) molecules, 207, 211, 215, 217
adsorption, 207
photodegradation, IR spectroscopy analysis, 215
photo-oxidation, 217
fossil-fuel-based technologies, 637
Fourier transform (FT) data processing, 192
Fourier-transform infrared spectroscopy (FTIR), 51, 189, 230
spectroscopy, 211, 219, 229
Fujifilm dimatix model DMP-2800, 418
Fujishima–Honda effect, 37
full-potential linearized augmented plane-wave (FPLAPW) method, 40
GaN, 566
Mg$^{2+}$-doped, 566
photocatalytic activity, 566
photoluminescence spectra, 568
UV-visible diffuse reflectance spectra, 566
water splitting, 564
gas chromatograph (GC), 436
gas-phase methods, 291, 298
gas-solid photocatalysis, 190, 202
probed by FTIR spectroscopy, 199–205
Gerischer models, 17
Gibbs free energy, 11, 293

glancing angle deposition (GLAD), 462

glancing angle X-ray diffraction (GXRD), 277
gold nanoparticle, electrocatalysts, 448, 449
automated electrochemical synthesis, 448–450
characterization, 448–451
deposition, 377
TEM image, 449
Gratzel cell, 58, 492
H adatom pair splitting, atomic-scale mechanism, 99
Hartree–Fock method, 52, 351
Hellmann–Feynman theorem, 61
Helmholtz layer, 18, 152, 279, 293, 322
hematite, 350, 537, 547. see iron oxide
band structure, 350
doping, 368
bivalent metal ions, 371–373
in bulk, 368–369
in nanostructures, 369–371
dye sensitizers, 374–375
electrical/electronic properties, 350–351
electrode, action spectrum, 374, 378
electrolytes, choice, 373–374, 379
forward/backward illumination, 375–376
highly oriented porous nanorod arrays, 547
field-emission scanning electron micrographs, 547
layered structures, 377–380
metal/metal oxide, 377
modified electrodes, 391
nanorod-arrays, 537
PEC materials, 446
 high-throughput synthesis, 446–447
 properties, 351
photocatalyst, 377
photoelectrode, 387
 efficiency, 392
 hydrogen production, 386–387
photoelectrochemical characterization, 388, 537
p/n assemblies, 385–386
porosity, 375
preparation methods, 389–390
swift heavy ion (SHI) irradiation, 382–385
thermal oxidation, 352
thin films, 374, 391
TiO₂, 379
 energy-band diagram, 379
 heterojunction electrode, 377
 photocurrent-density-potential curve, 380
UV light, 350
water, PEC splitting of, 351, 388
 advantages and disadvantages, 351
 photoresponse, 352
 polycrystalline, 352
 semiconductor electrodes, 351
Zn islands, deposition, 380–382
high-resolution electron energy loss measurements (HREELS), 96, 208
high-resolution scanning electron microscopy (HRSEM), 358
high-resolution transmission electron microscopy, 543
high-throughput experimentation (HTE) methods, 401, 404
objectives, 414
high-throughput materials, 423
 approach, 403, 444, 446
photocatalyst
 characterization, 423–436
 screening, 423–436
 photoelectrochemical testing system, schematic diagram, 427
high-throughput spray pyrolysis (HTSP), 446
highest occupied molecular orbital (HOMO) levels, 206, 217, 312, 578, 593
hole transport pathway, 518
honeycomb monolithic reactor, 631, 634
horizontal beam-defining aperture (HBDA), 129
hybrid solar hydrogen process, 646
 conversion efficiency, 652
hydrochloric acid (HCl), role, 484
hydrogen, 4, 5, 353, 624, 625, 657
 evolution, 513
 catalysts, 450
 timecourse, 513
 evolution data, 512
 STEP generation, 646–648
 evolution reaction, 10
 water dissociation, thermodynamic/electrochemical values, 649
 molecular-weight ratio, 658
PEC generation, 353
 production, 624, 657
 electrocatalytic material, high-throughput screening system, 450–451
 photolysis system, 613–614
 solar hydrogen production, mixed-metal systems, 613–614
solar pathways, 5–9
efficiency, 386–387
measurement, 430, 436
multireaction processes, 659
photocatalytic mechanism, 605
photovoltaics and solar, quantum confinement effects, 529–533
 intermediate band materials, 531
 multiple exciton generation, 530–531
 quantum-well structures, 531
 semiconductor/electrolyte junction, 365
temperature variation, 659
thermochemical cycles, 625
transient metal oxidation states, 178–180
HYDROSOL reactor technology, 626–636
 I reactor, 631, 632
 dual-chamber, 632
 II reactor, 632, 633
dual chamber reactor, cyclic solar hydrogen production, 633
efficiency, 636
future developments, 636
modularity, 637
redox materials, 627–636
regeneration/oxygen release, 628
simulation, 633, 634
solar testing, 631
water-splitting/hydrogen production, 628
Index

hydrothermal flow system, schematic illustration, 476
hypothetical three-component catalyst cycle, 507
incident photon-to-electron conversion efficiency (IPCE), 285, 314, 334, 408, 440, 536
calculation, 440
spectrum, 258
vs. wavelength curves, 334
indate, 583
Ba$_3$Zn$_5$In$_2$O$_{11}$, 585
atomic orbital PDOS, 585
band structure, 585
Li$_{1.6}$Zn$_{1.6}$Sn$_{2.8}$O$_8$, 584
Zn addition, effects, 584
indirect optical transition semiconductors, use, 336
indium tin oxide (ITO), 296, 362, 470, 491
infrared (IR) spectroscopy, 191–195, 222
in situ Fourier-transform infrared spectroscopy (FTIR), 193, 228
in situ photocatalysis reaction cell, 202
in situ vibrational spectroscopy, high-pressure methods, 195
instrumental response function (IRF), 167
intensity modulated photocurrent spectroscopy (IMPS), 316
intensity modulated photovoltage spectroscopy (IMVS) response, 316
interfacial electron transfer, 67–68, 247
control by nanomaterial design, 247–258
conducting glass/electrolyte interface, 252–258
QD/electrolyte interface, 250–252
QD/metal-oxide interface, 248–250
internal quantum efficiency (IQE), 411
measurement system, 436
International Energy Agency’s Hydrogen Implementation Agreement (IEA-HIA), 29
inverse photoelectron spectroscopy (IPES), 145, 146, 147, 153
iron oxide (Fe$_2$O$_3$), 373, 542. see hematite bandgap, 542
photoreponse, 373
quantum-dot-quantum-rod heteronanostructure array, 545
UV-visible absorption, 545
quantum rods, electron microscopy images, 536
thin films, 443
combinatorial electrochemical synthesis, 443–447
photoelectrochemical characterization, 443–447
Joint Committee On Powder Diffraction Standard (JCPDS), 244
Joliot–Kok cycle, 164
Kelvin equation, 197
Kohn–Sham equations, 38
Kramers–Heisenberg-type dispersion formula, 127
Lambert–Beer Law, 245
Langmuir–Blodgett (LB) techniques, 489
Langmuir–Hinshelwood (LH) reaction scheme, 200
laser-initiated time-resolved X-ray absorption spectroscopy (LITR-XAS), 165
light-harvesting efficiency (LHE), 240, 251
linear combination of atomic orbital (LCAO), 40
liquid delivery system, 422, 426
liquid-phase synthesis, 422
advantages/disadvantages, 422
liquid-solid-solution (LSS) process, 467
local density approximation (LDA), 40
local excited states, description, 66–67
low-cost photoelectrochemical devices, 533
photovoltaic cells, 533
low-cost synthesis methods, 524
low-energy electron diffraction (LEED), 79
low-energy electrons, 147
WO$_3$ surface, 147–149
lowest unoccupied molecular orbital (LUMO), 312, 593
Mars–Van Krevelen-type mechanisms, 201
material systems, 402
combinatorial methods, use, 402–415
high-throughput method, use, 402–415
metal complexes, 176, 178
metal-center oxidation states tracking, 176–178
MLCT excited states, 176, 178
metal ion doping effects, 561–569
metal-ion doped GaN, 564–569
Sr$^{2+}$ ion-doped CeO$_2$, 561–564
metal-ion removal effects, 569–573
metal-organic chemical vapor deposition (MOCVD), 462
metal oxide(s), 28, 192, 294, 295, 419, 459, 462, 484, 492, 525, 528, 559, 560, 660
bonds, 193
drawback, 462
electrochemical synthesis, 419–422
electrodeposition, 294–296
endothermic dissociation, 660
exothermic hydrolysis, 660
green synthesis, 492
heteronucleation, 525
infrared/Raman spectra, 192
libraries, 406
nano/microparticulate thin films, 528
particle, valence band, 507
photocatalysts, 560, 564
properties, 459
single-crystal nanorods, 484
TiO2/WO3/Fe2O3, 28
metal-oxide nanoparticles, 230, 467
0D metal-oxide nanoparticle synthesis, 463–480
colloidal nanoparticles, 463–464
sol-gel WO3 colloidal synthesis, 470
TiO2 hydrothermal synthesis, 465–466
TiO2 sol-gel synthesis, 464–465
TiO2 solvothermal/sonochemical synthesis, 466–468
TiO2 template-driven synthesis, 468–469
WO3 hydrothermal synthesis, 470
WO3 solvothermal/sonochemical synthesis, 470
WO3 template driven synthesis, 471–473
ZnO sol-gel nanoparticle synthesis, 473
ZnO solvothermal/sonochemical synthesis, 475–479
ZnO template-driven synthesis, 479–480
characterization tool, 230
TEM images, 467
metal-oxide nanostructures, 459, 537
1D metal-oxide nanostructures, 481–492
colloidal synthesis/fabrication, 481
TiO2, synthesis/fabrication, 481–486
WO3, colloidal synthesis/fabrication, 486
ZnO, colloidal synthesis/fabrication, 487–488
2D metal-oxide nanostructures, 488–492
TiO2, colloidal synthesis, 488–490
WO3, colloidal synthesis, 490–491
ZnO, colloidal synthesis, 491–492
dye/QD sensitization, 462
hydrogen production, PEC water splitting, 460
metal-oxide PEC cells, 460
metal oxides deposition techniques, 462
motivation for developing, 459
metal-to-ligand-charge-transfer (MLCT), 138, 169, 592
excited-state pathways, 176
state structure, 169
transitions, 592
molecular beam epitaxy (MBE), 190, 462
molecular dynamics (MD) method, 38
molecular dynamics with electronic friction (MDEF) theory, 67
Monkhorst–Pack k-point sampling scheme, 46
monolithic reactor, 623, 634, 637
Mott–Schottky analysis, 277
curves, 366, 383
equation, 365
multiconfigurational self-consistent field (MCSCF) methods, 66
multielectron photochemistry, 604, 614
two-electron mixed-valence complexes, dirhodium photocatalysts, 604
multiexciton generation (MEG) phenomenon, 38, 63
multiple exciton generation (MEG) process, 530, 531
schematic representation, 531
nanocrystalline hematite films, 366, 376
photoelectrochemical studies, 376
nanocrystals, advantages/disadvantages, 508
nanomaterials, 240–245
semiconductor quantum dot, 240–245
absorption spectra, 243
metal oxide nanocrystalline semiconductor films, 241
QD sensitized metal oxide semiconductor films, 242
quantum size effects, characteristics, 240
XRD spectra, 244
nanoparticle(s), 197, 200, 528
aggregates, optical properties, 509
metal-oxide films, 315
photocurrent transient, 315
Raman spectra, 197
synthesis, 528
TiO2, 190, 191, 204, 216, 224, 247, 467
nanoparticle(s) (Continued)
high-pressure studies, 224
production, 467
transmission/scanning electron micrographs, 191
ZnO film, 315
nanopore formation mechanism, 274
nanorods, TiO₂, 483, 485
HRSEM, 485
SEM, 483, 485
TEM, 483
XRD, 483
nanostructured photo catalytic unit, 451
assembly, 451–453
design, 451–453
nanostructured ZnO films, 291
electrochemical deposition, 291, 292–294
fundamentals, 292–294
of metal oxides/other compounds, 294–295
of one/two-dimensional ZnO nanostructures, 298–302
of zinc oxide, 295–298
photocatalytic properties, 322–323
photoelectrochemical properties, 291, 312–322
photovoltaic properties, 312–322
ZnO electrodeposition, use of additives, 303–312
nanotechnology method, 308
nanotubes, 275–276
annealing, 275–276
anodization conditions, 284
coloration, 277–279
diffuse reflectance photospectrometry, 278
electrochemical anodization, 272–273
FESEM images, 276
formation, stages, 274
morphology, 274–275
phase composition, 277
photocatalysts, 291
photoelectrochemical test, 284
preparation, 272, 485
templates, 279
TiO₂, 276, 277, 284
X-ray diffraction, 279
National Renewable Energy Laboratory (NREL), 4
hybrid PEC/PV photocathode, two-electrode setup, 27
near-edge X-ray absorption fine structure (NEXAFS), 146
Nernst–Planck equation, electrodeposition, 293
nickel-tetramesityl-porphyrin (NiTMP), 172, 174, 175
excited state, 172
kinetics time constants, 172
reaction cascade, 172
photo induced axial ligation, 175
XAFS spectra, 175
nickel-tetraphenylporphrin (NiTPP), 173
nonhybrid solar thermal processes, 657–660
direct solar thermal hydrogen generation, 657–658
multistep solar thermal H₂ generation, 659–660
normal hydrogen electrode (NHE), 84, 150, 293, 356
nuclear magnetic resonance (NMR), 228, 431
spectra, 515
O K-edge polarization dependent X-ray absorption spectra (XAS), 539
optical density (OD), 245
optical spectroscopy, 164, 171
optical transient absorption (OTA), 164
measurements, 169
optoelectronic devices, 45
light-emitting diodes (EDs), 45
thin-film transistor (TFT), 45
Ostwald ripening, Lifshitz–Slyozov–Wagner model, 464
oxygen-evolution reaction (OER), 10, 282
oxygen molecules, 50, 658
annealing effect, 49
deficiencies, 297
formation, 658
free energy, 50
reactions, 96–98
paired H adatoms, splitting, 98–101
parallel electrochemical deposition system, 420
\([(\text{phen})₂\text{Ru(dpp)})₂\text{RhCl}_₂]^{5+},\) cyclic voltammogram, 606
\([(\text{phen})₂\text{Ru(tatpq)}\text{Ru(phen)}₂]^{4+},\) redox reactions, 602
phonon confinement model, 196
phosphonic acid (H₃PO₃), 207
density of states, 207
photocatalysis, 189, 190, 538, 573–583
metal-ion exchange effects, 573–583
metal-ion removal effects, 569–573
Sc$_{x}$In$_{2−x}$O$_{3}$, 580
structure gap, 190
water splitting, 559, 569
Y$_{x}$In$_{2−x}$Ge$_{2}$O$_{7}$, 582–583
crystal structure, schematic representation, 583
Y$_{x}$In$_{2−x}$O$_{3}$, 573–580
band structure, 579
density of states, 579
Raman spectra, 577
UV diffuse reflectance spectra, 574, 576
X-ray diffraction patterns, 575
photocatalyst(s), 91, 424
activity, 377
devices, 531
experiments, 225
high-throughput screening, 424–432
high-throughput screening systems, 431–432
hydrogen production, 428–431
photoelectrochemical screening, 425–428
UV-visible measurements, 424–425
hydrogen production, experimental design, 613
nanostructured, assembly, 510
secondary screening and quantitative characterization, 432–436
EDS, XPS, XRD and Raman spectroscopies, 434
hydrogen production, 435–436
internal quantum efficiency (IQE), 434–435
microscopy, 432–434
photochemical molecular devices, 590, 594
construction, 594–595
photocurrent, 438
calculation, 438
density, 31, 370, 373
potential plot, 344
transients, 315
photodiode-based detection system, 246
photoelectrocatalyst(s), 415, 437
high-throughput synthesis, 415–423, 437–453
practical methods, 415–423
photoelectrocatalyst material systems, 402–415
absorbers, 408–411
bulk carrier transport, 411–412
electrocatalysts, 412
HTE applications to PEC discovery, 405–408
library format, data management and analysis, 414–415
materials science, 402
high-throughput/combinatorial methods, use, 402–405
morphology/material system, 412–414
photoelectrochemical (PEC) cells, 10, 24, 27, 279, 281, 375, 378, 384, 459, 460, 463, 489, 491, 642, 656
challenge, 28–29
discovery, HTE applications, 405–408
dye-sensitized solar cells (DSSCs), 312–316, 320
nanoporous electrodeposited ZnO films, 320–321
electron micrograph, 453
energy-conversion efficiency of, 378
libraries, 411, 415
measurements, 322
motivation, 489
Mott–Schottky curves, 384
nanoscale heterostructure, 453
performance, optimization process, 414
photoanode junction, band diagram, 20
photocurrent-potential characteristics, 384
photoelectrodes, minority carrier devices, 10
porous ZnO films, 316–320
properties, 312–323
reactor configurations, 413
screening, 411
semiconductor/electrolyte junction, 18, 19, 366
formation, 17–19
solar spectrum absorbers, 406
studies, 282–288
schematic experimental set-up, 283
TiO$_{2}$ photoanode, energy scheme, 281
XAS studies, experimental set-up, 158
photoelectrochemical hydrogen-production systems, 30, 154, 267
device, band-edge positions, 152
techno-economics analysis, 30
titanium dioxide, 267
photoelectrochemical material-system, 3, 13, 30, 144, 407, 410, 412, 415
classes, 30
conduction band minimum (CBM), 144
high-throughput synthesis, 415
morphology, 412–414
photoelectrochemical material-system

(Continued)
potential cost-effective components, 410
practical components, 407
STH efficiency, 13
valence band maximum (VBM), 144
photoelectrochemical water-splitting process, 3,
10–14, 21, 28, 334
applications, 24
band diagram, 28
devices, design configurations, 26
dynamics, 14
photoelectrochemistry, 10
solar-to-hydrogen conversion efficiency, 13
standard two-electrode setup, 10
photoelectrodes
implementations, 23–28
multijunction performance limits, 24–27
single-junction performance limits, 23–24
reactors, 29
photoelectrolysis, 344
balancing act, 12
cell, 336
product, 344
photoelectrocatalysts, 437
complete nanostructured photocatalytic unit,
design and assembly, 451–453
high-throughput methodology, 437
improved PEC electrocatalysts, 448–451
TiO2-supported Au nanoparticle
electrocatalysts, 448–450
improving charge-transfer efficiency,
443–448
photocatalytic hydrogen
production, 443–446
high-throughput synthesis of hematite
PEC materials, 446–448
solar absorbers, 437–443
solar hydrogen production, 437–440
tungsten-based mixed-metal
oxides, 441–443
photoelectron spectroscopy (PES), 145, 147, 153
core-level spectra, 105
measurements, 104
photoexcited metalloporphyrins, 171
electronic configurations, tracking, 171–176
nuclear configurations, tracking, 171–76
photoinitiated charge separation, 596–597
photoinitiated electron collection (PEC), 597,
598, 601, 603
supramolecular complexes, 598–614
bridging ligand, photoinitiated electron
collection, 598–600
photoinitiated electron collection, first
molecular system, 600
ruthenium polyazine light absorbers,
photophysical properties, 599
ruthenium polyazine light absorbers, redox
properties, 599
photo-oxidation scheme, 202, 205, 345
propane, schematic drawing, 205
photovoltaic (PV) cell, 336, 459, 643
dye-sensitized solar cells (DSSCs), 312–316, 320
efficiency, 346
electrode components, 643
nanoporous electrodeposited ZnO
films, 320–321
photosensitizer, 643
porous ZnO films, 316–320
properties, 312–323
ZnO nanorods, use, 321–322
physical vapor deposition (PVD) methods, 405,
416–417
platinum-doped/undoped hematite, 429, 435
characterizations, 435
IPCE results, 429
I-V curves, 429
platinum metal, photoinitiated electron
collection, 602–604
[(NC)5FeII(CN)PtIV(NH3)4(NC)FeII
(CN)5]4/C0, 604
photophysical properties, 604
redox properties, 604
point of zero charge (PZC), 535
polarization-modulation infrared reflection
absorption spectroscopy
(PM-IRRAS), 195
polyazine bridging ligands, 594, 596, 597
representative, 597
polyazine light absorbers, 591–594
poly(ethylene glycol) (PEG), 339, 470, 490
P-type iron oxide, 371, 373
synthesis, 371
pulsed laser deposition (PLD), 462
pump-probe cycles, 164, 168, 171
pure/doped TiO2 nanoparticles, 189, 195, 205
Fourier-transform infrared spectroscopy, 189,
205–229
model gas-solid reactions, 205–229
Raman spectroscopy, 189, 195–199
reactions with acetone, 221–229
photoreactions with doped TiO₂, 228
photoreactions with TiO₂, 222–228
reactions with formic acid, 205–221
adsorption of HCOOH on TiO₂, 207
HCOOH, adsorption/photoreactions on
doped TiO₂, 219–221
photoreactions of HCOOH on TiO₂, 215–219
quantum-confinement effects, 529, 530, 542,
543, 548
principles, 530
quantum dot, 59, 243
CdS QD-sensitized films, 242
IPCE spectra, 250
TiO₂ film, photograph, 242
CdS QD-sensitized solar cell, 258, 259
J-V characteristic, 259
energetics/optical transitions, 532
schematic representation, 532
excited states, 248
in situ growth, 243
metal chalcogenide, 240
multi-exciton generation, 59–60
PbSe, decoherence time, theoretical
estimation, 60–63
sensitization, advantages, 242
sensitized solar cells, I-V characteristics, 253
sensitized solar-energy conversion
systems, 254
sensitized TiO₂ film, 253
quantum dot sensitized metal-oxide
semiconductors, 247, 258, 259
application, 247, 258
interfacial electron-transfer reactions
mechanisms, 247
photoenergy conversion efficiency, 260
potential energy diagram, 247
solar-energy conversion system, efficiency, 247
solar hydrogen production, 258
quantum efficiency (QE), 285, 516
quantum rods, 539
high-photon-energy excitation, 539
n-type semiconductor solar cells, 534
quasi-Fermi level, 16, 27, 312
q-vector relaxation model, see phonon
confinement model
Raman bands shift, 198
Raman blue-shift, 197
Raman spectra, 198, 199, 340
Raman spectroscopy, 189, 191, 192, 229, 470
rapid serial electrochemical deposition system,
photograph, 419
redox material, 630
performance, 630
SiC-based monolith, 630
redox-pair metal-oxide systems, 625, 626
thermochemical cycles, 626
resonance-enhanced multi-photon ionization
(REMPI) system, 431
resonant inelastic X-ray scattering (RIXS), 127,
128, 538
schematic representation, 128
resonantly excited soft X-ray emission
spectroscopy, 127
reversible potential of the hydrogen electrode
(RHE), 336
rhodium-centered electron collectors, 605–613
centered photoinitiated electron collection, 608
orbital energy diagram, 608
photocatalysis, 611–613
photoinitiated electron collection, 610–611
photophysical properties, 609–610
redox properties, 606–608
spectroscopic properties, 608–609
room temperature ionic liquids (RTILs), 477
r-TiO₂(110) surface, 100, 103
high-resolution STM image, 97, 100
STM images, 103
Runge–Gross theorem, 66
ruthenium oxide, 561
photocatalytic activity, 571
loaded PbₓWO₄, 571
loaded ScₓIn₂₋ₓO₃, 582
loaded YₓIn₂₋ₓO₃, 576
ruthenium polyazine light absorbers, 598,
600–602
photoinitiated electron collection, 601
photophysical properties, 601
redox properties, 601
rutile nanoparticles, 134, 135, 211, 213, 214, 224,
225
acetone adsorption, DRIFT spectra, 224
bandgaps, 135
IR spectrum, 214
TiO₂ nanoparticles, 134, 224, 226
acetone adsorption, DRIFT spectra, 226
O K-edge XAS spectra, 134
XES spectra, 134
rutile TiO₂ surfaces, 79, 84, 93, 210
computed surface energy, 79
defects, 93–96
geometric structure, 93–96
side view, 79

saturated calomel electrode (SCE), 352
scanning electron microscopy (SEM), 336, 433, 449
microregion analysis, 372
scanning probe microscope (SPM) techniques, 92
scanning tunneling microscopy (STM), 78, 107, 190
scanning X-ray diffractometers, 432
semiconductor, 508
energy gap, 508
photocatalysis, elementary processes, schematic drawing, 201
photocorrosion, 508
photoelectrocatalyst powder, internal quantum efficiency (IQE), 434–435
quantum dots (QDs), 240
surfaces photoreactions, 80–81
TiO₂ photoanodes, 334
semiconductor-electrolyte interface (SEI), 14–23, 279, 460
fundamental process steps, 20–23
illuminated characteristics, 19–20
rectifying junctions, 14–15
solid-state analogy, 15–17

Senate Committee on Energy and Natural Resources, 623
series-connected tandem device, block diagram, 25
silicon, 474
based monolithic, high cell density, 636
based solar conversion, 410
current-potential curves, 359
doped z-Fe₂O₃ films, 360
doped polycrystalline z-Fe₂O₃ electrodes, 359
HRSEM images, 360
photovoltaic device, 648
ZnO spheres, self-assembly, 474
single-walled carbon nanotubes (SWNTs), 126
small-angle X-ray diffraction (SAXRD) measurements, 308
small angle X-ray scattering (SAXS), 164
soft X-ray absorption spectroscopy (XAS), 126–127
soft-X-ray emission spectroscopy (XES), 126–127, 145–147, 157, 538
probes, 126
soft X-ray fluorescence spectroscopy, 128, 129, 131
advancement, 129
beamlines, 128
spectrometer, 130
studies, cells, 132
soft X-ray spectroscopy techniques, 126–127, 145
experiment set-up, 127–132
beamline, 128–129
endstation, 129–131
sample arrangements, 131–132
resonantly excited soft X-ray emission spectroscopy, 127
schematic diagram, 145
soft X-ray absorption spectroscopy, 126–127
sol-gel (SG) method, 272, 360, 362, 379, 388, 464
templating techniques, 307, 482
solar-energy conversion devices, 248
efficiencies, 656
plants, 6
solar pathways, 5–9
converting sunlight, 6–7
pathways to hydrogen, 9
conversion pathways, 9, 648
efficiency, 13
production paths, schematic diagram, 625
solar-potential conversion, 8–9
solar resource, 5–6
solar-thermal conversion, 7–8
solar-thermochemical cycles (STC), 8
solar cell, 313
efficiencies, 313
solid-state, current-voltage performance curve, 17
typical I-V curve of, 313
solar chemical reactors, types, 626
solar energy, 125, 624, 651
conversion efficiency, 125
fraction, 651
research, 589
utilization, 77
solar hydrogen catalysts, 614
bimetallic Ru-Pt systems, 614
Ru-Pd systems, 614
solar hydrogen generation, 163, 345, 349, 353, 533–547, 595, 624–627, 641. see hydrogen generation
comparison, 641–646
doped iron-oxide quantum-rod arrays, 541–545
efficiency, 349
iron oxide oriented porous nanostructures, 546–547
iron-oxide quantum-rod arrays, 533
charge collection improvement by vertical design, 533
charge separation improvement of photogenerated carriers, 533–537
mechanism, 595
novel cost-effective visible-light-active (hetero) nanostructures, 533
quantum-dot-quantum-rod iron-oxide heteronanostructure arrays, 545–546
schemes, 163
solar chemical reactors, 626
thermochemical processes, 625–626
solar reactor, 637, 657
eficiencies, 637
solar thermal electrochemical photo (STEP) process, 646–648
experiment, 653–657
hydrogen generation, 641, 646–648
solar-to-hydrogen conversion efficiency, 652
theory, 648–653
solar tower systems, 624, 637
solar water electrolysis, 647
via thermal electrochemical hybrid H₂ generation, 647
conversion efficiencies, 644
cycle, 625
electrolysis units, 645
energy production, 623
multidimensional nanostructures, 459
nanotechnology, 623
novel monolithic reactors, 623
overview, 642
photoharvesting units, 645
reactor, 3D computational simulation, 635
solar technologies, application, 624
solid-state materials, 409, 417
classes, 409
liquid phase synthesis, 417–418
advantages/disadvantages, 418
inkjet printers, 417–418
liquid-dispensing robots, 418
PEC materials, high-throughput methodology, 409
solvothermal reaction techniques, 466
sonochemical techniques, 468
space-charge region (SCR), 16
spherical grating monochromator (SGM), 128
spray-pyrolysis systems, 353, 354, 422–423
advantages/disadvantages, 423
components, 422
standard hydrogen electrode (SHE), 354
stannate, 583
Ba₃Zn₅In₂O₁₁, 584
atomic orbital PDOS, 585
band structure, 585
Li₁.₆Zn₁.₆Sn₂.₈O₈, 584
Zn addition effects, 583–585
Stern–Volmer kinetics equation, 593
Successive Ionic Layer Adsorption and Reaction (SILAR), 243
supramolecular complexes, 590, 598, 599, 609
electrochemical data, 599
photophysical data, 609
spectroscopic data, 609
surface band edge positions, determination, 149–151
surface hydroxyl groups, 51–58
sustainable alternative energy (SAE), 459
swift heavy ion (SHI) irradiation, 382
swiss light source (SLS), 128
Symyx Technologies, 405
synchrotron-radiation-based soft-X-ray absorption spectroscopy (XAS), 126, 538
temperature programmed desorption (TPD), 56, 83, 96, 103
spectra, 56
tetrabutylammonium (TBA) hydroxide, 509
TBA[Ca₂Nb₃O₁₀], 514
infrared/Raman spectra, 514
tetraethoxysilane (TEOS), 356, 358, 362
tetramethylammonium bromide (TAB), 309
thin-film, 294, 429, 527
catalyst library, 429
photovoltaic cells, 294
processing technique, 527
titanium dioxide (TiO₂), 37, 39, 51, 63, 78–79, 82, 83, 104, 133, 136, 178, 190, 191, 201, 204, 217, 224, 239, 241, 247, 267, 269, 272, 276, 277, 284, 287, 291, 320, 378, 380, 465, 467, 468, 469, 482, 483, 485, 489, 529

(110) surface, 81, 101, 112, 113
ball-and-stick model, 94
ethanol reactions, 81–83
gold nanoparticles, bonding, 112–115
high-resolution STM images, 101
STM images, 95, 113 theoretical calculations, 51–53
adsorbed ethanol, XPSC1s, 82
bandgap material, photoconversion ability, 270
CaF₂ framework, 468
carbon nanotube (CNT), 287
charged sol particles, 482
crystal structure, 268–288
anatase, 268
defect structure, 269–272
nanotubes, preparation of, 272–279
photocatalytic activity, 268
rutile, 268
water, photodecomposition of, 279–288
defects, 271
conduction band minimum, 271
valence band maximum, 271
dye interactions, 320
electron states, 269
Fermi level, 281
films, 217, 378
chemical vapor deposition (CVD), 378
FESEM images, 466
photo-oxidation rates, 217
first-principle calculations, 39–40
inverse opal, SEM image, 469
Li-doped TiO₂, resonant inelastic X-ray scattering, 136
local excited states, 63–68
nanocrystalline films, 242–244, 248, 250, 462
absorption spectra, 243, 248, 250
FE-SEM image, 242
QD sensitization, 462
X-ray diffraction patterns, 244
nanocrystalline electrodes, CdS quantum dot sensitized, 239
interfacial electron transfer reactions, 239
nanocrystal superlattices, TEM images, 465

nanosheets, deposition, schematic illustration, 489
N-type semiconductor, 269
Nyquist plots, 283
photoanodes, 92, 334
photocatalysis, 83–84, 178, 190
surface science, 190
photocatalysts, vibrational spectroscopy, 191–195
photocurrent-generation behavior, 283
photoinduced hydrophilicity, 51–58
photoinduced hydrophilic conversion, 53–58
speculated active species on TiO₂, 51
surface hydroxyl groups, 53–58
TiO₂ surfaces and adsorbents, theoretical calculations, 51–53
photosensitive semiconductor material, 267
quantum-dot arrays, 529
resonant inelastic X-ray scattering, 136
rutile, O vacancies, 201
single-crystal surfaces, 78–79
skeleton structure, SEM image, 469
STM images, 104
structure sensitivity, 83–84
systems, theoretical studies, importance, 37–39
Ti²⁺-XAS spectra, 133
XPS spectra, 280
titanium interstitials, 101, 106, 115
dissociation, 101–106
model, 115
role, 101–106
titanium metal atoms, 206
carboxylate ion coordination, 206
schematic drawing, 206
oxidation, 275
total electron yield (TEY) detection modes, 133
transient absorption spectroscopy, 245–247, 518
calculation of absorption difference, 245
development, 245
principle, 245
spectrometer, 246
system arrangement, 246–247
transient optical spectroscopy, 176, 177
transmission electron microscopy (TEM), 308, 433, 509
images, 509
transparent conducting oxide, 39, 58, 291, 356
Triton X-100, 470
tungsten-based mixed-metal oxides, 441
characterization, 441–443
combinatorial electrochemical
synthesis, 441–443
X-ray diffraction patterns, 443
tungsten trioxide (WO₃), 153, 333, 336, 341,
343–345, 471, 473, 486, 490, 491
CBM, positions, 153
films, 336–340, 342, 343
Chimie Douce synthetic route, 339–342
electronic surface-level positions, 147–153
macrocrystalline films, 334–335
photoanodes, 344
photoresponse, 342
scanning electron micrograph, 337, 340
spectral photoresponses, 343
gas-sensing devices, SEM images, 473
historical context, 333–334
macroscopic, limitations of, 336
nanocrystalline electrodes, 338, 346
spectral photoresponses, 338
surface reactions, 342–345
photocurrent-potential plot, 344
nanodisks, 490, 491
electron-transport properties, 491
SEM images, 490
soft-template colloidal method, 490
nanoparticles, 341, 471
SEM image, 471
nanorods, SEM images, 486
nanostructured photoelectrode, 336, 338
photoanodes, 336, 343, 345
photocurrent efficiency, improvement, 335
photoelectrochemical activation
treatment, 335
surface, XPS survey spectrum, 148
UV light, 333
VBM, positions, 153
two-component catalysts, 509–516, 519
peroxide formation, 513–515
photocatalytic hydrogen evolution,
511–513
synthetic/structural aspects, 509–511
water electrolysis, 515–516
two-electrode cell, J-V characteristics, 256
ultrahigh vacuum (UHV), 92, 130, 195
infrared reflection absorption spectroscopy
(IRRAS), 195
rotatable chambers, 130
ultrasonic spray pyrolysis (USP), 356, 357
samples, current-potential curves, 357
University of Nevada, Las Vegas (UNLV), 148
US Department of Energy (DOE), 29, 548
UV light, 311, 346
illumination, 311
UV photoelectron spectroscopy (UPS), 145, 149
spectrum, 149
UV-visible photocatalytic activity, 229
UV wavelengths, 336
valence band maximum (VBM), 152, 154, 271
determination, 154–155
experimental energetic positions, 152
Vanderbilt’s ultrasoft pseudopotential technique, 41
van der Waals (VdW) interactions, 64
vapor deposition methods, advantages, 416
vibrational spectroscopy, 164, 189, 202, 211, 229
in situ/in vacuo vibrational spectroscopy
studies, 189
vibrational techniques, 195
electron energy loss spectroscopy (EELS), 195
Raman spectroscopy, 195
visible-light-sensitive semiconductors, 240
development, 240
water, 77, 595
electrolysis energy-conversion efficiency, 650
photoassisted splitting, 77
soluble dyes, 303
visible light reduction, 596
water splitting process, 247, 412, 514, 547, 560,
561, 589, 634, 636, 649, 660
hydrogen evolution reaction (HER)
pathway, 412
oxygen evolution reaction (OER) reaction
pathway, 412
photocatalytic activity, 562
photochemical, nanoparticle-assembled
catalysts, 507
products, 656
quantum-confined catalyst, 516–518
CdSe nanoribbons, 516
spontaneity, 649
steps, 560
thermal electrochemical solar driven, 655
photovoltaic/electrolysis charge
transfer, 655
thermochemical processes, 642
thermodynamic potentials, source, 654
wide angle X-ray scattering (WAXS), 164
wide band-gap semiconductors, 242
sensitization, 242
Wurtzite structure, 323

X-ray absorption fine structure (XAFS), 165, 166, 169
equation, 166
oscillatory variations, 169
X-ray absorption near edge structure (XANES) spectrum, 165, 172, 179
X-ray absorption processes, 126
schematic representation, 126
X-ray absorption spectroscopy (XAS), 46, 144, 146–167
illustration, 166
use, 167
X-ray diffraction (XRD), 164, 242, 341, 363, 379, 441, 470, 490
analysis, 379
measurements, 242
X-ray emission processes, 126
schematic representation, 126
X-ray emission spectroscopy (XES), 146, 157, 158
X-ray free electron laser (XFEL), 165
X-ray photoelectron spectroscopy (XPS), 46, 79, 145, 421, 513
evaluation, 421
X-ray photospectrometry, 286
X-ray regime, pump-probe approach, 165
X-ray transient absorption spectroscopy (XTA), 165–172, 175, 177, 178, 180, 181
applications, 169
measurements, 172, 178
method, 175
probes, 181
spectra, 169, 177, 180
spectrum, 146
studies, 167

dye, 305
electrodeposited, 295, 433
doping, 297
eosin-Y electrode, IMPS plots, 317
eosin-Y film, electron transit times, 318
nanorods, 322
TEM morphologies, 433
electrodeposition, 295, 303, 306, 308
doped, 297–298
dye molecules, 303–307
p-n-junctions, 298
polyvinylpyrrolidine (PVP), 312
propylene carbonate solution, 306
pure, 295–297
sugar molecules, 311
with surfactants, 307–310
films, 294, 304, 307, 314, 319
IMPS measurements, 319
SEM, 304
templated, 319
X-ray diffractograms, 307
luminescence, 312
nanoparticles, 314, 475–478, 487
HRTEM images, 478
SEM image, 478
TEM images, 475, 476, 478
nanorods, 487, 488, 527
heteronucleation rate, 527
SEM, 527
ZnO nanocolumns, SEM images, 488
nanosheets, SEM images, 492
nanostructures, MOCVD-prepared hybrid, 463
nanowires, 303, 322
annealing of, 321
arrays, disadvantage, 303, 322
electron transport, 322
network, SEM images, 480
one/two-dimensional nanostructures, electrodeposition, 298
ZnO nanorods, 298–301
ZnO nanostructures, 302
ZnO nanotubes, 301–302
soft X-ray spectroscopy, 154–157
zn_{1-x}Co_{x}O thin films, 426, 430, 437, 439, 440
automated electrochemical synthesis, 437–440
library, SEM images, 433
materials, 430, 439
photocurrent, 430
photoelectrochemical characterization, 437–440
tests, 426, 440
IPCE, 440
photocurrent, 439
UV-visible spectroscopy, 426