Index

Symbols
\(\mu\)-photoluminescence, 128
Ångstrom, 2
Ångstrom range, 178

A
absorption, 156
 – edge, 156, 163
achromatic focusing optics, 161
achromaticity, 161
acquisition speed, 147
acquisition time, 148
Airy pattern, 80
alignment, 10, 59, 142
angular divergence, 151
antiferromagnets, 174
aperture, 81
atomic configuration, 16
atomic energy, 156
Atomic Force Microscopy (AFM), 39
atomic form factor, 18
Auger Electron Spectroscopy (AES), 158

B
bandwidth, 28
beam
 – coherence, 29, 148
 – compressors, 77, 79
 – damage, 152
 – deflection, 84
 – indirect damage, 152
 – intensity, 28
 – interception, 59
 – position monitors, 146
 – size, 233
 – sizes, 232
beam compressor (for X-rays), 41, 77
beam diameter, 9
beam divergence, 46
beamline, 235
 – APS – US, 237
 – DIAMOND – UK, 236
 – ESRF – France, 235
 – MAX IV – Sweden, 237
 – NSLS II – US, 237
 – PETRA III – Germany, 237
 – SLS – Switzerland, 236
 – SOLEIL – France, 237
 – SPRING 8 – Japan, 237
beams
 – bandwidth, 28
 – energy, 28
 – monochromatic, 28
beryllium window, 154, 222
biology, 117
Bragg angle, 16, 79, 97
Bragg coherent diffraction, 186
Bragg diffraction, 120
Bragg geometry, 87, 184, 193, 203, 212
Bragg peak, 20, 99–103, 106, 114, 141, 194
Bragg point, 181
Bragg reflection, 109, 135, 162
Bragg vector, 181, 202
Bragg–Fresnel lens, 75
Bragg’s law, 14, 15, 35, 37
Bremsstrahlung radiation, 34

C
calcite, 117
capillary, 41, 61
 – Kumakhov lens, 62
 – multiple bounce capillary, 61
 – single bounce capillary, 61
Cartesian sign convention, 42
CCD detector, 164
cellulose fibrils, 119
center of rotation (CoR), 136
chemical contrast, 167
Index

chromaticity, 55, 85
closed-loop, 142
coherece, 29
 – length, 30
 – temporal, 31
 – transverse, 31
coherece length, 177, 178, 219
cohereent beam, 219
cohereent diffraction, 177, 182, 183
Cohereent Diffraction Imaging (CDI), 80, 96, 215, 229
cohereent intensity distribution, 221
cohereent scattering experiment, 179
collagen fibers, 119
collagenase G, 3
collimator (for X-rays), 41
compound refractive lens
 – transocator, 56
Compound Refractive Lens (CRL), 41, 49, 50
 concentrator, 62
confocal nested mirrors, 66
continuous scanning, 150
continuous scanning mode, 147
continuum elasticity theory, 105
cooled detector, 184
core layer, 65
critical angle, 1, 25
cross-convolution, 193
cryogenic cooling, 160
crystal, 15
 – highly nonhomogeneously strained, 206
 – strain-free, 206
 – weakly nonhomogeneously strained, 204
crystal lattice, 112
crystal truncation rods (CTR), 21
crystalline model system, 206
crystallite, 3, 121, 203
crystallographic plane, 35
cutoff angle, 58

D
Debye–Scherrer rings, 119
Debye–Waller scattering, 95
demagnification, 132, 134
demagnification ratio, 8, 98, 232
demagnifier, 78
depth of field (DOF), 46
depth of focus, 46
detector, 149, 234
 – for continuous scanning, 150
detector arm, 141, 162
detector efficiency, 137
diffraction, 40, 73
 – geometries, 35
diffraction angle, 3, 4, 16, 29
diffraction experiment, 8, 109
diffraction theory, 13
diffractive lens, 72
diffractive optics, 66
diffraction pattern, 40
diffractometer, 60, 136, 140, 202, 235
Dirac δ distributions, 180
dome shape form, 93
dome-shaped island, 94
dotFET, 111
dynamical bending, 59
effective electron density, 181
elastic collagen fibers, 117
elastic scattering, 13
electromagnetic waves, 14
electron
 – mirror, 172
electron energy loss spectroscopy (EELS), 160
electron microscopy, 90, 171, 234
Electron Spectroscopy for Chemical Analysis (ESCA), 158
eclipse equation, 50
energy filter, 169
Energy Filtered TEM (EF-TEM), 160
ergy-dispersive X-ray spectroscopy (EDX, EDS), 160
error metric estimation, 199
error reduction, 199
evanescence wave, 26
Ewald sphere, 185
EXAFS (Extended X-ray Absorption Fine Structure) spectra, 159
external reflection, 25

F
Fast Fourier Transform (FFT), 185
FEM model, 106
Fermi level, 173
finite element model, 206
finite element modeling, 104
fluorescence, 5, 81, 156, 165, 219
 – lines, 156
 – radiation, 80, 166
fluorescence signal, 124
focal distance, 44, 46, 47, 97
Index

focal spot size, 81
Focused Ion Beam (FIB), 80
forbidden reflection, 19
form factor, 18, 20
Foucault criterion, 82
Fourier conjugation relation, 184, 185
Fourier space, 7, 40, 109, 198, 218
Fourier transform, 5, 16, 103, 128, 180, 181, 188, 204, 226
– inverse, 199
Fourier Transform Holography (FTH), 191, 194, 196
Fourier-encoded real-space information, 102
Fraunhofer regime, 224
free electron laser, 11, 122, 139, 196, 232, 238
Fresnel coherent diffraction imaging, 208, 209
Fresnel diffractive imaging, 224
Fresnel formula, 26
Fresnel lens, 76
Fresnel propagator, 226
Fresnel Zone Plate (FZP), 7, 41, 53, 67, 98, 114, 162, 184, 202, 205, 210
– binary ZP, 69
– higher order focusing, 69
FZP, 148
G
Gabor holography, 189, 190
Gauss refraction formula, 43
Gaussian distribution, 227
groove width, 145
grooves, 145
Grotegor and Saxton algorithm, 199
goniometer, 10, 100, 114, 136, 141
– angle, 100, 124
– sphere of confusion, 99
Grazing Incidence Diffraction (GID), 37
Grazing Incidence Small Angle Scattering (GISAXS), 37
Gullstrand’s equation, 43
H
haloless spot, 77
heat source, 145
Heisenberg’s uncertainty principle, 98
hologram, 83, 189
– of a point object, 70
holography, 188, 236
human femur, 119
I
ideally flat surface, 21
illumination
– coherent, 178
– function, 224
– incoherent, 178
– nanofocused, 190
illumination wavefield, 224
incoherent beams, 221
index of refraction, 43
inline holography, 189
intensity distribution, 95, 103
interference fringes, 182
interferogram, 83
internal reflection, 25
inversion, 199, 200, 221
– algorithm, 215, 221, 227
ionization, 156
iterative phase retrieval algorithm, 196
K
KB mirror, 169, 202
kinematic, 224
kinematical theory, 17, 107
kinetic photoelectron energies, 170
kiniform lens, 53, 71
Kirchhoff–Helmholtz transformation, 190
Kirkpatrick–Baez mirror, 41, 56, 57, 191, 239
Kirkpatrick–Baez-like geometry, 50
Kumakhov lens, 61, 62
L
lattice mismatch, 105
lattice parameter, 92, 106
lattice symmetry, 19
Laue equation, 19, 21
Laue geometry, 122
Laue images, 3
lens, 6, 231
– apex thickness, 54
– fabrication, 39
– lithographically fabricated, 52
– numerical aperture, 55
lens formula, 46
lensless microscopy, 188, 200, 206, 211, 217, 222
Lensmaker’s formula, 43
Linear Accelerators (LINAC), 34
linear displacement field, 182, 204
Liouville’s theorem, 46, 55, 87
lithography, 111
lithography process, 75
lithography technique, 68
longitudinal coherence length, 220
longitudinal resolution, 54
Lorenz factor, 149
Low Energy Electron Diffraction (LEED), 160
low energy electron microscopes, 169
Low Energy Electron Microscopy (LEEM), 39

M
macromolecule, 4, 11
magnetic
 – dichroism, 173
magnetic contrast, 169
magnetic electron lens, 172
magnetic moment, 173
magnetic storage, 172
magnetization, 172
mechanical drift, 145
mesh, 105
mesocrystals, 17
Michelson interferometer, 177
Michelson interferometry, 31
micro-crystal, 203
microdiffraction, 60
microfluorescence beamline, 63
microillumination, 186
micrometer range, 202
micrometers, 148
microscopy, 89, 92
microspectroscopy, 60, 236
Miller indices, 19
mirror, 57, 135, 143
mirror symmetry, 105
MnAs material, 174
monochromatization, 133
monochromator, 101, 135, 143, 178, 223
 – geometry, 149
Monte Carlo simulation, 218
Multilayer Laue Lens (MLL), 76, 87
multilayer mirror, 58
multilevel ZPs, 73
multi-level/blazed ZPs, 75
multiple bounce capillary, 62
multiple scattering, 224
multiwave scattering effects, 76
mutual vibration, 146

N
Nano Lens (NL), 41, 50
nanobeam, 5, 89, 152, 231
 – diffraction, 110, 125, 131
 – experiments, 7, 10
 – illumination, 115
 – quality control, 233
nanobeam diffractometer
 – alignment, 142
nanocrystal, 23, 203
 – symmetry, 205
 – imaging strain, 202
 – setup requirements, 139
nanodiffraction, 127
nanodiffractometer, 141
nanofocus beamlines, 235
nanofocusing, 9
nanometer, 131, 132, 152
nanometer range, 223
nanoscale microscopy, 236
nanoscience, 8
nanostructure, 8, 22, 89, 92, 101
 – hetero-epitaxial, 225
nanowire, 143, 188
near edge X-ray absorption fine structure (NEXAFS), 167
negative Fresnel lens, 69
noise model
 – Gaussian description, 227
noncrystalline material, 155
Nyquist frequency, 196

O
off-axis holography, 190
open-loop operation, 142
optical bench, 146
optical element, 41, 86, 135, 231
optical microscopy, 239
order sorting aperture (OSA), 77
osteon, 118, 121
oxinitride, 112

P
parabolic lens, 46, 51
parabolic refractive lens, 83
penetration depth, 26
peroxide, 152
phase binary ZP, 73
phase contrast imaging, 2
phase problem, 24
phase retrieval algorithm, 198, 208, 226
phase shift effect, 68
photo emission electron, 169
Photo Emission Electron Microscopy (PEEM), 39
photoelectron, 170
 – diffraction, 170
photobeam, 28
photon energy, 156
photon flux, 45, 65, 74, 96
 – density in the focal spot, 84
photon flux density, 45
photon flux in the spot, 45
photon noise, 211, 227
Index

Q
Q-resolution, 136

R
radiation damage, 122
Raman scattering, 126
raster maps, 167
Rayleigh criterion, 72, 217
reciprocal space, 109, 114, 120
Reciprocal Space Maps (RSMs), 101
reference wave, 196
reflectivity, 24
refraction, 24, 50
refraction effect, 225
refraction index, 26
refraction index (X-rays), 24
refractive index, 6, 47, 65
refractive lens, 53, 84
– chromaticity, 56
reproducibility, 223, 233
requirements
– spectroscopy, 161
resolution effects, 218
resonant magnetic scattering, 133
resonator, 62
rocking curve, 150, 212
rocking scan, 164

S
sample environment, 152, 222
sample movement, 146
sample stability, 144
SAXS, 146
Scanning Electron Microscopy (SEM), 39
scanning fluorescence microscopy, 146
Scanning Transmission X-ray Microscopy (STXM), 163
Scanning Tunneling Microscopy (STM), 39
scanning X-ray diffraction microscopy, 142
Scanning X-ray Diffraction Microscopy (SXDM), 98, 101
scattering amplitude, 9
scattering experiment, 89, 91
scattering process, 14
scattering techniques, 37, 40
Schwarzchild reflective objective, 66
semiconductor, 4, 40, 111, 124
sensitivity, 217
shot noise, 226, 229
Si capping layer, 115
SiGe island, 100, 107, 111, 151
signal synchronization, 147
silicon, 104, 110, 113
Silicon Drift Diode (SDD) detectors, 166
single bounce capillary, 61
slit, 135, 178
slits, 81
slope error, 59
Small Angle Scattering (SAXS), 37, 42, 118
Small angle scattering geometry, 184, 201, 211
Small angle X-ray scattering (SAXS), 165
Snell’s law, 24, 25, 42, 43, 65
spatial coherence, 33
spatial resolution, 5, 217, 218
speckles, 179, 187, 201
spectral bandwidth, 73
spectroscopy, 155, 160
– synchrotron-based, 160
Sphere of Confusion (SoC), 137
spherical refractive X-ray lens, 44, 47
square of the magnetic moment, 172
stability, 233
standard experiment, 91
strain, 21
– biaxial, 123
– engineering, 110, 123
– sensitivity, 128
– uniaxial, 123
streaks, 103
structure factor, 18, 19
sub-micrometer beam, 153
sub-micrometer diffraction, 140
sub-micrometer imaging, 146
supercells, 107
surface exit wave, 180
surface-to-volume ratio, 22
synchrotron, 10, 33, 109, 132, 238
– beamline, 91, 94
– sources, 33, 34
– undulator, 232
synchrotron beam, 9

photon sieve, 41, 77
piezo-electric translation, 213
piezo-positioner, 147
pinhole, 41, 80, 81
Poisson distribution, 227
Poisson shot noise, 179
polycapillary, 62
positioning error, 215
protein crystallography, 11
ptychographical iterative engine, 211, 227
ptychography, 210, 212, 223, 236
pyramidal islands, 107
synchrotron radiation source, 171
synchrotron source, 87, 97, 134, 148, 235

T
temporal stability, 222
thermal drifts, 144
thermal expansion coefficients, 106
thermal sources, 31
Thomson scattering, 50, 166, 180
transfocator, 56, 85
Transmission Electron Microscopy (TEM), 39
transmission image, 2
transmission scanning microscopy, 166
transverse coherence length, 32, 219
transverse resolution, 54
twin image problem, 190

U
UHV environment, 172
UV photoemission spectroscopy (UPS), 170

V
Vegard’s rule, 104

W
wave mixing, 210
wave vector k, 13
waveguide, 62, 64, 84
wavelength distribution, 29
wavelength λ, 13
Wilhelm Conrad Röntgen, 1
Wolter mirrors, 66, 169
wurtzite (WZ) phase, 186

X
XANES (X-ray Absorption Near Edge Structure), 159
XFEL, 33, 35
X-ray
 – absorption spectroscopy, 170, 236
 – beam direction, 2
 – beams, 27
 – characterization techniques, 155
 – circular magnetic dichroism (XMCD), 173
 – coherence, 177
 – diffraction, 2, 11, 13, 132
 – elemental sensitivity, 5
 – fluorescence, 236
 – fluorescence scanning microscopy, 165
 – focused spot, 81
 – holographic techniques, 188
 – lensless microscopy, 210
 – mirror, 56
 – nanofocusing, 9
 – optics, 80
 – photo emission electron microscope (XPEEM), 169
 – photoelectron spectroscopy, 170
 – photon energy, 165, 166
 – photon in/electron out technique, 169
 – polarized, 167
 – reflective optics, 56
 – refraction, 24, 165
 – refractive lenses, 42
 – scattering, 2, 165
 – sources, 33
 – spectroscopic techniques, 155
 – transmission, 1
X-ray focusing optics, 41
 – acceptance, 46
 – advantages, 83
 – aperture, 81
 – beam compressor, 41, 77
 – capillary, 41, 61
 – collimator, 41
 – Compound Refractive Lens (CRL), 41, 50
 – demagnification, 45
 – effective aperture, 46
 – efficiency, 45
 – focal distance, 46
 – Fresnel Zone Plate (FZP), 41, 67
 – gain, 46
 – inconveniences, 83
 – Kirkpatrick–Baez (KB) mirror, 41, 56
 – magnification, 45
 – Nano Lens (NL), 41, 50
 – numerical aperture, 46
 – photon sieve, 41, 77
 – pinhole, 41, 81
 – resolution, 45
 – transmission, 45
 – Waveguide (WG), 62

Y
Young’s slit experiment, 177
Young’s slit interferometry, 32

Z
zone plate, 67