Part I
Fundamentals: Active Species, Mechanisms, Reaction Pathways
Identification and Roles of the Active Species Generated on Various Photocatalysts

Yoshio Nosaka and Atsuko Y. Nosaka

TiO₂ photocatalysts have been utilized for the oxidation of organic pollutants [1–5]. For further practical applications, the improvement in the photocatalytic efficiency and the extension of the effective wavelength of the irradiation light are desired. From this point of view, better understanding of the primary steps in photocatalytic reactions is prerequisite to develop prominent photocatalysts. The properties of TiO₂ and the reaction mechanisms in molecular level have been reviewed recently [6]. Therefore, this chapter describes briefly active species involved in the photocatalytic reactions for bare TiO₂ and TiO₂ modified for visible-light response, that is, trapped electrons, superoxide radical (O₂−), hydroxyl radical (OH·), hydrogen peroxide (H₂O₂), and singlet oxygen (¹O₂).

1.1 Key Species in Photocatalytic Reactions

Since the photocatalytic reactions proceed usually with oxygen molecules (O₂) in air, the reduction of oxygen would be the important process in photocatalytic reduction. On the other hand, taking into account that the surface of TiO₂ photocatalysts is covered with adsorbed water molecules in usual environments and that photocatalysts are often used to decompose pollutants in water, oxidation of water would be the important process in photocatalytic oxidation. As shown in Figure 1.1, when O₂ is reduced by one electron (Eq. (1.1)), it becomes a superoxide radical (O₂−) that is further reduced by one electron (Eq. (1.2)) or reacts with a hydroperoxy radical (HO₂⁺, i.e., protonated O₂−) to form hydrogen peroxide (H₂O₂). The latter reaction is largely pH dependent because the amount of HO₂⁺, whose pKₐ is 4.8, changes largely at pH around neutral [7]. One-electron reduction of H₂O₂ (Eq. (1.3)) produces hydroxyl radical (OH·). In the field of radiation chemistry, it is well documented that OH· is produced by one-electron oxidation of H₂O with ionization radiation. However, the formation of OH· in the photocatalytic oxidation process has not been confirmed,
Identification and Roles of the Active Species Generated on Various Photocatalysts

Light

Oxygen

Reduction

Superoxide radical

(Disproportionation)

reduction

Hydrogen peroxide

Reduction

OH

Water

Figure 1.1 One-electron reduction steps of oxygen to OH radical and two-electron oxidation step of water to H₂O₂ observed in the TiO₂ photocatalyst.

as described later.

\[
O_2 + e^- \rightarrow O_2^{*-} \quad (1.1)
\]

\[
O_2^{*-} + 2H^+ + e^- \rightarrow H_2O_2 \quad (1.2)
\]

\[
H_2O_2 + H^+ + e^- \rightarrow OH^- + H_2O \quad (1.3)
\]

Figure 1.2 shows the standard potentials [8] for the one-electron redox of active oxygen species as a function of pH of the solution. The conduction band (CB) bottom for anatase and rutile TiO₂ along with valence band (VB) top of TiO₂ is also depicted. The pKa values for H₂O₂ and OH⁻ are 11.7 and 11.9, respectively [7]. Therefore, the linear lines showing pH dependence in Figure 1.2 change the inclination at the individual pH. It is notable that in the pH range between 10.6 and 12.3, one-electron reduction resulting in OH⁻ formation (Eq. (1.3)) occurs at a higher potential than that resulting in H₂O₂ formation (Eq. (1.2)). As commonly known, the potential of the VB of TiO₂ is low enough to oxidize H₂O, suggesting the possibility of the formation of OH⁻. However, the potentials in the figure are depicted based on the free energy change in a homogeneous aqueous solution. Therefore, it does not always mean that the one-electron oxidation of H₂O by VB holes at the surface of TiO₂ solid takes place in the heterogeneous system. Since the oxidation of H₂O to H₂O₂ and O₂ is also possible, only the potential difference between VB and OH⁻ should not be used easily for explaining the possibility of the formation of OH⁻. The competition between OH-radical-mediated reaction versus direct electron transfer has been studied as the effect of fluoride ions on the photocatalytic degradation of phenol in an aqueous TiO₂ suspension [9]. Under a helium atmosphere and in the presence of fluoride ions, phenol is significantly degraded, suggesting the occurrence of a photocatalytically induced hydrolysis [9].

Primary intermediates of water photocatalytic oxidation at the TiO₂ in aqueous solution were investigated by in situ multiple internal reflection infrared (MIRIR) absorption combined with the observation of photoluminescence from trapped holes [10]. The reaction is initiated by a nucleophilic attack of a H₂O molecule on a photogenerated hole at a surface two hold coordinated O site to form [TiO\(^{+}\)HO–Ti].
A plausible reaction scheme is shown in Figure 1.3. Detailed investigations revealed the presence of TiOOH and TiOOTi as primary intermediates of the oxygen photoevolution reaction. This means that water is oxidized to form hydrogen peroxide adsorbed on TiO$_2$ surface, but the formation of OH radical in the oxidation process of water was denied.

Ultraviolet photoelectron spectroscopy (UPS) studies showed that the top of the O-2p levels for surface hydroxyl groups (Ti–OH) at the rutile TiO$_2$ (100) face is about 1.8 eV below the top of the VB at the surface [11]. This implies that surface hydroxyl groups cannot be oxidized by photogenerated holes in the VB. On the basis of the electronic structure of surface-bound water obtained from the data reported in the literature of X-ray photoelectron spectroscopy (XPS) study, it is evidenced that water species specifically adsorbed on terminal (surface) Ti atoms cannot be photooxidized under UV illumination [12]. The photogenerated VB free holes are favorably trapped at the terminal oxygen ions of the TiO$_2$ surface (O$^{2-}$).
to generate terminal (O\text{−})_s radicals, rather than being trapped at adsorbed water species to produce adsorbed OH\text{•}. As discussed later, when OH\text{•} is detected in photocatalytic reactions, it should be formed by photocatalytic reduction of H$_2$O$_2$ (Eq. (1.3)).

1.2 Trapped Electron and Hole

Different from the semiconductor bulk, many electronic energy states may be formed within the band gap at the solid surface. These energy levels are capable of trapping VB holes and CB electrons. The trapped energy is considerably larger at the surface than in the bulk, indicating that it is energetically favorable for carriers to travel from the bulk to the surface [13]. At the surface, the trapping sites generally correspond to five-coordinated Ti$^+$ and two-coordinated O$^-$ surface ions. When an appropriate acceptor (a scavenger), such as O$_2$ for electrons or methanol for holes, is adsorbed on the surface, it was suggested that the carriers should be preferentially transferred to the adsorbate rather than remain trapped at the surface sites [13].

When there are no molecules that can suffer the reaction, the existence of electrons and holes can be detected at a low temperature such as 77 K. To detect such paramagnetic species, electron spin resonance (ESR) spectroscopy is a valuable method [14, 15].

Holes and electrons could be observed by the absorption spectra just after the short pulse excitation under ambient temperature [16]. Trapped holes show that the absorption peaked at about 500 nm [17] and disappeared by the further reactions. On the other hand, trapped electrons show a broad absorption band that peaked at about 700 nm [18], which react mainly with oxygen molecules in air. Trapped electrons are so stable in the absence of O$_2$ that the kinetics can be explored by means of a stopped flow technique [19]. The reduction kinetics has been investigated through the electron acceptors such as O$_2$, H$_2$O$_2$, and NO$_3^-$, which are often present in photocatalytic systems. The experimental results clearly showed that the stored electrons reduce O$_2$ and H$_2$O$_2$ to water by multielectron transfer.
processes [19]. Moreover, NO$_3^-$ is reduced via the transfer of eight electrons evidencing the formation of ammonium ions. On the other hand, in the reduction of toxic metal ions, such as Cu(II), two-electron transfer occurs, indicating the reduction of the copper metal ion into its nontoxic metallic form.

1.3 Superoxide Radical and Hydrogen Peroxide (O$_2$•− and H$_2$O$_2$)

Since photocatalysts are usually used in air, photoexcited CB electrons transfer to the oxygen in air to form superoxide radical O$_2$•−. The highly sensitive MIRIR technique was applied and surface intermediates of the photocatalytic O$_2$ reduction were directly detected. Figure 1.4 shows the proposed mechanism of the reduction of molecular oxygen at the TiO$_2$ surface in aqueous solutions [20]. In neutral and acidic solutions, CB electrons reduce the surface Ti$^{4+}$ that adsorbs H$_2$O, and then O$_2$ attacks it immediately to form superperoxo TiOO$^-$ as shown in path A in Figure 1.4. This superperoxo is reduced to peroxy Ti(O$_2$), which is equivalent to hydroperoox TiOOH, when it is protonated (Figure 1.4). The hydroperoox has the same structure with the hydrogen peroxide adsorbed on TiO$_2$ surface. On the other hand, in the alkaline solution, as shown in path B, the adsorbed O$_2$ receives a photogenerated CB electron to produce O$_2$•−. If it is not used for reactions or oxidized, the produced O$_2$•− is converted to H$_2$O$_2$ by disproportionation with

![Figure 1.4](image_url)

Figure 1.4 Reaction paths for the photocatalytic reduction of O$_2$ at the TiO$_2$ surface, suggested from IR measurements in neutral and acidic aqueous solutions (path A) and in an alkaline solution (path B). (Source: Reprinted with permission from Nakamura et al. [20]. © 2003 American Chemical Society.)
protons. Although the reaction rate for molecules having higher electron affinity is usually large, the reactivity of \(\text{O}_2^- \) is generally weak. At pH lower than 4.8, it takes the form of HO\(\text{O}_2^- \) by the protonation, whose lifetime is short owing to the rapid reaction with \(\text{O}_2^- \) or HO\(\text{O}_2^- \) to form stable H\(_2\text{O}_2\) [7], as stated above.

Since the lifetime of \(\text{O}_2^- \) is long in alkaline solution [21], it can be detected after stopping the irradiation. To detect \(\text{O}_2^- \), a chemiluminescence method with luminol or luciferin analog (MCLA) has been used [22]. Figure 1.5 shows the reaction scheme for luminol chemiluminescence reactions. Luminol (LH\(^-\)) is easily oxidized in alkaline solution under air forming one-electron oxidized state (L\(^-\)), and reacts with \(\text{O}_2^- \) to form unstable peroxide (LO\(_2\text{H}^-\)). This species releases N\(_2\) to form the excited state of 3-aminophthalate (3-APA), which emits light at 430 nm. When L\(^-\) is oxidized further, a two-electron oxidation form of luminol (L), or a kind of diazo-naphthoquinones, is formed. It can react with H\(_2\text{O}_2\) to form peroxides to proceed the same chemiluminescence reaction. Thus, using an oxidant, H\(_2\text{O}_2\) could be separately detected by a luminol chemiluminescence method [23].

The decay profile of \(\text{O}_2^- \) concentration does not obey first- or second-order kinetics, but obeys fractal-like kinetics, namely, the distribution of the distance between holes and adsorbed \(\text{O}_2^- \) governs these decay kinetics [21]. For anatase thin film photocatalysts irradiated with very weak (1 \(\mu \text{W cm}^{-2} \)) UV light, the quantum yields of \(\text{O}_2^- \) were reported to be 0.4 and 0.8 in air and water, respectively [24].

As suggested in Figure 1.2, \(\text{O}_2^- \) may be produced by the photocatalytic oxidation of H\(_2\text{O}_2\) (Eq. (1.4)).

\[
\text{HO}_2^- + h^+ \rightarrow \text{O}_2^- + \text{H}^+
\]

(1.4)
1.4 Hydroxyl Radical (OH$^\cdot$)

Although OH$^\cdot$ has been usually recognized as the most important active species of the photocatalytic oxidation, recent reports confirmed that the contribution of OH$^\cdot$ in the photocatalytic oxidation process is not usually dominant [6]. It should be emphasized that OH$^\cdot$ has been referred too easily to be involved in the oxidation mechanism of photocatalytic reactions.

Several methods to detect OH$^\cdot$ in photocatalytic reactions have been reported. Usually, the spin trapping reagents, such as DMPO (5,5-dimethyl-1-pyrroline-N-oxide), have been used to detect OH radicals (Figure 1.7a). However, it is not a molecule stable enough in aerated aqueous solutions and can be easily oxidized. In many reports, the possibility of the other reactions for DMPO than the OH radical adduction has not been anticipated. Based on the detailed study in [25],

![Graph showing the effect of H$_2$O$_2$ on the concentration of O$_2$•$^-$ measured after 100 s irradiation of the TiO$_2$ suspension of AMT-600 (TAYCA Corp.) and P25 (Nippon Aerosil Co., Ltd).](image-url)

Figure 1.6 The effect of H$_2$O$_2$ on the concentration of O$_2$•$^-$ measured after 100 s irradiation of the TiO$_2$ suspension of AMT-600 (TAYCA Corp.) and P25 (Nippon Aerosil Co., Ltd).

Figure 1.6 shows the amount of O$_2$•$^-$ formed after 10 s in the presence of H$_2$O$_2$ of various concentrations. Increase in O$_2$•$^-$ was observed with a small amount of H$_2$O$_2$, indicating the oxidation of H$_2$O$_2$ with photogenerated hole h$^+$ (Eq. (1.4)) or the increase in the reduction of O$_2$ owing to the suppression of photogenerated e$^-$ from the recombination. When the amount of H$_2$O$_2$ was larger than 0.2 mmol l$^{-1}$, the formation of O$_2$•$^-$ decreased, indicating that the adsorption of H$_2$O$_2$ on the whole surface blocks the access of O$_2$, which would increase the electron–hole recombination rate.

1.4 Hydroxyl Radical (OH$^\cdot$)
Identification and Roles of the Active Species Generated on Various Photocatalysts

![Figure 1.7](image)

Figure 1.7 (a) The spin trapping reaction for OH• with DMPO. (b) The reaction of terephthalic acid with OH• forming fluorescent 2-hydroxy terephthalate.

It was indicated that the amount of radical adduct in the photocatalytic reaction was increased with DMPO concentration and that no saturation was observed, whereas OH• formed by photolysis of H2O2 could be trapped by excess amount of DMPO. This means that the OH radical adduct DMPO–OH• was formed by the photocatalytic reaction of DMPO itself and not through OH radicals. Thus, spin trapping experiments for detecting OH• must be carefully performed to prove the presence of OH• [25, 26].

A fluorescence probing method, based on the reaction of OH• with stable molecules seems more suitable than those with unstable spin trapping regents. In the field of radiation chemistry, the reactions of OH• with terephthalic acid (TA) and coumarin have been used because these products show strong fluorescence aiding in sensitive detection [27]. Therefore, this method has been adopted to detect OH• in photocatalytic reactions in aqueous suspension systems [28, 29]. The quantum yield of OH• in TiO2 aqueous suspension was on the order of 10−5 [30]. Kinetic analysis for the formation rates of the OH• adduct (DMPO–OH•) along with the competitive adsorption of phosphate showed that, at a pH = 4.25, phthalic acid that was adsorbed on TiO2 surface was oxidized directly by VB holes, with a quantum yield of 0.08 [31]. This high quantum yield could be attributed to the direct oxidation of adsorbed TA with VB holes.

Since radicals can be sensitively analyzed with ESR, nitroxide radical (3-carboxy-2,2,5,5-tetramethyl-1-pyrrolidine-1-oxy) has been used as a probe to detect OH radicals [32]. The quantum efficiencies of OH• for several TiO2 photocatalysts were measured by the TA fluorescence method (Figure 1.7b) and compared with those obtained with the spin-trap and spin-probe ESR methods stated above [29]. The OH• yields measured by the TA fluorescence method were smaller by a factor of about 100, showing no correlation with those obtained by the DMPO spin trapping and the TA spin probing methods. Although the formation of OH• has been reported mainly using the spin trapping method, the contribution of the free OH• may be very small when the reactant is readily oxidized. Thus, the OH• should be distinguished from that generated by the trapped holes in photocatalytic reactions.
OH’ was expected to be directly detected by means of ESR spectroscopy at low temperature. However, actually the OH’ was not detected by ESR spectroscopy at 77 K, but only trapped holes were detected for hydrated TiO₂ particles [33]. Under hydrated conditions, when the frozen trapped holes were partly melted, they oxidized the adsorbed molecules [33]. Thus, the involvement of OH’ in the oxidation process was not proved by direct detection with ESR.

Another definite method to confirm the presence of OH’ is the observation of the optical absorption spectrum in gas phase. By scanning the excitation wavelength (282–284 nm) and monitoring the fluorescence at 310 nm, the spectrum could be identified as the absorption lines of OH’. This highly sensitive and selective technique is called as the laser-induced fluorescence (LIF) method. Using this method, the first direct observation of the presence of OH’ in TiO₂ photocatalytic systems was reported [34]. The quantum yield of OH’ calculated from the LIF intensity was about 5 × 10⁻⁵. When the O₂ gas of low partial pressures was flowed, the formation of OH’ was clearly enhanced. Since the addition of H₂O₂ on the TiO₂ surface increased the LIF intensity, H₂O₂ molecules were also considered to form by the reduction reactions of O₂. The addition of methanol (a scavenger of hole) decreased significantly the LIF signal intensity, suggesting the formation of H₂O₂ by the oxidation of surface OH groups by holes. This mechanism of OH’ formation is illustrated in Figure 1.8 [34]. With a similar reaction system, the formation and diffusion of H₂O₂ have been reported using the LIF method [35]. Consequently, it was proved that OH radicals are mainly formed by the reduction of H₂O₂, which is formed by the two-electron reduction of O₂ and/or two-electron oxidation of H₂O.

Using a molecular fluorescence marker, the diffusion of OH’ from TiO₂ surface during UV irradiation has been verified [36]. The detected amount of OH’ decreased with decreasing the concentration of oxygen, that is, at [O₂] = 0.2 vol%, no significant amount of OH’ was detected. This result indicates that the OH’ formation is very sensitive to the oxygen concentration, and the reduction process of oxygen, which results in the formation of O₂⁻ leading to H₂O₂, is a key process in the formation of OH’.

Figure 1.8 A plausible reaction scheme for the OH radical formation on the irradiated TiO₂ surface.
The effect of H$_2$O$_2$ addition on the rate of OH$^\bullet$ formation in aqueous suspension systems was measured for various TiO$_2$ [37]. As shown in Figure 1.9, the OH$^\bullet$ formation rates were increased with the addition of H$_2$O$_2$ for P25 (Nippon Aerosil Co, Ltd) and F4 (Showa Titanium Co., Ltd) TiO$_2$, which are rutile-containing anatase, and for rutile TiO$_2$ (MT-500B, TAYCA Corp.). The quite opposite tendency was observed for AMT-600 (TAYCA Corp.) and ST-21 (Ishihara Sangyo Co., Ltd), which consist of 100% anatase TiO$_2$, where the OH$^\bullet$ formation rate decreased on H$_2$O$_2$ addition. The increase of OH$^\bullet$ is attributable to the photocatalytic reduction of H$_2$O$_2$ (Eq. (1.3)). Since the rutile-containing anatase increased the OH$^\bullet$ generation, the structure of H$_2$O$_2$ adsorbed on the rutile TiO$_2$ surface is likely preferable to produce OH$^\bullet$.

1.5 Singlet Molecular Oxygen (1O$_2$)

To explain the formation of singlet oxygen, the disproportionation of O$_2$$^{-}$$^{-}$ was proposed through the intermediate formation of HO$_2$$^{-}$ as shown by Eq. (1.5) [38]. Since the energy difference of HO$_2$$^{-}$ → O$_2$ from HO$_2$$^{-}$ → H$_2$O$_2$ at a pH = 0 is calculated to be +1.49 V from Figure 1.2, O$_2$ may be excited to 1O$_2$. But, it becomes 0.53 V at pH = 14, which is smaller than the excitation energy of 0.98 eV (or 1270 nm in wavelength).
1.5 Singlet Molecular Oxygen (\(^{1}\text{O}_2\))

Figure 1.10 The spin states in the process of singlet molecular oxygen formation via the oxidation of \(\text{O}_2^{-}\).

Alternatively, the oxidation of \(\text{O}_2^{-}\) as indicated by Eq. (1.6) has been proposed as the formation mechanism [39]. Since \(\text{O}_2^{-}\) is formed by the electron transfer of photoexcited CB electrons at the surface, it may be easily oxidized.

\[
\begin{align*}
2\text{HO}_2^- & \rightarrow (\text{HOOOOH}) \rightarrow ^{1}\text{O}_2 + \text{H}_2\text{O}_2 \quad (1.5) \\
\text{O}_2^- + h^+ & \rightarrow ^{1}\text{O}_2 \\
\end{align*}
\]

Figure 1.10 shows the plausible pathways for the consecutive reduction and oxidation of \(\text{O}_2\). Since three electrons in the \(\pi^*\) state of \(\text{O}_2^-\) cannot be distinguished from one another, three electronic states may be produced depending on the removed electron. These are \(^{3}\Sigma_g^-\), \(^{1}\Delta_g\), and \(^{1}\Sigma_g^+\) states in the order from the lower energy. The last two states are electronic excited states of molecular oxygen and named as singlet oxygen. The lifetime of the \(^{1}\Sigma_g^+\) state is very short and immediately transfers to the \(^{1}\Delta_g\) state of singlet molecular oxygen (\(^{1}\text{O}_2\)). The lifetime of the \(^{1}\Delta_g\) state depends largely on its environment, ranging from a few microseconds in \(\text{H}_2\text{O}\) to a few milliseconds in air.

Among the detection methods to verify the formation of \(^{1}\text{O}_2\), one of the most established methods is to observe the phosphorescence at 1270 nm, which is the radiative transition from the \(^1\Delta_g\) state to the \(^{1}\Sigma_g^-\) state of molecular oxygen. The phosphorescence at 1270 nm has been detected in a \(\text{TiO}_2\) aqueous suspension system [39]. Quantum yields for \(^1\text{O}_2\) generation measured for 10 commercial \(\text{TiO}_2\) photocatalysts in air ranged from 0.12 to 0.38, while the lifetimes ranged from 2.0 to 2.5 \(\mu\text{s}\) [40]. The production and decay of \(^1\text{O}_2\) in \(\text{TiO}_2\) photocatalysis were investigated by monitoring the phosphorescence under various reaction
conditions. The comparison among the effects of additives such as KBr, KSCN, KI, and H$_2$O$_2$ on the formation of 1O$_2$ and O$_2$$^-$ suggested that 1O$_2$ should be formed by the electron transfer mechanism (Eq. (1.6)), as illustrated in Figure 1.11. The formation of 1O$_2$ decreased at pH < 5 and pH > 11, indicating that the intermediate O$_2$$^-$ is stabilized at the terminal OH site of the TiO$_2$ surface in this pH range. Eighteen commercially available TiO$_2$ photocatalysts were compared on the formation of 1O$_2$ and O$_2$$^-$ in an aqueous suspension system. The formation of 1O$_2$ was increased with decreasing the size of TiO$_2$ particles, indicating that a large specific surface area causes a higher possibility of reduction producing O$_2$$^-$ and therefore, a large amount of 1O$_2$ is formed. The difference in the crystal phase (rutile and anatase) does not seem to affect the formation of 1O$_2$ [41].

Singlet oxygen is known to be reactive with some organic compounds such as olefines and amines. Therefore, in the presence of four kinds of organic molecules, methionine, pyrrole, collagen, and folic acid (pteroyl-l-glutamic acid), the decay of 1O$_2$ was measured [42]. Figure 1.12a represents the total decay of 1O$_2$, and Figure 1.12b shows the partial decay obtained after subtraction of the intrinsic exponential decay. The observed decay rates of 1O$_2$ with these organic molecules are significantly higher than those expected from the bimolecular rate constant reported for the reaction in homogeneous solution. By assuming pseudo-first-order reaction, the virtual concentrations of the reactant are in the vicinity of 0.01 mol l$^{-1}$. Since the concentration of the solution used in the experiments was 0.01 mmol l$^{-1}$, the organic reactants must be concentrated at the surface of TiO$_2$ by adsorption. These observations suggest that the reactant molecules should be adsorbed on the TiO$_2$ surface [42]. Although the 40% of 1O$_2$ was deactivated with folic acid, this deactivation process includes thermal deactivation besides the chemical reactions.
1.6 Reaction Mechanisms for Bare TiO$_2$

There are many reaction pathways in any photocatalytic reaction system. Whenever a certain pathway in question is discussed, the other pathways should also be considered simultaneously. To detect $^1\text{O}_2$ in the reaction system, sterically hindered cyclic amines, such as HTMP (4-hydroxy-2,2,6,6-tetramethylpiperidine), have been used as probe molecules [43]. Such amines are converted to the corresponding stable aminoxyl radical (nitroxide radical) which can be sensitively detected by ESR spectroscopy. In the case of HTMP, TEMPOL radical (4-hydroxy-2,2,6,6-tetramethyl piperidine 1-oxyl) is formed as a result of a photocatalytic reaction in a TiO$_2$ aqueous suspension. The time profiles of the radical formation and the effect of additives, such as SCN$^-$, I$^-$, methanol, and H$_2$O$_2$, on the initial formation rates were measured in order to elucidate the photocatalytic reaction mechanism for HTMP [44]. By assuming possible key reactants for the oxidation as shown in Figure 1.13,
Identification and Roles of the Active Species Generated on Various Photocatalysts

Figure 1.13 Key reactants considered for the kinetic analysis of the photocatalytic formation of nitroxide radicals.

Figure 1.14 (a–c) Plausible photocatalytic reaction processes of sterically hindered cyclic amine.

the kinetics was analyzed to elucidate the reaction process. The experimental observations indicated that the direct photocatalytic oxidation of HTMP followed by reaction with O₂ is the dominant process in the formation of TEMPOL radicals (Figure 1.14). The possibility of the other processes, involving reactions with \(^1\text{O}_2\), \(\text{O}_2^{-}\), and OH·, was excluded from the reaction mechanism.

As stated above, OH· is not produced through a main oxidation process even in the absence of organic compounds. However, in most of the research papers on photocatalysis published so far, OH· has often been regarded to be involved in the actual oxidation mechanism of photocatalytic reactions. However, actually the primary reaction pathway for the oxidation is the direct reaction at the surface
1.7 Reaction Mechanisms of Visible-Light-Responsive Photocatalysts

As promising practical applications of photocatalysts, the utilization of visible light has been promoted. Figure 1.16 shows the energy levels of some visible-light-responsive photocatalysts. Since the energy level of VB for metal oxides is governed by that of the O-2p orbital, a narrow-band-gap metal oxide semiconductor, such as WO₃, possesses CB energy lower than that of TiO₂. Since the one-electron reduction potential of O₂ is very close to that of the CB of TiO₂, as shown in Figure 1.2, WO₃ is unable to form O₂•⁻, as shown in Figure 1.16a. In this case, using a promoter such as deposited Pt [48], electrons could be stored to enable two-electron reduction of O₂ to H₂O₂. Doping to produce the mid-gap level has been proposed as the other visible-light-responsive photocatalysis. Since the energy level of VB has sufficient oxidation ability, shifting the VB by doping the N or S anion has been attempted (Figure 1.16b). In this case, photogenerated holes produced on the donor level are expected to have oxidation ability similar to that of bare TiO₂ [23]. As shown in Figure 1.16c, photocatalysts of the photosensitization type were
Identification and Roles of the Active Species Generated on Various Photocatalysts

Figure 1.16 Classification of visible-light-responsive photocatalysts by the mechanism of reaction. (a) Narrow-band-gap semiconductor such as WO₃, (b) anion-doped TiO₂ such as nitrogen-doped TiO₂, (c) sensitizer-deposited TiO₂ such as PtCl₆²⁻-deposited TiO₂, and (d) interfacial-charge-transfer-type TiO₂ such as Cu(II)-grafted TiO₂.

also proposed. The deposited compound absorbs the visible light and transfers the excited electron to produce a cation radical, which can oxidize organic pollutant molecules. In this case, enough oxidation power with good stability is required as an oxidized sensitizer [49]. Recently, interfacial charge transfer (IFCT)-type absorption originating from the excitation of VB electrons to deposited (or grafted) metal ions has been proposed (Figure 1.16d). In this case, if the deposited compound has a catalytic ability of O₂ reduction, the efficiency is expected to be increased [50].

The observation of active species such as O₂⁻⁻ and H₂O₂ is inevitable to confirm the reaction mechanism proposed. Figure 1.17 shows the formation of O₂⁻⁻ as a function of irradiation time of 442 nm light for several visible-light-responsive photocatalysts. For PtCl₆²⁻-modified TiO₂, a large amount of O₂⁻⁻ was observed immediately after the excitation, in concord with the electron transfer to the CB (Figure 1.16c). On the other hand, Fe-complex-deposited TiO₂ generated a small amount of O₂⁻⁻ probably because the excitation takes place from VB to Fe ions at the surface (Figure 1.16d). For the S-doped TiO₂, the amount of O₂⁻⁻ increased as the irradiation period increased, and reached a steady value in 30 s, while for the N-doped TiO₂, it gradually increased up to about 180 s. In a control experiment, P25 TiO₂ did not produce O₂⁻⁻ by visible-light irradiation at 442 nm, whereas on UV irradiation at 325 nm (with the similar number of photons to 442 nm) for 180 s, 20 nmol l⁻¹ of O₂⁻⁻ was produced, indicating that the steady-state concentrations of O₂⁻⁻ for the N- and S-doped TiO₂ are higher than those for the undoped TiO₂ (P25) [23].

Figure 1.18 schematically shows the dominant reaction processes in the absence of organic substrates, which are deduced from the observation of O₂⁻⁻ and H₂O₂ [23]. The S-doped TiO₂ surpassed the N-doped TiO₂ in the production of O₂⁻⁻, while the N-doped TiO₂ surpassed the S-doped TiO₂ in the production of H₂O₂. Since O₂⁻⁻ decays obeying the second-order kinetics, H₂O₂ is mainly produced from the disproportionation of O₂⁻⁻. The production of O₂⁻⁻ decreased by adding
1.7 Reaction Mechanisms of Visible-Light-Responsive Photocatalysts

Figure 1.17 The concentration of $O_2^{•−}$ produced in the suspension (15 mg per 3.5 ml) of the modified TiO$_2$ photocatalyst powders as a function of the irradiation time of 442 nm light.

Figure 1.18 Proposed photocatalytic reaction processes of $O_2^{•−}$ and H_2O_2 on the N- and S-doped TiO$_2$ in the absence of organic substrates. (a) The N-doped TiO$_2$ selectively produces H_2O_2, while (b) the S-doped TiO$_2$ produces $O_2^{•−}$ and reduces H_2O_2 to water. (Source: Reprinted with permission from Hirakawa et al. [18]. © 2008 American Chemical Society.)

H_2O_2 to both N- and S-doped TiO$_2$. Therefore, H_2O_2 would not be oxidized in both N- and S-doped TiO$_2$, which is in prominent contrast to the undoped TiO$_2$ (P25). The H_2O_2 produced by the S-doped TiO$_2$ might be quickly reduced to H_2O via some intermediate states; the reactive oxygen species produced by the reduction of H_2O_2 may play an important role in the decomposition of organic molecules, and the S-doped TiO$_2$ may surpass N-doped TiO$_2$ in this ability.
Identification and Roles of the Active Species Generated on Various Photocatalysts

Figure 1.19 ESR difference spectra for Cu(II)/TiO$_2$ measured under vacuum, with 2-propanol, and air showing the effects of light irradiation at the wavelengths around 360 nm, longer than 420 and 500 nm, respectively. (Source: Reprinted with permission from Nosaka et al. [51]. © 2011 American Chemical Society.)

For visible-light-responsive photocatalysts of IFCT type with metal ions (Figure 1.16d), ESR spectroscopy could be utilized to analyze the state of the metal ions. Figure 1.19 shows the difference in the ESR spectra caused by light irradiation for Cu(II)-deposited TiO$_2$ [51]. The decrease of the large signal, characterized by a hyperfine splitting by Cu nuclear spin, indicates the decrease of Cu$^{2+}$ ions on visible-light irradiation under vacuum. In the presence of air, the signal of Cu$^{2+}$ did not change with the irradiation, indicating the reduced Cu$^{+}$ reacts with O$_2$ to reproduce Cu$^{2+}$. This fact and the observation of O$_2^{{\cdot}^-}$ formation clearly supported the IFCT mechanism for the Cu(II)-deposited TiO$_2$ photocatalysts. For WO$_3$ photocatalyst, which is classified to Figure 1.16a, the formation of O$_2^{{\cdot}^-}$ was not observed on 442 nm excitation [51]. When it was grafted with Cu(II), the reduction of Cu$^{2+}$ in ESR spectrum and the formation of H$_2$O$_2$ were observed. The formation of H$_2$O$_2$ indicated the function of Cu(II) as a promoter for two-electron reduction of O$_2$. The reaction mechanisms of Cu(II)/TiO$_2$ and Cu(II)/WO$_3$ photocatalysts are illustrated in Figure 1.20 [51]. Thus, the reaction pathways for different types of visible-light-responsive photocatalysts could be confirmed by the detection of primarily produced active species.

1.8 Conclusion

In order to explore the reaction mechanism of bare TiO$_2$ and TiO$_2$ photocatalysts modified for visible-light response, the detection and the behaviors of key species, such as trapped electrons, superoxide radical (O$_2^{{\cdot}^-}$), hydroxyl radical (OH$^+$), hydrogen peroxide (H$_2$O$_2$), and singlet oxygen (1O$_2$), were discussed. Trapped electrons, which have been analyzed at 77 K with ESR spectroscopy, are so stable in the
absence of O$_2$ that the kinetics can be investigated by means of a stopped flow technique. O$_2$ in air receives a photogenerated CB electron or trapped electron to produce O$_2$$^•$−, which is converted to more stable H$_2$O$_2$. Since the rutile-containing anatase increased the OH$^•$ generation, the structure of H$_2$O$_2$ adsorbed on the rutile TiO$_2$ surface might be preferable to produce OH$^•$. Only partial decay of ¹O$_2$ with folic acid, which is a well-known reactant of ¹O$_2$, was observed, suggesting that the role of ¹O$_2$ in photocatalysis is not major. A general reaction pathway for bare TiO$_2$, in which organic compounds are oxidized directly to form organic radicals followed by the auto-oxidation with O$_2$ and release of CO$_2$, has been proposed. Furthermore, for some types of visible-light-responsive photocatalysts, the reaction mechanisms were compared by the detection of the primarily produced key species and the reaction pathways could be proposed.

References

