acceptable macronutrient distribution range (AMDR) 277, 278
activity-related sarcopenia 11
adverse outcomes of sarcopenia 114–15, 121
clinical strategy 119–21
interaction between lower muscle mass and decreased strength 118–19
relationship to decreased muscle strength 117–18
relationship to low muscle mass 115–17
aerobic exercise (AE) 256, 260–1
for sarcopenia 265
ageing
bone and muscle re-modelling 169
bones 169
muscles 169–70
age-related changes in body composition 324–5
age-related decline 253
age-related muscle mass loss 1, 20
chronic diseases 147
muscle mass change with age 4–5
muscle mass differences between age groups 1–3
muscle strength 75–6
age-related sarcopenia 11
ageing 20–1, 29–30, 141–2
clinical interventions to counteract sarcopenia 27–9
features 141
impaired muscle protein response to anabolic stimuli 24–6
loss of muscle mass and function 142
muscle protein turnover 22
regulation by mTORC1 signalling pathway 22–4
muscle strength decline 42
Akt protein kinase 136
amino acids
activation of insulin signaling pathway 61–2
dietary supplementation 27–8
essential (EAAs) 280–1, 282
euglycemic hyperinsulinemic clamp 61
optimizing protein digestion to increase availability 64–5
supplementation 285
to improve protein retention 65–6
anabolic resistance in elderly subjects 60–2
angiotensin-converting enzyme inhibitors (ACE inhibitors) 296–9
clinical experience 297
mechanism of action 297–9
anthropometry 206–8
cut-off points for sarcopenia 208–9
anti-oxidant-rich diets 160
appendicular lean mass (aLM) 183
appendicular skeletal muscle mass (ASMM) 10, 206
DXA measurement 206, 207–8, 213–15, 217
correlations 207
arm muscle circumference formula 206
arterial spin labelling (ASL) imaging 199
balance exercise 257, 264
for sarcopenia 266–7
balance test 242
bed rest 285–6
nutritional support during 287–8
bioelectrical impedance analysis (BIA)
age-related muscle mass loss 2–3
muscle mass measurement 209–11
cut-off points for sarcopenia 211–13, 214
skeletal muscle mass measurement 9
bioelectrical impedance spectrometry (BIS) 213
birth size 125–6, 132–4
grip strength 132–4
blood flow restriction (BFR) exercise 29
blood oxygen level dependent (BOLD) imaging 199
body mass index (BMI) 157, 161
fracture and osteoporosis risk 175
sarcopenic obesity (SO) 183–5

© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
INDEX

bone mineral density (BMD) 171, 175–6
DXA measurement 193–5
bones
exercise, benefits of 176–7
protein dietary intake 175–6
re-remodelling during ageing 169
branched chain amino acids (BCAA) 65–6, 285
cachexia 14, 143–5, 149, 162–3
diagnostic criteria 144
differentiation from sarcopenia 145–9
prevalence 143
staging 144
calcium
Ca$^{2+}$-induced calcium release (CICR) 92–3
sarcopenia 175
supplementation 190
cancer cachexia 144–5
casein 64
chair rise test 233–4, 241–2
chronic kidney disease 146
chronic low-grade inflammatory profile (CLIP)
330
classical syndromes 106
comorbidity 145–9
comprehensive geriatric assessment (CGA) 238
computed tomography (CT) 195–8
age-related muscle mass loss 3
muscle mass measurement 219–20
cut-off points for sarcopenia 220–2
cardiovascular drugs
ACE inhibitors 297
statins 299–300
dual-energy x-ray absorptiometry (DXA) 193–5
age-related muscle mass loss 2–3
ASMM measurement 206, 207–8, 213–15,
217
correlations 207
bone mineral density (BMD) measurement
171
muscle mass measurement 213–16
cut-off points for sarcopenia 216–19
skeletal muscle mass measurement 9
Dutch Famine Birth Cohort 134
dynamic activity 227
dynamometers 231
dynapenias 10
enalapril 297
endocrine alterations 160
endothelial dysfunction and protein anabolism
26–7
essential amino acids (EAAs) 280–1, 282
estimated average requirement (EAR) 277, 278
estrogens 302
clinical experience 302–3
mechanism of action 303
etiology of sarcopenia 21
euglycemic hyperinsulinemic clamp 61
European Society of Clinical Nutrition and
Metabolism (ESPEN) 10, 172, 240
European Union Geriatric Medicine Society
(EUGWS) classification of sarcopenia
148
European Working Group on sarcopenia in
older people (EWGSOP)
classification of sarcopenia 148
definition of sarcopenia 10, 14, 142
outcomes criteria 15
excitation-contraction (EC) coupling 49–50, 81
age-related changes 92–4
INDEX 341

excitatory postsynaptic potentials (EPSP) 47

exercise 28–9, 252–3
anabolic response in elderly subjects 66–7
as anabolic stimulus 25–6
benefits of physical activity during aging 255–8
decreased disability 259
decreased falls and injuries 259
decreased risk of chronic diseases 258
improved mental and social health 260
improved psychological health 259–60
improved quality of life (QOL) 260
increased life expectancy 260
optimization of body composition 258
response to exercise 258
treatment of chronic diseases 258–9
types 256–7
combined with nutrition 67
protein ingestion timing 283–4
synergistic effects 283
definition of terms 253
physical activity (PA) 254–5
sedentary behavior (SB) 253–4
interventions for sarcopenia
aerobic exercise (AE) 265
balance exercise 266–7
flexibility exercise 266
general recommendations 264–5
lifestyle modifications 265
resistance exercise (RE) 265–6
safety 267
osteoporosis prevention 176
bones 176–7
muscles 177
prevention of sarcopenia 328–32
sarcopenia prevention 176
bones 176–7
muscles 177
strength increase 77–9
types
aerobic exercise (AE) 260–1
balance exercise 264
flexibility exercise 263–4
resistant exercise (RE) 261–3
extramyocellular lipid (EMCL) 198, 199
European Union Geriatric Medicine Society (EUGMS) 10

fast proteins 64
fat
fat free mass (FFM) 209
infiltration into muscle 9, 15–16, 171
inflammation 147
fish, oily 175
flexibility exercise 263–4
for sarcopenia 266
flexibility of joints 258
18F-fluorodeoxyglucose (FDG) 200
follistatin 315
Fracture Risk Assessment Tool (FRAX) 173
fractures 173–4
frailty 10, 16, 116, 154, 163
definition 156
diagnosis 156–8
future challenges
cachexia and sarcopenia 162–3
sarcopenic obesity 161–2
overlaps with sarcopenia 159
endocrine alterations 160
inflammation 160
insulin resistance 161
senescence 159
starvation 159–60
vitamin D deficiency 160–1
pathophysiology 158–9
relationship to sarcopenia 109
Fried frailty index 116, 157
fruit and vegetables in the diet 175
gait speed 173
gait speed test 244–5
heritability 197
heritability of sarcopenia 107
geriatric syndromes 104–5
see also syndrome, sarcopenia as a conceptual model 107
gerontotechnology 44
ghrelin 306–7
clinical experience 307
mechanism of action 307
glomerular filtration rate (GFR) 145–6
grip strength 128, 129, 156
birth size 132–4
diabetes 130
discharge to usual residence 131
measurement methods 231–3
growth hormone (GH) 136, 287, 304–5
clinical experience 305
mechanism of action 306
Health, Aging and Body Composition (Health ABC) study 5, 75, 89
health-related quality of life (HRQoL) 129
Henneman’s size principle 48
Hertfordshire Ageing Study 127, 132
birth size and grip strength 132
Hertfordshire Cohort Study (HCS) 132
early nutrition 135
hip fracture 173–4
H-max 87
hormone replacement therapies
dihydroepiandrosterone (DHEA) 303–4
estrogens and tibolone 302–3

INDEX 341
hormone replacement therapies (Continued)
growth hormone (GH) 304–6
testosterone 300–2
Hounsfield scale 196
Hounsfield unit (HU) 196, 219–20
β-hydroxy β-methylbutyrate (HMB) 311–12
hyperaminoacidemia 61
hyperinsulinemia 61
hyperparathyroidism 175
inflammation 27, 160
chronic diseases 146
fat accumulation 147
insulin resistance 161, 171
muscle protein synthesis 25
vasodilation 26–7
insulin-like growth factors (IGFs) 136, 287
ACE inhibitors 298–9
International Academy of Nutrition and Aging (IANA) 10
International Association of Gerontology and Geriatrics – European Region (IAGG-ER) 10
interuterine environment 126
intramyocellular lipid (IMCL) 198, 199
isoflavones 313
isokinetic force 118–19
isometric activity 227
item response theory (IRT) 246
Jamar dynamometer 232
knee extension 42–3
kratopenia 10
Late-life Function and Disability Instrument (LLFDI) 246
lean body mass 8
loss during inactivity 286
leg extensor power (LEP) 229
leisure-time physical activity 254
leptin 314–15
leucine
dietary supplementation 27–8
mTORC1 activation 24
supplementation 285
life habits 108
lifecourse approach 125–7, 138
birth cohorts 127–8
birth size 132–4
cellular and molecular mechanisms
skeletal muscle growth and development 135
skeletal muscle plasticity in animal models 135–7
skeletal muscle plasticity in human studies 137
consequences of sarcopenia 128–30
determinants of sarcopenia 130–2
early nutrition 134–5
relevance to clinical practice 137
lifestyle intervention and independence for elders (LIFE) 242
lifestyle modifications 265
lifestyle physical activity 254
living conditions 108
locomotor system 168
lower-extremity performance (LEP) 197
magnetic resonance imaging (MRI) 198–9
muscle mass measurement 219–20
cut-off points for sarcopenia 220–2
skeletal muscle mass 206–7
mammalian target of rapamycin complex 1 (mTORC1) signalling pathway 22–4
exercise 29
leucine activation 24
Martin vigorimeter 233
melanocortin-4 receptor (MC4R) antagonists 313–14
men
adverse outcomes of sarcopenia 115–16
interaction between lower muscle mass and decreased strength 118–19
relationship to decreased muscle strength 117–18
testosterone replacement 120
anthropometric correlations 207
discharge to usual residence 131
grip strength 133
and diabetes 130
muscle mass differences between age groups 2–3
relative risk of poor physical performance 77
survival curve 129
metabolic agents for sarcopenia
creatine 307–9
β-hydroxy β-methylbutyrate (HMB) 311–12
vitamin D 309–11
microRNA dysregulation 27
M-max 87
Mobility Assessment Tool (MAT-sf) 246
moment of force 227
L-monomethyl-L-arginine (L-NMMA) 26–7
motion exercise 257
motivation 43–4
mTOR protein kinase 136–7
muscle atrophy 41–3
<table>
<thead>
<tr>
<th>Muscle Atrophy, Role of Nervous System</th>
<th>Muscle Mass Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>51</td>
<td>205</td>
</tr>
<tr>
<td>Motivation</td>
<td></td>
</tr>
<tr>
<td>43–4</td>
<td></td>
</tr>
<tr>
<td>Motor Program Generation</td>
<td></td>
</tr>
<tr>
<td>Control Strategies</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td></td>
</tr>
<tr>
<td>Movement Speed</td>
<td></td>
</tr>
<tr>
<td>44–6</td>
<td></td>
</tr>
<tr>
<td>Muscle Skeletal Development and Sarcopenia</td>
<td>50–1</td>
</tr>
<tr>
<td>Program Execution Through Spinal Cord and Nerves</td>
<td>47–8</td>
</tr>
<tr>
<td>Excitation-Contraction (EC) Coupling in Muscle Fibers</td>
<td>49–50</td>
</tr>
<tr>
<td>Motor Unit Changes</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td></td>
</tr>
<tr>
<td>Neuromuscular Junction (NMJ) Changes</td>
<td>49</td>
</tr>
<tr>
<td>Peripheral Nerve Changes</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td></td>
</tr>
<tr>
<td>Verification and Scaling by Sensory Input</td>
<td>47–8</td>
</tr>
<tr>
<td>Decline in Sensory Feedback</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td></td>
</tr>
<tr>
<td>Motor Coordination and Brain Changes</td>
<td>47</td>
</tr>
<tr>
<td>Reaction Time</td>
<td>46–7</td>
</tr>
<tr>
<td>Muscle Biology</td>
<td>20–1, 29–30</td>
</tr>
<tr>
<td>Excitation-Contraction (EC) Coupling, Age-Related Changes</td>
<td>92–4</td>
</tr>
<tr>
<td>Factors That Dissociate Mass and Strength</td>
<td>80</td>
</tr>
<tr>
<td>Age-Related Changes in Spinal Properties and Neuromuscular Junction</td>
<td>86–8</td>
</tr>
<tr>
<td>Age-Related Changes in Supraspinal Properties</td>
<td>85–6</td>
</tr>
<tr>
<td>Central Activation</td>
<td>80–1</td>
</tr>
<tr>
<td>Force Generation</td>
<td>8</td>
</tr>
<tr>
<td>Age-Related Changes in Contractile Filaments</td>
<td>90–1</td>
</tr>
<tr>
<td>Age-Related Changes in Force Transmission</td>
<td>91</td>
</tr>
<tr>
<td>Age-Related Changes in Size and Composition</td>
<td>89–90</td>
</tr>
<tr>
<td>Impaired Muscle Protein Response to Anabolic Stimuli</td>
<td>24–6</td>
</tr>
<tr>
<td>Other Contributors to Impaired Protein Anabolism</td>
<td>26–7</td>
</tr>
<tr>
<td>Protein Turnover</td>
<td>22</td>
</tr>
<tr>
<td>Regulation by mTORC1 Signalling Pathway</td>
<td>22–4</td>
</tr>
<tr>
<td>Regulation of Protein Mass</td>
<td>60</td>
</tr>
<tr>
<td>Relationship Between Mass and Strength</td>
<td>74–5</td>
</tr>
<tr>
<td>Intervention Studies</td>
<td>76–8</td>
</tr>
<tr>
<td>Population-Based Epidemiological Studies</td>
<td>75–6</td>
</tr>
<tr>
<td>Weakness Resulting from Prolonged Disuse</td>
<td>83</td>
</tr>
<tr>
<td>Muscle Mass Loss with Age</td>
<td>1, 20</td>
</tr>
<tr>
<td>Chronic Diseases</td>
<td>147</td>
</tr>
<tr>
<td>Muscle Mass Change with Age</td>
<td>4–5</td>
</tr>
<tr>
<td>Muscle Mass Differences Between Age Groups</td>
<td>1–3</td>
</tr>
<tr>
<td>Muscle Strength</td>
<td>75–6</td>
</tr>
<tr>
<td>Muscle Mass Measurement</td>
<td>205</td>
</tr>
<tr>
<td>Anthropometry</td>
<td>206–8</td>
</tr>
<tr>
<td>Cut-Off Points for Sarcopenia</td>
<td>208–9</td>
</tr>
<tr>
<td>BIA</td>
<td>209–11</td>
</tr>
<tr>
<td>Cut-Off Points for Sarcopenia</td>
<td>211–13, 214</td>
</tr>
<tr>
<td>CT and MRI</td>
<td>219–20</td>
</tr>
<tr>
<td>Cut-Off Points for Sarcopenia</td>
<td>220–2</td>
</tr>
<tr>
<td>DXA</td>
<td>213–16</td>
</tr>
<tr>
<td>Cut-Off Points for Sarcopenia</td>
<td>216–19</td>
</tr>
<tr>
<td>Overview of Methods</td>
<td>221, 222</td>
</tr>
<tr>
<td>Muscle Power</td>
<td>118–19, 226, 228</td>
</tr>
<tr>
<td>Measurement</td>
<td>228</td>
</tr>
<tr>
<td>Measurement, Clinical Routine Methods for Chair Rise Test</td>
<td>233–4</td>
</tr>
<tr>
<td>Stair Climb Power (SCP) Test</td>
<td>234–5</td>
</tr>
<tr>
<td>Measurement, Research Methods for Computerized Pneumatic Strength Training Equipment</td>
<td>228–9</td>
</tr>
<tr>
<td>Nottingham Power Rig</td>
<td>229–30</td>
</tr>
<tr>
<td>STS-Transfer</td>
<td>230–1</td>
</tr>
<tr>
<td>Vertical Jump</td>
<td>231</td>
</tr>
<tr>
<td>Muscle Quality</td>
<td>118, 184–5, 186</td>
</tr>
<tr>
<td>Muscle Strength</td>
<td>226, 227–8</td>
</tr>
<tr>
<td>Measurement</td>
<td>228</td>
</tr>
<tr>
<td>Measurement, Clinical Routine Methods for</td>
<td>231</td>
</tr>
<tr>
<td>Hand Grip Strength</td>
<td>231–3</td>
</tr>
<tr>
<td>Measurement, Research Methods for Computerized Pneumatic Strength Training Equipment</td>
<td>228–9</td>
</tr>
<tr>
<td>Muscles</td>
<td></td>
</tr>
<tr>
<td>Exercise, Benefits of</td>
<td>177</td>
</tr>
<tr>
<td>Remodelling During Ageing</td>
<td>169–70</td>
</tr>
<tr>
<td>Muscular Activity</td>
<td>227</td>
</tr>
<tr>
<td>Quantification</td>
<td>227</td>
</tr>
<tr>
<td>Myofibrosis (MF)</td>
<td>187</td>
</tr>
<tr>
<td>Myopenia</td>
<td>10</td>
</tr>
<tr>
<td>Myostatin Inhibition</td>
<td>315–16</td>
</tr>
<tr>
<td>Myosteatosis (MS)</td>
<td>171, 186–7</td>
</tr>
<tr>
<td>National Survey of Health and Development</td>
<td>127, 132</td>
</tr>
<tr>
<td>Nervous System, Role in Muscle Atrophy</td>
<td>41–3, 51</td>
</tr>
<tr>
<td>Excitation-Contraction (EC) Coupling in Muscle Fibers</td>
<td>49–50</td>
</tr>
<tr>
<td>Motivation</td>
<td>43–4</td>
</tr>
<tr>
<td>Motor Program Generation</td>
<td></td>
</tr>
<tr>
<td>Control Strategies</td>
<td>44</td>
</tr>
<tr>
<td>Movement Speed</td>
<td>44–5</td>
</tr>
<tr>
<td>Quality of Motor Program</td>
<td>45–6</td>
</tr>
</tbody>
</table>
nervous system, role in muscle atrophy
(Continued)
muscle skeletal development and sarcopenia 50–1
program execution through spinal cord and nerves 47–8
motor unit changes 48
neuromuscular junction (NMJ) changes 49
peripheral nerve changes 48
verification and scaling by sensory input
decline in sensory feedback 46
motor coordination and brain changes 47
reaction time 46–7
neural mechanisms leading to sarcopenia 43
neuromuscular junction (NMJ) 49
age-related changes 86–8
nifedipine 297
nitric oxide (NO) 26–7
Nottingham power rig 229–30
nutrition 27–8, 59–60, 275–6, 287
as anabolic stimulus 24–5
combined with exercise 67
protein ingestion timing 283–4
synergistic effects 283
early 134–5
effect of age on protein anabolism 278–80
prevention of sarcopenia
proteins 332–3
vitamin D 333–4
priority areas in sarcopenia
bed rest, nutritional support during 287–8
bed rest and physical inactivity 285–6
protein quantity and quality
distribution across meals 281–2
types of protein 280–1
protein recommendations for older adults
276–8
role in sarcopenia
anabolic resistance in elderly subjects 60–2
improving protein retention in elderly 63–6
protein requirement during aging 62–3
supplementation in sarcopenia 284–5
leucine and branched amino acids 285
nutrition-related sarcopenia 11

osteoporosis
case-finding procedures 172–3
definition 171–2
prevention and treatment
nutrient, energy and protein balance 175–6
vitamin D and calcium 174–5
with concurrent sarcopenia 173–4
outcomes 15
outcomes
adverse 114–15, 121
clinical strategy 119–21
interaction between lower muscle mass and decreased strength 118–19
relationship to decreased muscle strength 117–18
relationship to low muscle mass 115–17

Patient-Reported Outcomes Measurement Information System (PROMIS) 246
perindopril 297
phenylalanine 61
physical activity (PA) 254–5
benefits during aging 255–8
decreased disability 259
decreased falls and injuries 259
decreased risk of chronic diseases 258
improved mental and social health 260
improved psychological health 259–60
increased life expectancy 260
optimization of body composition 258
response to exercise 258
treatment of chronic diseases 258–9
synergistic effects of exercise combined with nutrition 283
types
aerobic exercise (AE) 260–1
balance exercise 264
flexibility exercise 263–4
resistant exercise (RE) 261–3
physical inactivity 253, 285–6
lean body mass loss 286
physical performance aspects of sarcopenia 13–14
physical performance measurement 238–9, 247
information provided 239–40
sarcopenia 240–1
tests
 gait speed test 244–5
self-reported functional limitations
assessment 245–6
short physical performance battery (SPPB) 241–3
stair climb power test (SCPT) 243–4
timed get-up-and-go (TGUG) 243
INDEX

phyto-estrogen supplementation 313
pixels 196
population risk 15
positron emission tomography (PET) 200–1
presarcopenia 11–12
prevalence of sarcopenia 107, 155, 325
prevention of sarcopenia 174, 324, 325–6
exercise 328–32
health categories for risk stratification of complications 331
nutrient, energy and protein balance 176
nutrition proteins 332–3
vitamin D 333–4
primary prevention 326–7, 330–1
nutritional interventions 333
quaternary prevention 327
nutritional interventions 333
secondary prevention 327, 331–2
nutritional interventions 333
strategy 327–8
clinical decision-making algorithm 329
tertiary prevention 327
nutritional interventions 333
vitamin D and calcium 175
primary sarcopenia 11, 148
proeolysis-inducing factor (PIF) 143
protein quality
distribution across meals 281–2
types of protein 280–1
protein-energy malnutrition (PEM) 162, 286–7
proteins
bone health 175–6
content in common foods 277
dietary recommendations for older adults 276–8
effect of age on protein anabolism 278–80
impaired muscle protein response to anabolic stimuli 24–6
improving retention in elderly subjects
amino acid supplementation 65–6
daily feeding pattern 65
effect of protein source 64
increasing intake 63–4
optimizing digestion to increase amino acid availability 64–5
other contributors to impaired protein anabolism 26–7
prevention of sarcopenia 332–3
quantity and quality
distribution across meals 281–2
types of protein 280–1
requirement during aging 62–3
sarcopenia prevention 176
timing ingestion 283–4
turnover with aging 22
regulation by mTORC1 signalling pathway 22–4
pulmonary disease 188
quantitative ultra sound (QUS) 171
racial differences in skeletal muscle mass estimation 211
raloxifene 174
range of motion (ROM) of joints 258, 263–4
receiver operating characteristic (ROC) curves 217
recommended dietary allowance (RDA) for proteins 276–7, 278, 281–2
refractory cachexia 145
renin–angiotensin system 298
resistance exercise (RE) 256, 261–3
for sarcopenia 265–6
risk factors 15
Rockwood Frailty Index 157
variables 158
ryanodine receptors (RYRs) 92–3
sarcopenia with limited mobility 12
sarcopenia
case-finding procedures 173
definitions 154–5, 172
alternative names 10
based on muscle mass 8–9
disease, as a 105–6
evolution over time 105
limitations of muscle mass basis 9–10
origin of word 1, 8
definitions, common aspects 13
as a syndrome 13
cachexia 14
inadequacy of muscle mass as definition 13
physical performance 13–14
definitions, recent
European Working Group on sarcopenia in older people (EWGSOP) 10–12, 14, 240
Society for Sarcopenia, Cachexia and Wasting Disorders (SSCWD) 12, 14
definitions, summary of 16
differentiation from cachexia 145–9
discussion areas 14
case finding and population risk 14–15
frailty 16
muscle fat and sarcopenia obesity 15–16
reference populations and cut-off values 15
relevant outcomes 15
sarcopenia (Continued)
overlaps with frailty 159
endocrine alterations 160
inflammation 160
insulin resistance 161
senescence 159
starvation 159–60
vitamin D deficiency 160–1
relationship to frailty 109
with concurrent osteoporosis 173–4
sarcopenic obesity (SO) 181
see also obesity
body composition characteristics 185
clinical implications
 cardiovascular and metabolic consequences 188–9
 functional limitation and disability 187–8
 pulmonary disease 188
 treatment 189–90
definitions 181–5
pathogenesis 186–7
Schwaan cells 49
secondary sarcopenia 11, 148
sedentary behavior (SB) 253–4
selective androgen receptor modulators (SARMs) 312–13
self-reported functional limitations assessment 245–6
senescence 159
sensory nerve action potentials (SNAPs) 48
severe sarcopenia 11–12
short physical performance battery (SPPB) 234, 239, 241–3
short-walk tests 239
single X-ray absorptiometry (SXA) 171
sit-to-stand transfer power 230–1
skeletal muscle imaging 193, 201
computed tomography (CT) 195–8
dual-energy x-ray absorptiometry (DXA) 193–5
magnetic resonance imaging (MRI) 198–9
positron emission tomography (PET) 200–1
skeletal muscle index (SMI) 10, 286
skeletal muscle mass formula 211
skinfold thickness 206
slow proteins 64
Society for Sarcopenia, Cachexia and Wasting Disorders (SSCWD)
definition of sarcopenia 12, 14
outcomes criteria 15
Southampton Women's Survey 127–8, 132
ever nutrition 135
stable isotope methodology 278, 279
staging in sarcopenia, EWGSOP definition 11–12
stair climb power (SCP) test 234–5, 243–4
starvation 159–60
statins 299
clinical experience 299
mechanism of action 299–300
store-operated Ca\(^{2+}\) channels (SOCC) 93
STS-transfer 230–1
successful aging 142
survival curves 129
syndrome, sarcopenia as a 13, 104–5
classical syndrome 106
geriatric syndrome 106–10
testosterone replacement 120, 287, 300
clinical experience 301
mechanism of action 301–2
tibolone 302
clinical experience 302–3
mechanism of action 303
timed get-up-and-go (TGUG) 243
torque 227
transcranial magnetic stimulation (TMS) 47, 86
treatments for sarcopenia 174
see also drug treatments for sarcopenia
exercise 28–9
nutrient, energy and protein balance 176
nutrition 27–8
sarcopenic obesity (SO) 189–90
vitamin D and calcium 175
TRH gene 130–1
tumor necrosis factor-\(\alpha\) (TNF-\(\alpha\)) 27, 108
ubiquitin-proteasome system 171
vasodilation 26–7
vertical jump 231
vigorimeters 232–3
visceral abdominal adipose tissue 185
vitamin D 169, 309–11
deficiency 160–1
osteoporosis 174–5
prevention of sarcopenia 333–4
sarcopenia 175
supplementation 190
voltage-induced calcium release (VICR) 91–4
volume load (VL) 263
voluntary activation of muscles 80–1
age-related changes 84
voxels 196
walking speed 128, 173, 239
sarcopenia 240
walking speed test 241, 244–5
whey protein 64
white matter degradation 45
women
adverse outcomes of sarcopenia
interaction between lower muscle mass and
decreased strength 118–19
adverse outcomes of sarcopenia
relationship to decreased muscle strength
117–18
anthropometric correlations 207
discharge to usual residence 131
grip strength and diabetes 130
muscle mass change with age 4–5
muscle mass differences between age groups
1–2, 3
relative risk of poor physical performance 77
Southampton Women’s Survey 127–8, 132,
135
survival curve 129
work 227