A

Absolute value, 749
Adjusted-R^2, 286
Akaike information criteria (AIC), 286
Alternative functional forms, 162
Alternative hypothesis, 118, 827
stating, 832
tests of, 119–122
Alternative robust sandwich estimators, 411–413
Alternative-specific variables, 707
AME (average marginal effect), 692, 740–741
Annual indicator variables, 329
Antilogarithm, 751
ARCH See Autoregressive conditional heteroskedastic (ARCH) model
ARCH-in-mean, 626
ARDL See Autoregressive distributed lag (ARDL) models
ARDL(p,q) model, 421–423, 430, 433–443, 456–462
Area under a curve, 762–764
AR(1) errors, 422–423, 443, 444, 457, 458
assumptions for, 454–455
estimation with, 452–455
higher order, testing for, 442–443
Phillips curve with, 455
properties of, 454–455, 479–480
testing for, 441
AR(1) model, 570–572
AR(2) model, 431–432
Assumptions
fixed effects, 661
independence of irrelevant alternatives, 705
panel data regression, 639
random effects model, 637, 660
simple linear regression models, 47, 50–58, 60, 67–70, 72–74, 76, 82, 84–88
Asymptotic, 73
Asymptotically unbiased, 228
Asymptotic distributions, 229, 410, 819
Asymptotic normality, 229–230
Asymptotic properties, 227
of estimators, 483
Asymptotic refinement, 258
Asymptotic test procedures, 843–848
Asymptotic variance, 254
ATE See Average treatment effect (ATE)
ATT See Average treatment effect on the treated (ATT)
Attenuation bias, 488
Augmented Dickey–Fuller test, 578–579
Autocorrelation, 57, 424–427 See also Serially correlated errors, testing for corregogram, 426
HAC standard errors, 448–452
lagged-dependent variable, models with, 488
population autocorrelation of order, one, 425
sample, 425–427
significance testing, 425–426
Autoregressive conditional heteroskedastic (ARCH) model, 615–616
asymmetric effect, 623
GARCH-in-mean and time-varying risk premium, 624–625
GARCH model, 622–624
Autoregressive distributed lag (ARDL) models, 421, 564, 568
ARDL(p,q) model, 421–423, 430, 433–443, 456–462
IDL model representation, 457–458
multipliers from ARDL representation, deriving, 458–461
Autoregressive error See AR(1) errors
Autoregressive model, 421
AR(1) error, 422–423, 441, 443, 444, 452–455, 457, 458
Auxiliary regression, 289–291
Average marginal effect (AME), 689, 692, 740–741
Average treatment effect (ATE), 343
Average treatment effect on the treated (ATT), 344, 347

B
Balanced panels, 9, 636
Bandwidth, 853
Base group See Reference group
Baton Rouge house data, 78–79, 82
Bayesian information criterion See Schwarz criterion (SC)
Bernoulli distribution, 790–791
Binomial random variable, 769
Binary variables
Binary choice models, 682–702
Linear probability, 683–685
logit, 693–695
and panel data, 701–702
probit, 686–693
random utility models, 741–743
Binary endogenous explanatory variables, 700–701
Binary variables, 769 See also Indicator variables
Binomial distribution, 149, 790–791
Binomial random variable, 791
Bivariate function maxima and minima, 760–761
Bivariate normal distribution, 37–39
Bivariate probit, 700
BLS See Bureau of Labor Statistics (BLS), United States
BLUE See Best linear unbiased estimators (BLUE)
BLUP See Best linear unbiased predictor (BLUP)
Bootstrapping, 254
asymptotic refinement, 258
bias estimate, 256
for nonlinear functions, 258–259
percentile interval estimate, 257
resampling, 255–256
standard error, 256–257
Bootstrap sample, 255
Breusch–Pagan test, 387, 409
Bureau of Labor Statistics (BLS), United States, 88

C
Canonical correlations, 520
analysis, 521
first, 521
second, 521
smallest, 521
Cauchy–Schwarz inequality, 811
Causality, 342
vs. prediction, 273–274
Causal modeling and treatment effects
causal effects nature and, 342–343
control variables, 345–347
decomposing, 344–345
overlap assumption, 347
regression discontinuity designs, 347–350
treatment effect models, 343–344
Causal relationship, 50
cdf See Cumulative distribution function (cdf)
Ceiling, 805
Censored data, 747
Censored sample, 389
Central chi-square distribution, 795, 798
Central limit theorem, 56, 73, 229, 818–820
Central moments, 820
Central t-distribution, 794–796
Chi-square test, 261, 270, 271, 409
Chi-square errors, 250–252
Chi-square distribution, 794–796
Chebyshev’s inequality, 810, 811
Change of variable technique, 787–789
Chain rule of differentiation, 755
Central moments, 820
Central limit theorem, 56, 73, 229, 230, 774, 782
Central chi-square distribution, 795, 798
Censored sample, 389
Censored data, 747
Ceiling, 805
Constant of integration, 762
Constant term, 202
Constant variance, 619
Consumption function, 545
in first differences, 586–587
Contemporaneous correlation, 534, 535
Contemporaneous exogeneity, 444
Contemporaneously uncorrelated, 483, 487–489, 545
lagged-dependent variable models with serial correlation, 488
measurement error, 487–488
omitted variables, 488
simultaneous equations bias, 488
Continuous random variables, 17, 19, 26, 27, 32, 35, 37, 769, 778–789
distributions of functions of, 787–789
expected value, 24, 780–781
probability calculations, 779–780
properties of, 780–781
truncated, 789
variance of, 781
Control variables, 211, 278–280, 345
Correlation(s), 28, 773–774, 785
See also Autocorrelation
analysis, 158
calculation of, 28
canonical, 520, 521
defined, 424
defined, 424
of error, 57
partial, 502
positive, 773
and R^2, 158–160
serial (see Autocorrelation)
Correlograms, 426, 439–440
Count data models, 713–716
Covariance, 27–29, 773–774
decomposition, 34, 103, 777–778
of least squares estimators, 69–72, 74–75
zero, 52, 87, 103
Covariance matrix, 213
CPS See Current Population Survey (CPS)
Cragg–Donald F-test statistic, 521, 522, 559, 561
Critical values, 115, 217, 796
Cross-sectional data, 8–9, 51, 57, 291
derivatives, 753
heteroskedasticity and, 371
weakening strict exogeneity, 230–231
Cumulative distribution function (cdf), 18–19, 769
of continuous random variables, 779
inverse, 801
Cumulative multiplier, 446
Current Population Survey (CPS), 7
Curvilinear forms, 77

D
Data See also specific types of data
experimental, 6
generating process, 51, 58, 84, 85, 87, 106, 108, 109, 147, 250, 483
interpreting, 14
nonexperimental, 7
obtaining, 14
quasi-experimental, 6–7
sample creation of, 108–109
sampling, 813–814
types of, 7–9
DataFerrett, 14
Data generation process (DGP), 51, 58, 84, 85, 87, 106, 108, 109, 147, 250, 483
Decimals and percentages, 751
Decomposition
covariance, 34, 103, 777–778
sum of squares, 193
variance, 33–34, 774–777
Definite integral, 763, 764
Degrees of freedom, 75, 114, 215, 794
denominator, 798
numerator, 798
Delay multipliers, 445, 456
Delete-one strategy, 169
Delta method, 233, 248
nonlinear function of single parameter, 248–249
Denominator degrees of freedom, 798
Dependent variable, 49
Derivatives, 753
Deterministic trend, 567, 569–570
Deviation(s)
about individual means, 679
from mean form, 67
DF See Degrees of freedom
DFBETAS measure, 170
DFITS measure, 170
Dichotomous variables See Indicator variables
Dickey–Fuller tests, 577
with intercept and no trend, 577–579
with intercept and trend, 579–580
with no intercept and no trend, 580–581
Differenced data, 342
Difference estimator, 334–335, 640–642
with additional controls, 336–337
application of, 335–336
with fixed effects, 337–338
Differences-in-differences estimator, 338–342, 366–367
Difference stationary, 586, 587
Discrete change effect, 688
Discrete random variables, 16–18, 21, 24–26, 30–32, 34, 769
expected value of, 769–770
variance of, 770–771
Distributed lag model, 419, 420
autoregressive (see Autoregressive distributed lag (ARDL) models)
finite, 420, 445
infinite, 421–422, 456–463
Okun’s law, 446
Distributed lag weight, 445
Distribution(s)
of functions of random variables, 787–789
of sample proportion, 842–843
sampling, 816–818
Double summation, 23
Dummy variables, 769 See also
Indicator variables
intercept, 319
least squares, 644–646
slope, 320–321
Dummy variable trap, 320, 325
Durbin–Watson bounds test, 478–479
Durbin–Watson test, 443, 476–479
Dynamic binary choice model, 702
Dynamic relationships, 420–424, 598
autoregressive distributed lag models, 421
autoregressive model, 421–423
finite distributed lags, 420–421
infinite distributed lag models, 421–422
E
Econometric(s), 1–4
Econometric model, 4–5
as basis for statistical inference, 814–815
causality and prediction, 5
data generation, 5–7, 51
data types for, 7–9
defined, 3
equations in, 723–724
multiple regression model, 198–201
random error and strict exogeneity, 52–53
random error variation, 54–56
regression function, 53–54
research process in, 9–10
simple linear regression, 49–59
Economic model
multiple regression model, 197–198
simple linear regression, 47–49, 65–66
EGARCH See Exponential GARCH
(FGARCH)
EGLS See Estimated generalized least squares (EGLS)
Elasticity, 64–65
income elasticity, 64–65
linear relationship, 753
nonlinear relationship, 757
semi-elasticity, 79
unit elasticity, 178
Empirical analysis, 17
Endogeneity, 654–656
Endogenous regressors, 482–487, 655
Endogenous variables, 88, 482, 487, 492, 503, 532, 545
Error(s) See also Standard errors
AR(1), 422–423, 441, 443, 444, 452–455, 457, 458
contemporaneously uncorrelated, 487–488
forecast, 430
mean squared error, 193–195
normality, 56
random, 4, 52–56, 74, 107
specification, 59
term, IDL model, 461–462
Type I, 119–120, 833
Type II, 120, 833
Error components, estimation of, 679–680
Error correction, 599 See also Vector error correction (VEC)
Error correlation, 648
Error normality, 204
Errors-in-variables, 487
Error variance estimation, 207–208
Error variance estimator, 212
Error variance of sample proportion, 842–843
of functions of random variables, 787–789
of several random variables, 772
of several random variables, 487–488
of continuous random variables, 24
of discrete random variables, 769–770
of least squares estimators, 68–69
rules for, 25
of several random variables, 27
Experimental design, 813
Experiments, 17, 770
Explanatory variables, 204
Exponential function, 751
Exponential GARCH (EGARCH), 625
Exponents, 749
Extreme value distribution, 803
F
F-distribution, 797–799
Feasible generalized least squares (FGLS), 380, 684
Federal Reserve Economic Data (FRED), 14
FGLS See Feasible generalized least squares (FGLS)
Financial variables, characteristics of, 617
Finite distributed lags, 420–421, 445–448
First canonical correlation, 521
First derivative, 753
First difference, 62–63
First order autoregressive model (AR(1) model), 422–423, 441, 443, 444, 452–455, 457, 458, 570–572
First-stage equations, 496 See Reduced form equations
First-stage regression, 498
first-stage regression, 498
instrument strength assessment using, 500–502
Fixed effects, 643
Fixed effects estimator, 640–646
Fixed effects model, 645
with cluster-robust standard errors, 650–651
Forbidden regression, 700
Forcing variable, 348
Forecast error, 154, 192
Forecast error variance decompositions, 605–607
Forecasting, 419, 430–438
AR(2) model, OLS estimation of, 431–432
assumptions for, 435–436
error, 283, 430
Granger causality, testing for, 437–438
Exogenous variables, 86, 483, 498, 499, 532, 545
Expectations See also Mean conditional, 774, 782, 784, 786
iterated, 774
of several random variables, 772
unconditional, 784
Expected values, 23, 48, 769, 816–817
calculation of, 24
conditional, 25
of continuous random variables, 24
of discrete random variables, 769–770
of least squares estimators, 68–69
rules for, 25
of several random variables, 27
Experimental design, 813
Experiments, 17, 770
Explanatory variables, 204
Exponential function, 751
Exponential GARCH (EGARCH), 625
Exponents, 749
Extreme value distribution, 803
Forecasting (contd.)
interval, 433–435
lag length selection, 436–437
short-term, 430
standard error, 433–435
unemployment, 432–433
FRED See Federal Reserve Economic Data (FRED)
Frequency distribution, of simulated models, 619
Frisch–Waugh–Lovell (FWL) theorem, 209–211, 315–316, 502, 568
F-test See Joint hypotheses testing (F-test)
Fuller-modified LIML, 558–559
Functional form, 153
Fuzzy regression discontinuity design, 350
FWL See Frisch–Waugh–Lovell (FWL) theorem
G
Gauss–Markov theorem, 72–73
multiple regression model, 211, 272, 278, 289
proof of, 102
Generalized (GARCH)-in-mean, 624–625
Generalized least squares (GLS), 375, 448, 453–454
known form of variance, 375–377
unknown form of variance, 377–383
Generalized least squares estimator, 505, 684
Generalized method-of-moments (GMM) estimation, 504–505
Generalized (GARCH) model, 622–625
General linear hypothesis, 131
Geometrically declining lag, 421, 456–457
Geometry, probability calculation using, 779–780
GLS See Generalized least squares (GLS)
Goldfeld–Quandt test, 384–385
Goodness-of-fit measure (R²), 153, 156–158
correlation analysis, 158–160
with instrumental variables estimates, 505
log-linear model, 176
multiple regression model, 208–209
Granger causality, testing for, 437–438
Grouped heteroskedasticity, 380
Growth model, 174
H
HAC (heteroskedasticity and autocorrelation consistent)
standard errors, 448–452
Hausman–Taylor estimator, 658–660
Hausman test, 527, 654–656
for endogeneity, 505–506
logic of, 507–508
HCE See White heteroskedasticity-consistent estimator (HCE)
Heckit, 723, 725–744
Hedonic model, 318
Heterogeneity, 635, 638, 640
Heteroskedastic errors, 370
Heteroskedasticity, 165
conditional, 385–387
detecting, 385–388
in food expenditure model, 167
generalized least squares (GLS), 375–383
Lagrange multiplier tests for, 408–410
in linear probability model, 390–391
model specification, 388–389
in multiple regression model, 370–374
nature of, 369–370
robust variance estimator, 374–375
unconditional, 387, 416
Heteroskedastic partition, 383
Histogram, 689
Homoskedasticity, 55, 203, 370, 379
Hypothesis testing, 113, 118, 826–834
See also specific tests
alternative hypothesis, 118
binary logit model, 695–697
components of, 826–827
and confidence intervals, 833–834
examples of, 123–126
with instrumental variables estimates, 504
left-tail test, 125
for linear combination of coefficients, 221–222
null hypothesis, 118
one-tail test, 120–122, 220–221
p-value, 126–129
rejection region, 119–122
right-tail test, 123–124
sampling properties of, 149
step-by-step procedure, 218
test of significance of single coefficient, 219–220
test statistic, 119
two-tail test, 125–126, 218
I
Identification problem, 536–538, 604, 612–613
multinomial probit model, 703
simultaneous equations models, 536–538
supply and demand, 543
two-stage least squares estimation, 541
vector autoregressive model, 612–613
Identified parameters, 503
IIA (independence of irrelevant alternatives), 705
Impact multiplier, 445
Implicit form of equations, 558
Impulse response functions, 603–605
IMR (inverse Mills ratio), 723, 724
Incidental parameters problem, 702
Income elasticity, 64–65
Inconsistency of OLS estimator, 486–487, 492
Indefinite integral, 762
Independence of irrelevant alternatives (IIA), 705
Independent random x linear regression model, 85
Independent variable, 49, 84
random and independent x, 84–85
random and strictly exogenous x, 86–87
random sampling, 87–88
Index models, 710
Index of summation, 23
Indicator function, 852
Indicator variables, 16, 318, 769
causal modeling, 342–350
Chow test and, 326–328
controlling for time, 328–329
intercept, 318–320
linear probability model, 331–332
log-linear models, 329–330
qualitative factors and, 323–326
regression with, 82–83
slope-indicator variables, 320–322
treatment effects, 332–342
Indirect least squares, 551
Indirect least squares estimator, 511
Individual heterogeneity, 638, 640–643, 653
Individual-specific variables, 703, 707
Inequalities, 749
Inference, 113 See also Statistical inference
Infinite distributed lag (IDL) models, 421–422, 456–463
See also
Autoregressive distributed lag (ARDL) models
ARDL representation, consistency testing for, 457–458
assumptions for, 462–463
error term, 461–462
geometrically declining lags, 456–457
multipliers from ARDL representation, deriving, 458–461
Influence diagrams, for regression models, 533
Information measure, 846, 847
Innovation, 604
Instrumental variables (IV), 482, 492, 498, 658–659
alternatives to, 557–562
estimators, 493, 495
consistency of, 494–495
Linear congruential generator, 805–806
Linear estimators, 67, 72, 73, 100, 102, 103, 105, 820, 850
best linear unbiased estimators, 820, 849–851
Linear hypothesis, 132
Linear-log model, 163–165
Linear probability model, 331–332, 390–391, 683–685
Linear regression function, 38
Linear relationships, 162, 752
elasticity, 753
slopes and derivatives, 753
LM test See Lagrange multiplier (LM) test
Logarithms and number e, 750–751
Logarithms and percentages, 751–752
Logistic random variables, 685
Logistic growth curve, 296
Logistic logit models
Logit, 685
Logistic regression function, 38
Log-linear model, 80–81, 162, 163, 169–171
Log-linear function, 79
Logistic random variables, 685
Log-linear relationship, 388
Log-linear models, 173–177
Log-normal distribution, 173–177
Log-log model, 163, 177–179
Log-reciprocal model, 184
Longitudinal data, 9
LR (likelihood ratio) tests, 696–697
Longitudinal data, 9
Log-reciprocal model, 184
Log-normal distribution, 173–177
Log-log model, 163, 177–179
Log-normal distribution, 173, 799–800
Log-reciprocal model, 184
Longitudinal data, 9
LR (likelihood ratio) tests, 696–697, 843–845
Mean
Expected values
769 See also
Maxima and minima, 758–759
bivariate function, 760–761
Maximum likelihood estimates, 691
Maximum likelihood estimation (MLE), 837–848
asymptotic test procedures, 843–848
censored data, 703–704
distribution of sample proportion, 842–843
inference with, 840–841
marginal and discrete change effects, 688–689
multinomial probit model, 704–705
Poisson regression model, 713–714
probit model, 690–693
simple linear regression model, 717
variance of estimator, 841–842
Maximum likelihood principle, 838
McDonald–Moffit decomposition, 721
Mean See Expected values
deviations about, 679
population, 490, 815–820, 834–835
sample, 815
standard error of, 821
Mean equation, 620
Mean reversion, 566
Mean squared error, 193–195
Median, 799
Mersenne Twister algorithm, 107
Method of moments estimation, 482
instrumental variables estimation, in
general model, 502–504
instrumental variables estimation, in
multiple regression model, 498–500
instrumental variables estimation, in
simple regression model, 492–493
instrument strength assessment
using first-stage model, 500–502
issues related to IV estimation, 504–505
IV estimation using two-stage least
squares, 495–496
IV estimator, consistency of, 494–495
of population mean and variance, 490–491
in simple regression model, 491–492
strong instruments, importance of
using, 493–494
using surplus moment conditions, 496–498
Microeconometric panel, 636
Mixed logit model, 708
Modeling
choice of functional form, 161–163
diagnostic residual plots, 165–167
influential observations identification
and, 169–171
linear-log food expenditure model, 163–165
log-linear models, 173–177
log-log models, 177–179
polynomial models, 171–173
regression errors and normal
distribution, 167–169
scaling of data, 160–161
Modulus, 805
Moments
method of (see Method of moments estimation)
of normal distribution, 793
population, 490
sample, 490
Monotonic, strictly, 787
Monte Carlo experiment, 77, 106
Monte Carlo objectives, 109
Monte Carlo simulation (experiment), 106–111, 147–148, 525
data sample creation, 108–109
delta method, 252–254
estimators, 823–825
heteroskedasticity, 414–416
hypothesis tests, sampling properties, 149
IV/2SLS, sampling properties of, 528–530
illustrations using simulated data, 526–528
interval estimators, sampling properties, 148
least squares estimation with
chi-square errors, 250–252
Monte Carlo samples, choosing, 149
objectives, 109
random error, 107
random x Monte Carlo results, 110–111, 150–151
regression function, 106–107
simultaneous equations models, 562
theoretically true values, 107–108
Moving average, 442
Multinomial choice models
conditional logit, 707–709
multinomial logit, 702–706
Multinomial logit model, 702–706
Multinomial probit model, 703, 708
Multiple regression model, 58, 196 See also
specific topics
assumptions of, 203–204
causality vs. prediction, 273–274
choice of model, 280–281
control variables, 278–280
defined, 197
delta method, 248–250
econometric model, 198–201
economic model, 197–198
error variance estimation, 207–208
Frisch–Waugh–Lovell (FWL) theorem, 209–211
general model, 202
goodness-of-fit measurement, 208–209
heteroskedasticity in, 370–374
hypothesis testing, 218–222
instrumental variables estimation in, 498–500
interval estimation, 216–218, 249
irrelevant variables, 277–278
joint hypotheses testing (F-test), 260–271
least squares estimation procedure, 202–207, 247
least squares estimator finite sample properties, 211–216
least squares estimator large sample properties, 227–234
Monte Carlo simulation, 250–254
nonlinear least squares, 294–296
nonlinear relationships, 222–226
nonsample information, 271–273
omitted variables, 275–277
parameter estimation, 205–211
poor data, collinearity, and insignificance, 288–294
prediction, 282–288
RESET, 281–282
Multiple regression plane, 201
Multiplicative heteroskedasticity, 379–382
Multiplier analysis, 459–462
cumulative, 446
delay, 456
impact, 445
interim, 446
Lagrange, 440–443
s-period, 445
total, 446
Mundlak approach, 657–658
N
National Bureau of Economic Research (NBER), 13–14
Natural experiments, 338, 340, 354
Natural logarithms, 750
NBER See National Bureau of Economic Research (NBER)
Negative binomial model, 716
Nested logit model, 708
Newey–West standard errors See HAC (heteroskedasticity and autocorrelation consistent) standard errors
Nominal standard error, 254
Non-central chi-square distribution, 795
Non-central F-distribution, 798
Non-centrality parameter, 795, 796
Non-central t-distribution, 797
Non-central-t-random variable, 146
Nonlinear function, 248
bootstrapping, 258–259
of coefficients, 232–234
of single parameter, 248–249
of two parameters, 249–250
Nonlinear hypotheses, F-test, 270–271
Nonlinear least squares estimation, 294–296, 453
Nonlinear relationships, 753
bivariate function maxima and minima, 760–761
elasticity of, 757
maxima and minima, 758–759
multiple regression model, 222–226
partial derivatives, 759–760
rules for derivatives, 754–757
second derivatives, 757
simple linear regression model, 77–82
Nonparametric estimation, 851
Nonsample information, 271–273
Nonstationary time series data,
563–570
cointegration, 582–585
first-order autoregressive model, 570–572
random walk models, 572–574
regression when there is no cointegration, 585–587
spurious regressions, 574–575
stochastic trends, consequences, 574–576
unit root tests for stationarity, 576–582
Normal-based bootstrap confidence interval, 257
Normal distribution, 34–39, 771, 793–794
bivariate normal distribution, 37–39
moments of, 794
standard, 793
truncated, 794
Normal equations, 99, 247, 492
Normality of a population, 836
Normality testing, in food expenditure model, 168–169
Normalizing, 546, 558
Nuisance parameters, 385
Null hypothesis, 101, 103, 118, 827 See also Hypothesis testing
F-statistic, 263
F-statistic when null hypothesis is not true, 101
F-statistic when null hypothesis is true, 103
Numerator degrees of freedom, 798
O
Odds ratio, 706
Okun’s Law, 446–447, 462
OLS See Ordinary least squares (OLS)
Omitted variables, 275–277, 488, 639
Omitted variables bias, 68, 639
One-tail tests, 120–122, 828–829
F-test, 268
for single coefficient, 220–221
Ordered choice models, 709–712
Ordered logit model, 711
Ordered probit model, 710–712
Ordinal values, 709
Ordinary least squares (OLS), 62–63, 639 See also Least squares estimation
AR(2) model, 431–432
with cluster-robust standard errors, 648–650
difference estimator, 640–642
failure of, 535–536
heteroskedasticity, consequences for, 373–374
inconsistency of, 486–487, 492
large sample properties of, 483–484
multiple regression model, 205–207
panel data regression, 639–640
Overall significance, 264, 265
Overidentified, 503
Overlap assumption, 347, 367
P
Panel data See Longitudinal data
Panel data models, 634–663
cluster-robust standard errors, 648–651, 677–679
error assumptions, 646–651
estimation of error components, 679–680
fixed effects, 640–646
Hausman–Taylor estimator, 658–660
pooled, 647
random effects, 651–663
Panel data regression function, 636–640
Panel-robust standard errors, 649 See also Cluster-robust standard errors
Panel Study of Income Dynamics (PSID), 9, 14
Parameters, 3, 4, 815
Parametric estimation, 851
Partial adjustment model, 550
Partial correlation, 502
Partial derivatives, 759–760
Partial least squares, 648–651
Partialing out, 521
density function (pdf)
Penn World Table, 9, 14
Percentage change, 751, 753
Percentiles, 36
Percentile interval estimate, 257–259
Phillips curve, 450–452
with AR(1) errors, 455
Pivotal statistics, 114, 215
Plagiarism, 12
Point estimates, 113, 822
Point prediction, 154–155
Poison distribution, 791
Poison random variables, 713
Poison regression model, 713–716
Polynomial equations, 222–224
Polynomial models, 171–173
Pooled least squares, 647, 649
Pooled model, 647
Population, 17
moments, 490
normality of, 836
Population autocorrelations, 425
Index

Statistical independence, 21–22, 51
Statistical inference, 4, 51, 113, 812–853
best linear unbiased estimation, 849–851
data samples for, 813–814
defined, 813
derivation of least squares estimator, 848–849
econometric model as basis for, 814–815
equality of population means, 834–835
estimating population mean, 815–820
estimating population variance, 820–822
hypothesis testing, 826–834
interval estimation, 822–826
kernel density estimator, 851–853
maximum likelihood estimation, 837–848
normality of a population, 836
population variance testing, 834
ratio of population variances, 835–836
Statistically independent, 771
Statistical significance, 126, 500
Stochastic process, 570
Stochastic trend, 567, 573
consequences of, 574–576
Stock–Yogo weak IV tests, 559–561
Strict exogeneity, 369, 482
implications of, 86–87, 103
multiple regression model, 199, 203
and random error, 52–53
weakening, 230–232
Strictly exogenous \(x \), 52, 86–88, 103, 105
Strictly monotonic, 787
Strong dependence, 566
Strong instruments, importance of using, 493–494
Structural equations, 542
Structural parameters, 545
Studentized residual, 169–170
Summation operation, 22
Sum of squared differences, 849–851
minimizing, 761
Sum of squared errors (SSE), 82, 281
Sum of squares decomposition, 193
Sum of squares due to regression, 208
Surplus instruments validity, testing, 528
Surplus moment conditions, 496–498, 508
Survey methodology, 88
Symmetrical two-tail test, 258

T
Tangent, 753
Taylor series approximation, 751, 756–757, 766

Sample moments, 490
Sample proportion, 840, 842–843
Samples
random, 815
for statistical inference, 813–814
Sample selection, 723–725
Sample standard deviation, 256
Sample variance, 821
Sampling distribution, 816–818
Sampling estimators, 66
Sampling properties, 525
bootstrapping, 257
hypothesis test, 149
interval estimators, 148
of OLS estimator, 211
Sampling variability, 76, 117, 254
Sampling variation, 66, 69, 816
Stationarity, 427–429
SC See Schwarz criterion (SC)
Scaling of data, 160–161
Scatter diagram, 60
Schwarz criterion (SC), 286
Scientific notation, 749–750
Seasonal indicator variables, 328
Second canonical correlation, 521
Second derivatives, 757
of linear function, 758
of quadratic function, 758
Second-order Taylor series
approximation, 757, 766
Second-stage equation, 496
Second-stage regression, 498
Selection bias, 333, 344, 723
Selection equation, 723
Selectivity problem, 723
Semi-elasticity, 79
Serial correlation See Autocorrelation
Serially correlated errors, testing for, 438–443 See also Autocorrelation
Durbin–Watson test, 443
Lagrange multiplier test, 440–443
least squares residuals, correlogram of, 439–440
Short-term forecasting, 430
Significance
level of, 828
of a model, 264–265
Simple linear regression model, 46–111
See also specific topics
assessing least square estimators, 66–72
assumptions, 47, 50–58, 60, 67–70, 72–74, 76, 82, 84–88
\(b_1 \) and \(b_2 \) covariance, 69–72
\(b_1 \) and \(b_2 \) expected values, 68–69
\(b_2 \) estimator, 67–68, 99–101
data generation process for, 147
derivation of least squares estimates, 98–99
econometric model, 49–59
economic model, 47–49
error term variance estimation, 74–77
Gauss–Markov theorem, 72–73, 102
independent variable, 84–88
least squares principle, 61–65
Monte Carlo simulation, 106–111
nonlinear relationships estimation, 77–82
probability distributions, 73
regression with indicator variables, 82–83
sampling variation, 69
Simple regression model
instrumental variables estimation in, 492–493
method of moments estimation in, 491–492
under random sampling, 482
Simultaneous equations bias, 488
Simultaneous equations models
identification problem, 536–538
least squares estimation failure and, 535–536
reduced form equations, 534, 541–543
supply and demand model, 532
two-stage least squares estimation, 538–545
Skedastic function, 372, 375, 414
Skewness, 168, 771
Slope, 752, 753
of linear function, 755
of quadratic function, 755–756
of tangent, 755
Slope dummy variable See Interaction variable
Slope-indicator variables, 320–322
Smallest canonical correlation, 521
\(x \)-order sample autocorrelation, 425
Specification error, 59
Specification tests
Hausman test, 505–508
instrument validity, testing, 508–509
\(x \)-period delay multiplier, 445
Spurious regressions, 574–575
SSE See Sum of squared errors (SSE)
Standard deviation, 26, 769, 771
Standard errors, 254, 821
alternative robust, 413
of average marginal effect, 740–741
bootstrapping, 256–257
cluster-robust, 648–651, 677–679
of the estimate, 821
of forecast, 155, 433–435
interpreting, 76–77
of the mean, 821
nominal, 254
panel-robust, 649
robust, 374–375
variance and covariance and, 214
Standard normal distribution, 686, 793
Standard normal random variable, 82–83
Stationary variables, 564–567
trend stationary variables, 567–570, 579, 586

\(\text{SSE} \) See Sum of squared errors (SSE)
Index

Two-stage least squares (2SLS), 482

Truncated regression, 718

Truncated random variables, 789

Truncated Poisson distribution, 791

Truncated normal distribution, 794

Transformed model, 376

Total multiplier, 446

Time-series data, 7–8, 56, 87, 291 See also Nonstationary time series data

AR(1) error, 422–423, 441, 443, 444, 452–455, 457, 458

autocorrelations, 424–427

dynamic relationships, modeling, 420–424

forecasting, 419, 430–438

serially correlated errors, testing for, 438–443

stationarity and weak dependence, 427–429

weakening strict exogeneity, 231–232

Time-series regressions, for policy analysis, 443–463

AR(1) errors, estimation of, 452–455

finite distributed lags, 445–448

HAC standard errors, 448–452

infinite distributed lags, 456–463

Time-varying variables, 647

Time-varying variance, 615, 616, 619

Time-varying volatility, 616–620 See Autoregressive conditional heteroskedastic (ARCH) model

Tobit model, 720–722

Tobit Monte Carlo experiment, 745–747

Total multiplier, 446

Transformed model, 376

Truncated normal distribution, 794

Truncated Poisson distribution, 791

Truncated random variables, 789

Truncated regression, 718

\(t \)-statistic

when null hypothesis is not true, 101

when null hypothesis is true, 103

Two-stage least squares (2SLS), 482, 498, 501, 538–539, 541–545

alternatives, 557–558

general procedure, 539–540

IV estimation using, 495–496

properties of, 540

two-tail test, 122, 134, 218, 829, 830

of economic hypothesis, 125

\(p \)-value, 129

symmetrical, 258

test of significance, 126, 129

Type I error, 119–120, 833

Type II error, 120, 833

Unbalanced panels, 636

Unbiased estimators, 817 See also Best linear unbiased estimators (BLUE)

Unbiasedness, 68–70, 72, 74, 84–86, 88, 102, 104–106, 109, 111

Unbiased predictor, 154

Unconditional expectation, 30, 52

Unconditional heteroskedasticity, 387, 416

Unconditional mean, 615

Unconditional variance, 31, 615

Uncorrelated errors, conditional, 203–204

Unemployment forecasts, 432–433

Unit root, 428

Unit root tests, 582

Dickey–Fuller tests with intercept and no trend, 577–579

Dickey–Fuller tests with intercept and trend, 579–580

Dickey–Fuller tests with no intercept and no trend, 580–581

order of integration, 581–582

Univariate time-series models, 570

Unobserved heterogeneity, 637–639, 645–646

Unrestricted model, 263

VAR See Vector autoregressive (VAR) model

Wage equation, 175, 545

fixed effects estimators of, 641

goodness of fit measure, 176

Hausman–Taylor estimation, 659–660

instrument strength in, 502

interaction variable in, 225

IV estimation of, 495, 499–500

least squares estimators, 233–234

least squares estimation of, 489–490

log-linear model, 175, 176

log-quadratic, 226

Mundlak approach, 658

random effects model, 652–654

with regional indicators, 325–326

2SLS estimation of, 499–500

specification tests for, 509

Wald estimator, 511

Wald principle, 695

Wald tests, 268, 695–696, 845–846

Weak dependence, 427–429

Weak identification, testing for, 521–525

Weak instruments, 500–501, 503, 520–525, 527 See also Instrument strength assessment

Weighted least squares (WLS), 377–379

White heteroskedasticity-consistent estimator (HCE), 374

White test, 387

Within estimator, 642–644

WLS See Weighted least squares (WLS)