Table of Contents

PREFACE v
LIST OF EXAMPLES xxi

1 An Introduction to Econometrics 1

1.1 Why Study Econometrics? 1
1.2 What Is Econometrics About? 2
1.2.1 Some Examples 3
1.3 The Econometric Model 4
1.3.1 Causality and Prediction 5
1.4 How Are Data Generated? 5
1.4.1 Experimental Data 6
1.4.2 Quasi-Experimental Data 6
1.4.3 Nonexperimental Data 7
1.5 Economic Data Types 7
1.5.1 Time-Series Data 7
1.5.2 Cross-Section Data 8
1.5.3 Panel or Longitudinal Data 9
1.6 The Research Process 9
1.7 Writing an Empirical Research Paper 11
1.7.1 Writing a Research Proposal 11
1.7.2 A Format for Writing a Research Report 11
1.8 Sources of Economic Data 13
1.8.1 Links to Economic Data on the Internet 13
1.8.2 Interpreting Economic Data 14
1.8.3 Obtaining the Data 14

Probability Primer 15
P.1 Random Variables 16
P.2 Probability Distributions 17
P.3 Joint, Marginal, and Conditional Probabilities 20
P.3.1 Marginal Distributions 20
P.3.2 Conditional Probability 21
P.3.3 Statistical Independence 21
P.4 A Digression: Summation Notation 22
P.5 Properties of Probability Distributions 23
P.5.1 Expected Value of a Random Variable 24
P.5.2 Conditional Expectation 25
P.5.3 Rules for Expected Values 25
P.5.4 Variance of a Random Variable 26
P.5.5 Expected Values of Several Random Variables 27

P.5.6 Covariance Between Two Random Variables 27
P.6 Conditioning 29
P.6.1 Conditional Expectation 30
P.6.2 Conditional Variance 31
P.6.3 Iterated Expectations 32
P.6.4 Variance Decomposition 33
P.6.5 Covariance Decomposition 34
P.7 The Normal Distribution 34
P.7.1 The Bivariate Normal Distribution 37
P.8 Exercises 39

2 The Simple Linear Regression Model 46

2.1 An Economic Model 47
2.2 An Econometric Model 49
2.2.1 Data Generating Process 51
2.2.2 The Random Error and Strict Exogeneity 52
2.2.3 The Regression Function 53
2.2.4 Random Error Variation 54
2.2.5 Variation in x 56
2.2.6 Error Normality 56
2.2.7 Generalizing the Exogeneity Assumption 56
2.2.8 Error Correlation 57
2.2.9 Summarizing the Assumptions 58
2.3 Estimating the Regression Parameters 59
2.3.1 The Least Squares Principle 61
2.3.2 Other Economic Models 65
2.4 Assessing the Least Squares Estimators 66
2.4.1 The Estimator b_2 67
2.4.2 The Expected Values of b_1 and b_2 68
2.4.3 Sampling Variation 69
2.4.4 The Variances and Covariance of b_1 and b_2 69
2.5 The Gauss–Markov Theorem 72
2.6 The Probability Distributions of the Least Squares Estimators 73
2.7 Estimating the Variance of the Error Term 74
2.7.1 Estimating the Variances and Covariance of the Least Squares Estimators 74
2.7.2 Interpreting the Standard Errors 76
Table of Contents

Chapter 2

2.8 Estimating Nonlinear Relationships 77
 2.8.1 Quadratic Functions 77
 2.8.2 Using a Quadratic Model 77
 2.8.3 A Log-Linear Function 79
 2.8.4 Using a Log-Linear Model 80
 2.8.5 Choosing a Functional Form 82

2.9 Regression with Indicator Variables 82

2.10 The Independent Variable 84
 2.10.1 Random and Independent x 84
 2.10.2 Random and Strictly Exogenous x 86
 2.10.3 Random Sampling 87

2.11 Exercises 89
 2.11.1 Problems 89
 2.11.2 Computer Exercises 93

Appendix 2

Appendix 2A Derivation of the Least Squares Estimates 98
Appendix 2B Deviation from the Mean Form of \(b_2 \) 99
Appendix 2C \(b_2 \) Is a Linear Estimator 100
Appendix 2D Derivation of Theoretical Expression for \(b_2 \) 100
Appendix 2E Deriving the Conditional Variance of \(b_2 \) 100
Appendix 2F Proof of the Gauss–Markov Theorem 102
Appendix 2G Proofs of Results Introduced in Section 2.10 103
 2G.1 The Implications of Strict Exogeneity 103
 2G.2 The Random and Independent x Case 103
 2G.3 The Random and Strictly Exogenous x Case 105
 2G.4 Random Sampling 106

Appendix 2H Monte Carlo Simulation 106
 2H.1 The Regression Function 106
 2H.2 The Random Error 107
 2H.3 Theoretically True Values 107
 2H.4 Creating a Sample of Data 108
 2H.5 Monte Carlo Objectives 109
 2H.6 Monte Carlo Results 109
 2H.7 Random-x Monte Carlo Results 110

Chapter 3

3 Interval Estimation and Hypothesis Testing 112

3.1 Interval Estimation 113
 3.1.1 The \(t \)-Distribution 113
 3.1.2 Obtaining Interval Estimates 115
 3.1.3 The Sampling Context 116

3.2 Hypothesis Tests 118
 3.2.1 The Null Hypothesis 118
 3.2.2 The Alternative Hypothesis 118
 3.2.3 The Test Statistic 119
 3.2.4 The Rejection Region 119
 3.2.5 A Conclusion 120

3.3 Rejection Regions for Specific Alternatives 120
 3.3.1 One-Tail Tests with Alternative “Greater Than” (\(> \)) 120
 3.3.2 One-Tail Tests with Alternative “Less Than” (\(< \)) 121
 3.3.3 Two-Tail Tests with Alternative “Not Equal To” (\(\neq \)) 122

3.4 Examples of Hypothesis Tests 123

3.5 The \(p \)-Value 126

3.6 Linear Combinations of Parameters 129
 3.6.1 Testing a Linear Combination of Parameters 131

3.7 Exercises 133
 3.7.1 Problems 133
 3.7.2 Computer Exercises 139

Appendix 3

Appendix 3A Derivation of the \(t \)-Distribution 144
Appendix 3B Distribution of the \(t \)-Statistic under \(H_1 \) 145
Appendix 3C Monte Carlo Simulation 147
 3C.1 Sampling Properties of Interval Estimators 148
 3C.2 Sampling Properties of Hypothesis Tests 149
 3C.3 Choosing the Number of Monte Carlo Samples 149
 3C.4 Random-x Monte Carlo Results 150

Chapter 4

4 Prediction, Goodness-of-Fit, and Modeling Issues 152

4.1 Least Squares Prediction 153

4.2 Measuring Goodness-of-Fit 156
 4.2.1 Correlation Analysis 158
 4.2.2 Correlation Analysis and \(R^2 \) 158

4.3 Modeling Issues 160
 4.3.1 The Effects of Scaling the Data 160
 4.3.2 Choosing a Functional Form 161
 4.3.3 A Linear-Log Food Expenditure Model 163
 4.3.4 Using Diagnostic Residual Plots 165
 4.3.5 Are the Regression Errors Normally Distributed? 167
4.3.6 Identifying Influential Observations 169

4.4 Polynomial Models 171
4.4.1 Quadratic and Cubic Equations 171

4.5 Log-Linear Models 173
4.5.1 Prediction in the Log-Linear Model 175
4.5.2 A Generalized R^2 Measure 176
4.5.3 Prediction Intervals in the Log-Linear Model 177

4.6 Log-Log Models 177

4.7 Exercises 179
4.7.1 Problems 179
4.7.2 Computer Exercises 185

Appendix 4A Development of a Prediction Interval 192
Appendix 4B The Sum of Squares Decomposition 193
Appendix 4C Mean Squared Error: Estimation and Prediction 193

5 The Multiple Regression Model 196

5.1 Introduction 197
5.1.1 The Economic Model 197
5.1.2 The Econometric Model 198
5.1.3 The General Model 202
5.1.4 Assumptions of the Multiple Regression Model 203

5.2 Estimating the Parameters of the Multiple Regression Model 205
5.2.1 Least Squares Estimation Procedure 205
5.2.2 Estimating the Error Variance σ^2 207
5.2.3 Measuring Goodness-of-Fit 208
5.2.4 Frisch–Waugh–Lovell (FWL) Theorem 209

5.3 Finite Sample Properties of the Least Squares Estimator 211
5.3.1 The Variances and Covariances of the Least Squares Estimators 212
5.3.2 The Distribution of the Least Squares Estimators 214

5.4 Interval Estimation 216
5.4.1 Interval Estimation for a Single Coefficient 216
5.4.2 Interval Estimation for a Linear Combination of Coefficients 217

5.5 Hypothesis Testing 218
5.5.1 Testing the Significance of a Single Coefficient 219

5.5.2 One-Tail Hypothesis Testing for a Single Coefficient 220
5.5.3 Hypothesis Testing for a Linear Combination of Coefficients 221

5.6 Nonlinear Relationships 222

5.7 Large Sample Properties of the Least Squares Estimator 227
5.7.1 Consistency 227
5.7.2 Asymptotic Normality 229
5.7.3 Relaxing Assumptions 230
5.7.4 Inference for a Nonlinear Function of Coefficients 232

5.8 Exercises 234
5.8.1 Problems 234
5.8.2 Computer Exercises 240

Appendix 5A Derivation of Least Squares Estimators 247
Appendix 5B The Delta Method 248
5B.1 Nonlinear Function of a Single Parameter 248
5B.2 Nonlinear Function of Two Parameters 249

Appendix 5C Monte Carlo Simulation 250
5C.1 Least Squares Estimation with Chi-Square Errors 250
5C.2 Monte Carlo Simulation of the Delta Method 252

Appendix 5D Bootstrapping 254
5D.1 Resampling 255
5D.2 Bootstrap Bias Estimate 256
5D.3 Bootstrap Standard Error 256
5D.4 Bootstrap Percentile Interval Estimate 257
5D.5 Asymptotic Refinement 258

6 Further Inference in the Multiple Regression Model 260

6.1 Testing Joint Hypotheses: The F-test 261
6.1.1 Testing the Significance of the Model 264
6.1.2 The Relationship Between t- and F-Tests 265
6.1.3 More General F-Tests 267
6.1.4 Using Computer Software 268
6.1.5 Large Sample Tests 269

6.2 The Use of Nonsample Information 271

6.3 Model Specification 273
6.3.1 Causality versus Prediction 273
6.3.2 Omitted Variables 275
6.3.3 Irrelevant Variables 277
Appendix 8C Properties of the Least Squares Residuals 410
8C.1 Details of Multiplicative Heteroskedasticity Model 411
Appendix 8D Alternative Robust Sandwich Estimators 411
Appendix 8E Monte Carlo Evidence: OLS, GLS, and FGLS 414

9 Regression with Time-Series Data: Stationary Variables 417
9.1 Introduction 418
9.1.1 Modeling Dynamic Relationships 420
9.1.2 Autocorrelations 424
9.2 Stationarity and Weak Dependence 427
9.3 Forecasting 430
9.3.1 Forecast Intervals and Standard Errors 433
9.3.2 Assumptions for Forecasting 435
9.3.3 Selecting Lag Lengths 436
9.3.4 Testing for Granger Causality 437
9.4 Testing for Serially Correlated Errors 438
9.4.1 Checking the Correlogram of the Least Squares Residuals 439
9.4.2 Lagrange Multiplier Test 440
9.4.3 Durbin–Watson Test 443
9.5 Time-Series Regressions for Policy Analysis 443
9.5.1 Finite Distributed Lags 445
9.5.2 HAC Standard Errors 448
9.5.3 Estimation with AR(1) Errors 452
9.5.4 Infinite Distributed Lags 456
9.6 Exercises 463
9.6.1 Problems 463
9.6.2 Computer Exercises 468
Appendix 9A The Durbin–Watson Test 476
9A.1 The Durbin–Watson Bounds Test 478
Appendix 9B Properties of an AR(1) Error 479

10 Endogenous Regressors and Moment-Based Estimation 481
10.1 Least Squares Estimation with Endogenous Regressors 482
10.1.1 Large Sample Properties of the OLS Estimator 483
10.1.2 Why Least Squares Estimation Fails 484
10.1.3 Proving the Inconsistency of OLS 486
10.2 Cases in Which x and e are Contemporaneously Correlated 487
10.2.1 Measurement Error 487
10.2.2 Simultaneous Equations Bias 488
10.2.3 Lagged-Dependent Variable Models with Serial Correlation 489
10.2.4 Omitted Variables 489
10.3 Estimators Based on the Method of Moments 490
10.3.1 Method of Moments Estimation of a Population Mean and Variance 490
10.3.2 Method of Moments Estimation in the Simple Regression Model 491
10.3.3 Instrumental Variables Estimation in the Simple Regression Model 492
10.3.4 The Importance of Using Strong Instruments 493
10.3.5 Proving the Consistency of the IV Estimator 494
10.3.6 IV Estimation Using Two-Stage Least Squares (2SLS) 495
10.3.7 Using Surplus Moment Conditions 496
10.3.8 Instrumental Variables Estimation in the Multiple Regression Model 498
10.3.9 Assessing Instrument Strength Using the First-Stage Model 500
10.3.10 Instrumental Variables Estimation in a General Model 502
10.3.11 Additional Issues When Using IV Estimation 504
10.4 Specification Tests 505
10.4.1 The Hausman Test for Endogeneity 505
10.4.2 The Logic of the Hausman Test 507
10.4.3 Testing Instrument Validity 508
10.5 Exercises 510
10.5.1 Problems 510
10.5.2 Computer Exercises 516
Appendix 10A Testing for Weak Instruments 520
10A.1 A Test for Weak Identification 521
10A.2 Testing for Weak Identification: Conclusions 525
Appendix 10B Monte Carlo Simulation 525
10B.1 Illustrations Using Simulated Data 526
10B.2 The Sampling Properties of IV/2SLS 528
Simultaneous Equations Models 531

11.1 A Supply and Demand Model 532
11.2 The Reduced-Form Equations 534
11.3 The Failure of Least Squares Estimation 535
 11.3.1 Proving the Failure of OLS 535
11.4 The Identification Problem 536
11.5 Two-Stage Least Squares Estimation 538
 11.5.1 The General Two-Stage Least Squares Estimation Procedure 539
 11.5.2 The Properties of the Two-Stage Least Squares Estimator 540
11.6 Exercises 545
 11.6.1 Problems 545
 11.6.2 Computer Exercises 551

Appendix 11A 2SLS Alternatives 557
 11A.1 The \(k \)-Class of Estimators 557
 11A.2 The LIML Estimator 558
 11A.3 Monte Carlo Simulation Results 562

Regression with Time-Series Data: Nonstationary Variables 563

12.1 Stationary and Nonstationary Variables 564
 12.1.1 Trend Stationary Variables 567
 12.1.2 The First-Order Autoregressive Model 570
 12.1.3 Random Walk Models 572
12.2 Consequences of Stochastic Trends 574
12.3 Unit Root Tests for Stationarity 576
 12.3.1 Unit Roots 576
 12.3.2 Dickey–Fuller Tests 577
 12.3.3 Dickey–Fuller Test with Intercept and No Trend 577
 12.3.4 Dickey–Fuller Test with Intercept and Trend 579
 12.3.5 Dickey–Fuller Test with No Intercept and No Trend 580
 12.3.6 Order of Integration 581
 12.3.7 Other Unit Root Tests 582
12.4 Cointegration 582
 12.4.1 The Error Correction Model 584
12.5 Regression When There Is No Cointegration 585
12.6 Summary 587

Exercises 588
 12.7.1 Problems 588
 12.7.2 Computer Exercises 592

Vector Error Correction and Vector Autoregressive Models 597

13.1 VEC and VAR Models 598
13.2 Estimating a Vector Error Correction Model 600
13.3 Estimating a VAR Model 601
13.4 Impulse Responses and Variance Decompositions 603
 13.4.1 Impulse Response Functions 603
 13.4.2 Forecast Error Variance Decompositions 605
13.5 Exercises 607
 13.5.1 Problems 607
 13.5.2 Computer Exercises 608

Appendix 13A The Identification Problem 612

Time-Varying Volatility and ARCH Models 614

14.1 The ARCH Model 615
14.2 Time-Varying Volatility 616
14.3 Testing, Estimating, and Forecasting 620
14.4 Extensions 622
 14.4.1 The GARCH Model—Generalized ARCH 622
 14.4.2 Allowing for an Asymmetric Effect 623
 14.4.3 GARCH-in-Mean and Time-Varying Risk Premium 624
 14.4.4 Other Developments 625
14.5 Exercises 626
 14.5.1 Problems 626
 14.5.2 Computer Exercises 627

Panel Data Models 634

15.1 The Panel Data Regression Function 636
 15.1.1 Further Discussion of Unobserved Heterogeneity 638
 15.1.2 The Panel Data Regression Exogeneity Assumption 639
15.1.3 Using OLS to Estimate the Panel Data Regression 639

15.2 The Fixed Effects Estimator 640
15.2.1 The Difference Estimator: \(T = 2 \) 640
15.2.2 The Within Estimator: \(T = 2 \) 642
15.2.3 The Within Estimator: \(T > 2 \) 643
15.2.4 The Least Squares Dummy Variable Model 644

15.3 Panel Data Regression Error Assumptions 646
15.3.1 OLS Estimation with Cluster-Robust Standard Errors 648
15.3.2 Fixed Effects Estimation with Cluster-Robust Standard Errors 650

15.4 The Random Effects Estimator 651
15.4.1 Testing for Random Effects 653
15.4.2 A Hausman Test for Endogeneity in the Random Effects Model 654
15.4.3 A Regression-Based Hausman Test 656
15.4.4 The Hausman–Taylor Estimator 658
15.4.5 Summarizing Panel Data Assumptions 660
15.4.6 Summarizing and Extending Panel Data Model Estimation 661

15.5 Exercises 663
15.5.1 Problems 663
15.5.2 Computer Exercises 670

Appendix 15A Cluster-Robust Standard Errors: Some Details 677

Appendix 15B Estimation of Error Components 679

16 Qualitative and Limited Dependent Variable Models 681

16.1 Introducing Models with Binary Dependent Variables 682
16.1.1 The Linear Probability Model 683

16.2 Modeling Binary Choices 685
16.2.1 The Probit Model for Binary Choice 686
16.2.2 Interpreting the Probit Model 687
16.2.3 Maximum Likelihood Estimation of the Probit Model 690
16.2.4 The Logit Model for Binary Choices 693
16.2.5 Wald Hypothesis Tests 695
16.2.6 Likelihood Ratio Hypothesis Tests 696
16.2.7 Robust Inference in Probit and Logit Models 698
16.2.8 Binary Choice Models with a Continuous Endogenous Variable 698

16.2.9 Binary Choice Models with a Binary Endogenous Variable 699
16.2.10 Binary Endogenous Explanatory Variables 700
16.2.11 Binary Choice Models and Panel Data 701

16.3 Multinomial Logit 702
16.3.1 Multinomial Logit Choice Probabilities 703
16.3.2 Maximum Likelihood Estimation 703
16.3.3 Multinomial Logit Postestimation Analysis 704

16.4 Conditional Logit 707
16.4.1 Conditional Logit Choice Probabilities 707
16.4.2 Conditional Logit Postestimation Analysis 708

16.5 Ordered Choice Models 709
16.5.1 Ordinal Probit Choice Probabilities 710
16.5.2 Ordered Probit Estimation and Interpretation 711

16.6 Models for Count Data 713
16.6.1 Maximum Likelihood Estimation of the Poisson Regression Model 713
16.6.2 Interpreting the Poisson Regression Model 714

16.7 Limited Dependent Variables 717
16.7.1 Maximum Likelihood Estimation of the Simple Linear Regression Model 717
16.7.2 Truncated Regression 718
16.7.3 Censored Samples and Regression 718
16.7.4 Tobit Model Interpretation 720
16.7.5 Sample Selection 723

16.8 Exercises 725
16.8.1 Problems 725
16.8.2 Computer Exercises 733

Appendix 16A Probit Marginal Effects: Details 739
16A.1 Standard Error of Marginal Effect at a Given Point 739
16A.2 Standard Error of Average Marginal Effect 740

Appendix 16B Random Utility Models 741
16B.1 Binary Choice Model 741
16B.2 Probit or Logit? 742

Appendix 16C Using Latent Variables 743
16C.1 Tobit (Tobit Type I) 743
16C.2 Heckit (Tobit Type II) 744

Appendix 16D A Tobit Monte Carlo Experiment 745
A Mathematical Tools 748

A.1 Some Basics 749
- **A.1.1** Numbers 749
- **A.1.2** Exponents 749
- **A.1.3** Scientific Notation 749
- **A.1.4** Logarithms and the Number e 750
- **A.1.5** Decimals and Percentages 751
- **A.1.6** Logarithms and Percentages 751

A.2 Linear Relationships 752
- **A.2.1** Slopes and Derivatives 753
- **A.2.2** Elasticity 753

A.3 Nonlinear Relationships 753
- **A.3.1** Rules for Derivatives 754
- **A.3.2** Elasticity of a Nonlinear Relationship 757
- **A.3.3** Second Derivatives 757
- **A.3.4** Maxima and Minima 758
- **A.3.5** Partial Derivatives 759
- **A.3.6** Maxima and Minima of Bivariate Functions 760

A.4 Integrals 762
- **A.4.1** Computing the Area Under a Curve 762

A.5 Exercises 764

B Probability Concepts 768

B.1 Discrete Random Variables 769
- **B.1.1** Expected Value of a Discrete Random Variable 769
- **B.1.2** Variance of a Discrete Random Variable 770
- **B.1.3** Joint, Marginal, and Conditional Distributions 771
- **B.1.4** Expectations Involving Several Random Variables 772
- **B.1.5** Covariance and Correlation 773
- **B.1.6** Conditional Expectations 774
- **B.1.7** Iterated Expectations 774
- **B.1.8** Variance Decomposition 774
- **B.1.9** Covariance Decomposition 777

B.2 Working with Continuous Random Variables 778
- **B.2.1** Probability Calculations 779
- **B.2.2** Properties of Continuous Random Variables 780
- **B.2.3** Joint, Marginal, and Conditional Probability Distributions 781
- **B.2.4** Using Iterated Expectations with Continuous Random Variables 785

B.3 Some Important Probability Distributions 789
- **B.3.1** The Bernoulli Distribution 790
- **B.3.2** The Binomial Distribution 790
- **B.3.3** The Poisson Distribution 791
- **B.3.4** The Uniform Distribution 792
- **B.3.5** The Normal Distribution 793
- **B.3.6** The Chi-Square Distribution 794
- **B.3.7** The t-Distribution 796
- **B.3.8** The F-Distribution 797
- **B.3.9** The Log-Normal Distribution 799

B.4 Random Numbers 800
- **B.4.1** Uniform Random Numbers 805

B.5 Exercises 806

C Review of Statistical Inference 812

C.1 A Sample of Data 813

C.2 An Econometric Model 814

C.3 Estimating the Mean of a Population 815
- **C.3.1** The Expected Value of \bar{Y} 816
- **C.3.2** The Variance of \bar{Y} 817
- **C.3.3** The Sampling Distribution of \bar{Y} 817
- **C.3.4** The Central Limit Theorem 818
- **C.3.5** Best Linear Unbiased Estimation 820

C.4 Estimating the Population Variance and Other Moments 820
- **C.4.1** Estimating the Population Variance 821
- **C.4.2** Estimating Higher Moments 821

C.5 Interval Estimation 822
- **C.5.1** Interval Estimation: σ^2 Known 822
- **C.5.2** Interval Estimation: σ^2 Unknown 825

C.6 Hypothesis Tests About a Population Mean 826
- **C.6.1** Components of Hypothesis Tests 826
- **C.6.2** One-Tail Tests with Alternative “Greater Than” (>) 828
- **C.6.3** One-Tail Tests with Alternative “Less Than” (<) 829
- **C.6.4** Two-Tail Tests with Alternative “Not Equal To” (≠) 829
- **C.6.5** The p-Value 831
- **C.6.6** A Comment on Stating Null and Alternative Hypotheses 832
Table of Contents

C.6.7 Type I and Type II Errors 833
C.6.8 A Relationship Between Hypothesis Testing and Confidence Intervals 833

C.7 Some Other Useful Tests 834
C.7.1 Testing the Population Variance 834
C.7.2 Testing the Equality of Two Population Means 834
C.7.3 Testing the Ratio of Two Population Variances 835
C.7.4 Testing the Normality of a Population 836

C.8 Introduction to Maximum Likelihood Estimation 837
C.8.1 Inference with Maximum Likelihood Estimators 840
C.8.2 The Variance of the Maximum Likelihood Estimator 841
C.8.3 The Distribution of the Sample Proportion 842
C.8.4 Asymptotic Test Procedures 843

C.9 Algebraic Supplements 848
C.9.1 Derivation of Least Squares Estimator 848
C.9.2 Best Linear Unbiased Estimation 849

C.10 Kernel Density Estimator 851
C.11 Exercises 854
C.11.1 Problems 854
C.11.2 Computer Exercises 857

D Statistical Tables 862

Table D.1 Cumulative Probabilities for the Standard Normal Distribution $\Phi(z) = P(Z \leq z)$ 862
Table D.2 Percentiles of the t-distribution 863
Table D.3 Percentiles of the Chi-square Distribution 864
Table D.4 95th Percentile for the F-distribution 865
Table D.5 99th Percentile for the F-distribution 866
Table D.6 Standard Normal pdf Values $\phi(z)$ 867

INDEX 869
<table>
<thead>
<tr>
<th>Example P.1</th>
<th>Using a cdf</th>
<th>19</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example P.2</td>
<td>Calculating a Conditional Probability</td>
<td>21</td>
</tr>
<tr>
<td>Example P.3</td>
<td>Calculating an Expected Value</td>
<td>24</td>
</tr>
<tr>
<td>Example P.4</td>
<td>Calculating a Conditional Expectation</td>
<td>25</td>
</tr>
<tr>
<td>Example P.5</td>
<td>Calculating a Variance</td>
<td>26</td>
</tr>
<tr>
<td>Example P.6</td>
<td>Calculating a Correlation</td>
<td>28</td>
</tr>
<tr>
<td>Example P.7</td>
<td>Conditional Expectation</td>
<td>30</td>
</tr>
<tr>
<td>Example P.8</td>
<td>Conditional Variance</td>
<td>31</td>
</tr>
<tr>
<td>Example P.9</td>
<td>Iterated Expectation</td>
<td>32</td>
</tr>
<tr>
<td>Example P.10</td>
<td>Covariance Decomposition</td>
<td>34</td>
</tr>
<tr>
<td>Example P.11</td>
<td>Normal Distribution Probability Calculation</td>
<td>36</td>
</tr>
<tr>
<td>Example 2.1</td>
<td>A Failure of the Exogeneity Assumption</td>
<td>53</td>
</tr>
<tr>
<td>Example 2.2</td>
<td>Strict Exogeneity in the Household Food Expenditure Model</td>
<td>54</td>
</tr>
<tr>
<td>Example 2.3</td>
<td>Food Expenditure Model Data</td>
<td>59</td>
</tr>
<tr>
<td>Example 2.4a</td>
<td>Estimates for the Food Expenditure Function</td>
<td>63</td>
</tr>
<tr>
<td>Example 2.4b</td>
<td>Using the Estimates</td>
<td>64</td>
</tr>
<tr>
<td>Example 2.5</td>
<td>Calculations for the Food Expenditure Data</td>
<td>75</td>
</tr>
<tr>
<td>Example 2.6</td>
<td>Baton Rouge House Data</td>
<td>78</td>
</tr>
<tr>
<td>Example 2.7</td>
<td>Baton Rouge House Data, Log-Linear Model</td>
<td>81</td>
</tr>
<tr>
<td>Example 3.1</td>
<td>Interval Estimate for Food Expenditure Data</td>
<td>116</td>
</tr>
<tr>
<td>Example 3.2</td>
<td>Right-Tail Test of Significance</td>
<td>123</td>
</tr>
<tr>
<td>Example 3.3</td>
<td>Right-Tail Test of an Economic Hypothesis</td>
<td>124</td>
</tr>
<tr>
<td>Example 3.4</td>
<td>Left-Tail Test of an Economic Hypothesis</td>
<td>125</td>
</tr>
<tr>
<td>Example 3.5</td>
<td>Two-Tail Test of an Economic Hypothesis</td>
<td>125</td>
</tr>
<tr>
<td>Example 3.6</td>
<td>Two-Tail Test of Significance</td>
<td>126</td>
</tr>
<tr>
<td>Example 3.3 (continued)</td>
<td>p-Value for a Right-Tail Test</td>
<td>127</td>
</tr>
<tr>
<td>Example 3.4 (continued)</td>
<td>p-Value for a Left-Tail Test</td>
<td>128</td>
</tr>
<tr>
<td>Example 3.5 (continued)</td>
<td>p-Value for a Two-Tail Test</td>
<td>129</td>
</tr>
<tr>
<td>Example 3.6 (continued)</td>
<td>p-Value for a Two-Tail Test of Significance</td>
<td>129</td>
</tr>
<tr>
<td>Example 3.7</td>
<td>Estimating Expected Food Expenditure</td>
<td>130</td>
</tr>
<tr>
<td>Example 3.8</td>
<td>An Interval Estimate of Expected Food Expenditure</td>
<td>131</td>
</tr>
<tr>
<td>Example 3.9</td>
<td>Testing Expected Food Expenditure</td>
<td>132</td>
</tr>
<tr>
<td>Example 4.1</td>
<td>Prediction in the Food Expenditure Model</td>
<td>156</td>
</tr>
<tr>
<td>Example 4.2</td>
<td>Goodness-of-Fit in the Food Expenditure Model</td>
<td>159</td>
</tr>
<tr>
<td>Example 4.3</td>
<td>Reporting Regression Results</td>
<td>159</td>
</tr>
<tr>
<td>Example 4.4</td>
<td>Using the Linear-Log Model for Food Expenditure</td>
<td>164</td>
</tr>
<tr>
<td>Example 4.5</td>
<td>Heteroskedasticity in the Food Expenditure Model</td>
<td>167</td>
</tr>
<tr>
<td>Example 4.6</td>
<td>Testing Normality in the Food Expenditure Model</td>
<td>168</td>
</tr>
<tr>
<td>Example 4.7</td>
<td>Influential Observations in the Food Expenditure Data</td>
<td>171</td>
</tr>
<tr>
<td>Example 4.8</td>
<td>An Empirical Example of a Cubic Equation</td>
<td>172</td>
</tr>
<tr>
<td>Example 4.9</td>
<td>A Growth Model</td>
<td>174</td>
</tr>
<tr>
<td>Example 4.10</td>
<td>A Wage Equation</td>
<td>175</td>
</tr>
<tr>
<td>Example 4.11</td>
<td>Prediction in a Log-Linear Model</td>
<td>176</td>
</tr>
<tr>
<td>Example 4.12</td>
<td>Prediction Intervals for a Log-Linear Model</td>
<td>177</td>
</tr>
<tr>
<td>Example 4.13</td>
<td>A Log-Log Poultry Demand Equation</td>
<td>178</td>
</tr>
<tr>
<td>Example 5.1</td>
<td>Data for Hamburger Chain</td>
<td>200</td>
</tr>
<tr>
<td>Example 5.2</td>
<td>OLS Estimates for Hamburger Chain Data</td>
<td>206</td>
</tr>
<tr>
<td>Example 5.3</td>
<td>Error Variance Estimate for Hamburger Chain Data</td>
<td>208</td>
</tr>
</tbody>
</table>
Example 5.4 \(R^2 \) for Hamburger Chain Data 209
Example 5.5 Variances, Covariances, and Standard Errors for Hamburger Chain Data 214
Example 5.6 Interval Estimates for Coefficients in Hamburger Sales Equation 216
Example 5.7 Interval Estimate for a Change in Sales 218
Example 5.8 Testing the Significance of Price 219
Example 5.9 Testing the Significance of Advertising Expenditure 220
Example 5.10 Testing for Elastic Demand 220
Example 5.11 Testing Advertising Effectiveness 221
Example 5.12 Testing the Effect of Changes in Price and Advertising 222
Example 5.13 Cost and Product Curves 223
Example 5.14 Extending the Model for Burger Barn Sales 224
Example 5.15 An Interaction Variable in a Wage Equation 225
Example 5.16 A Log-Quadratic Wage Equation 226
Example 5.17 The Optimal Level of Advertising 232
Example 5.18 How Much Experience Maximizes Wages? 233
Example 5.19 An Interval Estimate for \(\exp(\beta_2/10) \) 249
Example 5.20 An Interval Estimate for \(\beta_1/\beta_2 \) 250
Example 5.21 Bootstrapping for Nonlinear Functions \(g_1(\beta_2) = \exp(\beta_2/10) \) and \(g_2(\beta_1, \beta_2) = \beta_1/\beta_2 \) 258
Example 6.1 Testing the Effect of Advertising 262
Example 6.2 The F-Test Procedure 263
Example 6.3 Overall Significance of Burger Barns Equation 265
Example 6.4 When are t- and F-tests equivalent? 266
Example 6.5 Testing Optimal Advertising 267
Example 6.6 A One-Tail Test 268
Example 6.7 Two (\(J = 2 \)) Complex Hypotheses 268

Examples 6.2 and 6.5 Revisited 270
Example 6.8 A Nonlinear Hypothesis 270
Example 6.9 Restricted Least Squares 272
Example 6.10 Family Income Equation 275
Example 6.11 Adding Children Aged Less Than 6 Years 277
Example 6.12 Adding Irrelevant Variables 277
Example 6.13 A Control Variable for Ability 279
Example 6.14 Applying RESET to Family Income Equation 282
Example 6.15 Forecasting \(\text{SALES} \) for the Burger Barn 284
Example 6.16 Predicting House Prices 287
Example 6.17 Collinearity in a Rice Production Function 291
Example 6.18 Influential Observations in the House Price Equation 293
Example 6.19 Nonlinear Least Squares Estimates for Simple Model 295
Example 6.20 A Logistic Growth Curve 296
Example 7.1 The University Effect on House Prices 321
Example 7.2 The Effects of Race and Sex on Wage 323
Example 7.3 A Wage Equation with Regional Indicators 325
Example 7.4 Testing the Equivalence of Two Regressions: The Chow Test 327
Example 7.5 Indicator Variables in a Log-Linear Model: The Rough Approximation 330
Example 7.6 Indicator Variables in a Log-Linear Model: An Exact Calculation 330
Example 7.7 The Linear Probability Model: An Example from Marketing 332
Example 7.8 An Application of Difference Estimation: Project STAR 335
Example 7.9 The Difference Estimator with Additional Controls 336
Example 7.10 The Difference Estimator with Fixed Effects 337
Example 7.11 Linear Probability Model Check of Random Assignment 338
Example 7.12 Estimating the Effect of a Minimum Wage Change: The DID Estimator 340
Example 7.13 Estimating the Effect of a Minimum Wage Change: Using Panel Data 341
Example 8.1 Heteroskedasticity in the Food Expenditure Model 372
Example 8.2 Robust Standard Errors in the Food Expenditure Model 374
Example 8.3 Applying GLS/WLS to the Food Expenditure Data 378
Example 8.4 Multiplicative Heteroskedasticity in the Food Expenditure Model 382
Example 8.5 A Heteroskedastic Partition 383
Example 8.6 The Goldfeld–Quandt Test with Partitioned Data 384
Example 8.7 The Goldfeld–Quandt Test in the Food Expenditure Model 385
Example 8.8 Variance Stabilizing Log-transformation 389
Example 8.9 The Marketing Example Revisited 391
Example 8.10 Alternative Robust Standard Errors in the Food Expenditure Model 413
Example 9.1 Plotting the Unemployment Rate and the GDP Growth Rate for the United States 419
Example 9.2 Sample Autocorrelations for Unemployment 426
Example 9.3 Sample Autocorrelations for GDP Growth Rate 427
Example 9.4 Are the Unemployment and Growth Rate Series Stationary and Weakly Dependent? 428
Example 9.5 Forecasting Unemployment with an AR(2) Model 431
Example 9.6 Forecast Intervals for Unemployment from the AR(2) Model 434
Example 9.7 Forecasting Unemployment with an ARDL(2, 1) Model 434
Example 9.8 Choosing Lag Lengths in an ARDL(p, q) Unemployment Equation 437
Example 9.9 Does the Growth Rate Granger Cause Unemployment? 438
Example 9.10 Checking the Residual Correlogram for the ARDL(2, 1) Unemployment Equation 439
Example 9.11 Checking the Residual Correlogram for an ARDL(1, 1) Unemployment Equation 440
Example 9.12 LM Test for Serial Correlation in the ARDL Unemployment Equation 443
Example 9.13 Okun’s Law 446
Example 9.14 A Phillips Curve 450
Example 9.15 The Phillips Curve with AR(1) Errors 455
Example 9.16 A Consumption Function 458
Example 9.17 Deriving Multipliers for an Infinite Lag Okun’s Law Model 459
Example 9.18 Computing the Multiplier Estimates for the Infinite Lag Okun’s Law Model 460
Example 9.20 Durbin–Watson Bounds Test for Phillips Curve 479
Example 10.1 Least Squares Estimation of a Wage Equation 489
Example 10.2 IV Estimation of a Simple Wage Equation 495
Example 10.3 2SLS Estimation of a Simple Wage Equation 496
Example 10.4 Using Surplus Instruments in the Simple Wage Equation 497
Example 10.5 IV/2SLS Estimation in the Wage Equation 499
Example 10.6 Checking Instrument Strength in the Wage Equation 502
Example 10.7 Specification Tests for the Wage Equation 509
Example 10.8 Testing for Weak Instruments 523
Example 11.1 Supply and Demand for Truffles 541
Example 11.2 Supply and Demand at the Fulton Fish Market 542
Example 11.3 Klein’s Model I 544
Example 11.4 Testing for Weak Instruments Using LIML 560
Example 11.5 Testing for Weak Instruments with Fuller-Modified LIML 561
Example 12.1 Plots of Some U.S. Economic Time Series 564
Example 12.2 A Deterministic Trend for Wheat Yield 569
Example 12.3 A Regression with Two Random Walks 575
Example 12.4 Checking the Two Interest Rate Series for Stationarity 579
Example 12.5 Is GDP Trend Stationary? 580
Example 12.6 Is Wheat Yield Trend Stationary? 580
Example 12.7 The Order of Integration of the Two Interest Rate Series 581
Example 12.8 Are the Federal Funds Rate and Bond Rate Cointegrated? 583
Example 12.9 An Error Correction Model for the Bond and Federal Funds Rates 585
Example 12.10 A Consumption Function in First Differences 586
Example 13.1 VEC Model for GDP 600
Example 13.2 VAR Model for Consumption and Income 602
Example 14.1 Characteristics of Financial Variables 617
Example 14.2 Simulating Time-Varying Volatility 618
Example 14.3 Testing for ARCH in BrightenYourDay (BYD) Lighting 620
Example 14.4 ARCH Model Estimates for BrightenYourDay (BYD) Lighting 621
Example 14.5 Forecasting BrightenYourDay (BYD) Volatility 621
Example 14.6 A GARCH Model for BrightenYourDay 623
Example 14.7 A T-GARCH Model for BYD 624
Example 14.8 A GARCH-in-Mean Model for BYD 625
Example 15.1 A Microeconometric Panel 636
Example 15.1 Revisited 637
Example 15.2 Using $T = 2$ Differenced Observations for a Production Function 641
Example 15.3 Using $T = 2$ Differenced Observations for a Wage Equation 641
Example 15.4 Using the Within Transformation with $T = 2$ Observations for a Production Function 642
Example 15.5 Using the Within Transformation with $T = 3$ Observations for a Production Function 644
Example 15.6 Using the Fixed Effects Estimator with $T = 3$ Observations for a Production Function 646
Example 15.7 Using Pooled OLS with Cluster-Robust Standard Errors for a Production Function 650
Example 15.8 Using Fixed Effects and Cluster-Robust Standard Errors for a Production Function 651
Example 15.9 Random Effects Estimation of a Production Function 652
Example 15.10 Random Effects Estimation of a Wage Equation 652
Example 15.11 Testing for Random Effects in a Production Function 654
Example 15.12 Testing for Endogenous Random Effects in a Production Function 656
Example 15.13 Testing for Endogenous Random Effects in a Wage Equation 656
Example 15.14 The Mundlak Approach for a Production Function 657
Example 15.15 The Mundlak Approach for a Wage Equation 658
Example 15.16 The Hausman–Taylor Estimator for a Wage Equation 659
Example 16.1 A Transportation Problem 683
Example 16.2 A Transportation Problem: The Linear Probability Model 684
Example 16.3 Probit Maximum Likelihood: A Small Example 690
Example 16.4 The Transportation Data: Probit 691
Example 16.5 The Transportation Data: More Postestimation Analysis 692
Example 16.6 An Empirical Example from Marketing 694
Example 16.7 Coke Choice Model: Wald Hypothesis Tests 696
Example 16.8 Coke Choice Model: Likelihood Ratio Hypothesis Tests 697
Example 16.10 Women’s Labor Force Participation and Having More Than Two Children 700
Example 16.11 Effect of War Veteran Status on Wages 701
Example 16.12 Postsecondary Education Multinomial Choice 705
Example 16.13 Conditional Logit Soft Drink Choice 708
Example 16.14 Postsecondary Education Ordered Choice Model 712
Example 16.15 A Count Model for the Number of Doctor Visits 715
Example 16.16 Tobit Model of Hours Worked 721
Example 16.17 Heckit Model of Wages 724
Example A.1 Slope of a Linear Function 755
Example A.2 Slope of a Quadratic Function 755
Example A.3 Taylor Series Approximation 756
Example A.4 Second Derivative of a Linear Function 758
Example A.5 Second Derivative of a Quadratic Function 758
Example A.6 Finding the Minimum of a Quadratic Function 759
Example A.7 Maximizing a Profit Function 761
Example A.8 Minimizing a Sum of Squared Differences 761
Example A.9 Area Under a Curve 763
Example B.1 Variance Decomposition: Numerical Example 776
Example B.2 Probability Calculation Using Geometry 779
Example B.3 Probability Calculation Using Integration 780
Example B.4 Expected Value of a Continuous Random Variable 780
Example B.5 Variance of a Continuous Random Variable 781
Example B.6 Computing a Joint Probability 783
Example B.7 Another Joint Probability Calculation 783
Example B.8 Finding and Using a Marginal pdf 784
Example B.9 Finding and Using a Conditional pdf 784
Example B.10 Computing a Correlation 785
Example B.11 Using Iterated Expectation 786
Example B.12 Change of Variable: Continuous Case 788
Example B.13 Change of Variable: Continuous Case 789
Example B.14 An Inverse Transformation 801
Example B.15 The Inversion Method: An Example 802
Example B.16 Linear Congruential Generator Example 805
Example C.1 Histogram of Hip Width Data 814
Example C.2 Sample Mean of Hip Width Data 815
Example C.3 Sampling Variation of Sample Means of Hip Width Data 816
Example C.4 The Effect of Sample Size on Sample Mean Precision 818
Example C.5 Illustrating the Central Limit Theorem 819
Example C.6 Sample Moments of the Hip Data 822
Example C.7 Using the Hip Data Estimates 822
Example C.8 Simulating the Hip Data: Interval Estimates 824
Example C.9 Simulating the Hip Data: Continued 825
Example C.10 Interval Estimation Using the Hip Data 826
Example C.11 One-tail Test Using the Hip Data 830
Example C.12 Two-tail Test Using the Hip Data 830
Example C.13 One-tail Test p-value: The Hip Data 831
Example C.14 Two-Tail Test p-Value: The Hip Data 832
Example C.15 Testing the Normality of the Hip Data 836
Example C.16 The “Wheel of Fortune” Game:
\[p = \frac{1}{4} \text{ or } \frac{3}{4} \quad 837 \]

Example C.17 The “Wheel of Fortune” Game:
\[0 < p < 1 \quad 838 \]

Example C.18 The “Wheel of Fortune” Game:
Maximizing the Log-likelihood
\[839 \]

Example C.19 Estimating a Population Proportion
\[840 \]

Example C.20 Testing a Population Proportion
\[843 \]

Example C.21 Likelihood Ratio Test of the Population Proportion
\[845 \]

Example C.22 Wald Test of the Population Proportion
\[846 \]

Example C.23 Lagrange Multiplier Test of the Population Proportion
\[848 \]

Example C.24 Hip Data: Minimizing the Sum of Squares Function
\[849 \]