INDEX

A
ABC, See Activity-based costing (ABC)
ABC inventory management, 515–519;
 example, 515–516; in Excel, 516–519
Acoustic privacy, and hospital personnel, 283
Active RFID tags, 519–520
ActiveStaffer, 471
Activity-based costing (ABC), 63–64;
 basic steps of, 67–69; brief history of, 65–66;
 main tenet of, 66; primary weaknesses of, 66
Activity-based management (ABM), 66
AcuStaf, 471
Additive model, 375
Adjusted R-squared, 406, 419
Agent-based simulation, 215
Aggregate/central planning, 462–464
Aisle arrangements, impact analysis of, 268
Aisle width/length, 250, 267–269; aisle
 system objectives, 268–269; design
 alternative metrics, 270; design
 alternatives, 269; design evaluation
 criteria, 267; straight aisles, 269
Aitken, A. C., 395
Alexander the Great, 150
Alpha, 160
Alpha value, 106
Alternatives, See Decision alternatives
Ambulatory Payment Classification Act
 (1999), 10
American Case Management Association
 (ACMA), 249
American Society for Hospital Purchasing
 and Materials Management
 (ASHPMM), 10
Analysis, as process mapping step,
 231, 233
Analysis of variance (ANOVA), 407
ANSOS, 471
Assembly lines, 263; patient care vs.,
 466–467
Asset management ratios, 36–42; case mix
 index, 37–38; days in patient accounts
 receivable, 36–37; defined, 36;
 inventory turnover ratio, 36–37; supply
 expense to adjusted discharges, 40–42;
 supply expense to adjusted patient days,
 39–40; supply expense to net patient
 revenue, 38; supply expense to total
 operating revenue, 39
Assets, 29–30
Assignable variation, 325–326
Association for Healthcare Resources and
 Materials Management (AHRMM),
 9–10, 11
AtStaff, 471
Attributes, control charts for, 333–334
Autocorrelation, 387–393, 408–409; identifying, 387; seasonal adjustments, 388–391; and seasonality, 387–388; seasonality and regression, 393; trend and seasonal adjustment, 391–392
Average pay period, 43–44

B
Babylonians, and use of hard data, 150
Balance sheet, 27–32; assets, 29–30; current assets, 29–30; current liabilities, 30; defined, 27–28; liabilities, 30–31; net assets, 31; noncurrent assets, 30; noncurrent liabilities, 31; for not-for-profit health care organization, 28; notes, 32
Balking, 216
Basic box plot, 119
Baylor University Hospital (Dallas TX), 10
Benchmarking, 343; competitive, 343; defined, 342–343; external, 343; functional, 343; generic, 343; and health care organizations, 342–343; internal, 343; and project planning, 436–437; role of, 343; and TQM, 337
Binomial distributions, 204
Blue County Memorial Hospital (BCMH) minicase, 18–19
BOM (bill of materials), 467
BOR (bill of resources), 467
Bottom line, See Excess of revenues over expenses
Box-and-whisker plots, 117–129; basic box plot, 119
Box plots: creating, 120–128; notched, 129; outliers, 128; variable-width, 128; variations, 128–129
Break-even, defined, 51
Break-even analysis, 49–53; cost and volume models, 49–50; defined, 49; profit and volume models, 50–53; revenue and volume models, 50
Budgeting, 453–454
Bullwhip effect, 14–16, 17; defined, 14; in health care organizations (minicase), 18–19; and improved coordination and within supply chain, 15; and incentives realignment, 15; major causes of, 16; and realignment of incentives, 15; and reduction of uncertainty, 15; and reduction of variability, 15; and strategic partnership development, 15; strategies for minimizing, 15–16
Buyer’s remorse, 156–157

C
C-charts, 334
Capacity management, 468
Capacity planning, 466
Capitation, 23
Career opportunities, in the health care profession, 12
Case complexity, and workload management decisions, 244
Case mix, defined, 65
Case mix index, 37–38
Cash flows: from financing activities, 34; from investing activities, 34; from operating activities, 32–34
Causal models, 375
Cause-and-effect (fishbone) diagram, 297–298, 313; and lean organizations, 363
Center of gravity method, 488–494; emergency medical services vehicle locations, determining, 492–494;
example, 489–492; spreadsheet example, 492; steps in using, 488–489
Centers for Disease Control and Prevention (CDC) website, 503
Central tendency, 90–91; measures of, 82–86
Certified Materials & Resource Professional (CMRP) program, 10
Chance nodes, adding, 190
Check sheets, 313; and lean organizations, 363
Chemical, biological, radiological, nuclear, and explosive (CBRNE) events, and disaster preparedness, 503–504
Children’s National Medical Center (CNMC), 305
Chinese, and use of hard data, 150
Closeness relationships, 250
Coefficient of determination, 405
Cognitive dissonance, 156
Competitive benchmarking, 343
Competitive dimensions of health care, 17; defined, 12; and trade-offs, 13
Computerized Relative Allocation of Facilities Technique (CRAFT), 281–282
Continuous improvement, See also Kaizen events, and TQM, 337
Continuous inventory systems, 513–515
Continuous probability distributions, 204
Continuous review systems, 511–515
Continuous simulation, 212–213
Control, 437
Control charts, 301–304, 313; for attributes, 333–334; c-charts, 334; and lean organizations, 364; limits, setting, 327–329; lower control limit (LCL), 301, 364; p-charts, 333–334; patterns, 332–333; R chart, 301, 330–331; spreadsheet calculations, formulas, 329; steps for setting up, 332; upper control limit (UCL), 301, 364; using, 331–334; x-bar chart, 301–303, 329–330
Controlling waste, 355–357, 365
CORREL() function (Excel), 387
Correlation analysis, running in Excel, 421–423
Correlation coefficient, 401
Cost: as competitive dimension, 12; estimation, 453–454; per unit driver, 68
Cost and volume models, 49–50
Cost drivers, 63, 64–65
Council for Supply Chain Management Professionals, supply chain management definition, 5
Critical path method (CPM), 432, 440–448, 451
Cross-training, and workload management, 244
Crossover analysis, 53–56; graph, 54–56
Current assets, 29–30
Current liabilities, 30
Current ratio, 42–43
Customer adapters, as 3PL providers, 520
Customer developers, as 3PL providers, 520
Cyclical behavior, 374
Cyclical data, 373–374

D
Data Analysis Add-In (Excel): installing, 91–92; using, 92–94; using for testing two means, 111–115
Data and statistical tools, 77–142; box-and-whisker plots, 117–129; data description, graphic methods of, 78–81; data description, numerical methods of,
81–101; descriptive statistics, 78; expected values, 100–101; histogram tool, Excel, 91–100; hypothesis testing, 101–115; Pareto analysis, 116–117; sensitivity analysis, 129–130; tornado diagrams, 129–135

Data description, graphic methods of, 78–81; histograms, 78–79; relative frequency diagrams, 79–81

Data description, numerical methods of, 81–101; central tendency, 82–86, 90–91; dispersion, 86–89, 90–91, 158

Data envelopment analysis (DEA), 246, 246–248, 247, 247–248, 249

Database systems, 151

Days in patient accounts receivable, 36–37

Days of working capital, 44–45

Days-off scheduling, 473

Decision alternatives, 147–148

Decision analysis, 145–146, 250; importance/relevance of, 146

Decision making, brief history of, 150–151

Decision-making criteria: equal likelihood criterion, 159–162; expected value of perfect information (EVPI), 162–176; Hurwicz criterion, 159–162; Laplace criterion, 159–160; magnetic resonance imaging equipment decision problem, 152; maximax criterion, 152–153; maximin criterion, 154–155; minimax regret criterion, 155–157; with probability assessments, 159–162; spreadsheet solution for payoff table decision problem, 151–152; summary of results, 162–164; weighted averages, 159–160; without probability assessments, 151–159

Decision-making problems: components of, 146–147; decision alternatives, 147–148; framing, 146; outcomes, 148; payoff tables, 149–151, 179; payoffs vs. outcomes, 148–149; states of nature, 147

Decision-making unit (DMU), 247–248

Decision models, 144–146, See also Modeling; defined, 177

Decision nodes, modifying, 190–192

Decision point analysis, 240

Decision problems, structuring, 179

Decision support tools, 250

Decision trees, 144–145, 179–195; branches, 179; building, 180–181; chance node, 179; decision node, 179; expected values, calculating, 180; folding back, 182–184; multistage, 184; structures, inadequacies of, 184–185; TreePlan, 186–192

Defective products, 357

Delayed room cleaning dilemma (minicase), 320–321

Delivery speed, as competitive dimension, 12

Demand amplification mapping, 240

Deming Prize, 341

Deming, W. E., 341, 359

Departments of social and health services (DSHS), 249

Dependent demand, 509–510

Dependent variable, 370

Descriptive statistics, for describing data sets, 78

Diagnosis-related group (DRG), 23–24, 467; use of term, 10

Direct ranking methods, 434–435

Disaster preparedness, inventories in, 503–504
Discounting, 48
Discrete-event simulation, 211–213; continuous simulation vs., 211–213
Discrete probability distributions, 204
Dispatching rules, 473–474; defined, 473
Dispersion, 90–91; measures of, 86–89, 158
Diversion of supplies in a disaster, 504
Dominance, 162
Downside risk, 158
Durbin-Watson statistic, and autocorrelation, 409

E
Earliest due date (EDD), 475
Economic order quantity (EOQ), 502, 504, 506–509
Edgeworth, F. Y., 395, 402
Efficiency, 8–9, 17
Efficiency measures, 248–249; health care, 248–249
Efficient Healthcare Consumer Response (EHCR), 10
80/20 rule, 116–117, 299–300, 363
Emergency department (ED) manual self-scheduling system, 472
Emergency medical services vehicle locations, determining, 492–494; facility location techniques, 493; model results, 493–494
Employee dissatisfaction, and scheduling, 470
Employee empowerment, and total quality management (TQM), 338
Enterprise resource planning (ERP) software, 466–468

Equal likelihood criterion, 159–162
Error-proofing, 310
ESP eXpert, 471
Event list, 212
Event routine, 212
Events, 211–212
Excel: ABC inventory management in, 516–519; Add-Ins menu, 186–188; Add-Ins tab, TreePlan option in, 188, 190; add-ins tutorial, 412–414; computing Poisson and exponential probabilities in, 208–210; CORREL() function, 387; correlation analysis, 421–423; Correlation menu, 422; correlation tutorial, 421–423; Data Analysis dialogue box, 422; decision tree with event node added, 191; format axis menu in, 171; format axis option after, 171; formulas for error calculations, 412; generating random numbers in, 211; GROWTH() function, 372; hospital gowns order quantity problem in, 507–509; initial decision tree, 187, 187–189, 189; initial TreePlan menu, 188; insert chart menu, 170; layout tab for modifying graphs in, 172; minimax regret criterion, spreadsheet for, 157; move chart dialogue box for modifying graphs in, 172; move chart option for modifying graphs in, 172; Moving Average tool, 378–380; Options window, 186–187; output for medical equipment sensitivity analysis, 173; regression analysis tutorial, 414–421; residual/error calculations, 411; scatter chart menu, 170; SQRT function, 508–509; Stacked Bar option, 483; tree depicting data entry areas (example),
192; TreePlan Add/Change/Modify dialogue box, 190; TreePlan formula example, 191; TreePlan menu for modifying an existing node, 191; TREND() function, 371

Excess of revenues over expenses, 27

Expected value of perfect information (EVPI), 162–176; defined, 163; finding, 163–164; multiple good choices, confusion of, 164; range, risk defined/quantified by, 175; regret, risk defined/quantified by, 158–159, 176; risk-return trade-off, 176; sensitivity analysis, 164–175

Expected value under certainty, 163–164

Expected values, 100–101

Exponential distribution, 207–208; graph of, 208

Exponential probabilities, computing in Excel, 208–210

Exponential smoothing (ES), 383–386; defined, 383; example using Excel, 384; Exponential Smoothing dialogue box (Excel), 385; smoothing constant, choosing, 386

External benchmarking, 343

F

F-statistic, 407, 420

Fabrication lines, 263

Facility design, optimizing, 280–284

Facility layout, 257–286; evaluating types of, 267–270; fixed position layout, 263; layout considerations, 258–262; Muther diagrams, 263, 264–266; office layout, 263; optimization, 270–284; process-oriented layout, 262; product-oriented layout, 262–263; retail layout, 263; shipping/receiving docks, location of, 264; types of layout, 262–264; warehouse layout, 263–264

FastTrack, 439

Fee-for-service (FFS), 22

Financial environment, 21–60; balance sheet, 27–32; basic financial ratios/metrics, 35–47; diagnosis-related group (DRG), 23–24; fee-for-service (FFS), 22; health care legislation (1980s), 23; income statement/operating statement, 24–27; statement of cash flows, 32–35

Financial modeling, and project planning, 436–437

Financial performance, and quality, 292–294

Financial ratios/metrics, 35–47

Financial statements, for-profit/not-for-profit, 24

Financing activities, cash flows from, 34

First come, first served (FCFS), 217, 474

Fishbone diagrams, 297–298

Fisher, R. A., 395, 402

Five-number summary, See Box-and-whisker plots

5S tool, and lean organizations, 364

Fixed position layout, 263

Flow, measuring, 264

Flowcharts, 240–241, 295–297, 313; non-value-added but necessary processes, 296; non-value-added processes, 296; nurse’s station example, 68; process cycle efficiency, 296–297; value-added processes, 295

Folding back the tree: example, 182–184; use of term, 182

Forecasting, See also Autocorrelation; Exponential smoothing (ES); Moving
averages; Multiple regression; Naive forecasting; Regression; Seasonal time series patterns; Weighted moving averages: accuracy, measuring, 409–423; autocorrelation, 387–393; dependent variable, 370; errors, measuring, 423–424; exponential smoothing (ES), 383–386; forecasting errors, measuring, 423–424; future values using time series/regression models, 370; for health care management, 369–429; identification of the situation represented by time series data and/or regression, 370; independent variable, 370; linear regression, 370; linear trends, 371; moving averages, 378–381; multiple regression, 402–409; naive, 376–378; nonlinear trends, 372; patterns, identifying in data, 371; regression, 393–402; seasonal time series patterns, 372–376; time series analysis, 370; weighted moving averages, 381–383
Four-year moving average, 378
Franklin, B., 150–151
Functional benchmarking, 343
Functional quality, 290–291
Future state map, 235, 238–240

G
Galton, F., 395, 401
Gantt charts, 432, 439, 448–450, 480–484; creating in Excel, 483–484; customizing, using Excel charting commands, 484; defined, 448; drawbacks to, 483; example in Excel, 450; and Excel, 480–482; for patient scheduling problem (example), 482
Gauss, K. F., 395
Gaussian model, 395
Generic benchmarking, 343
Geometric distributions, 204
Goal Seek, and project planning, 437
Graphical break-even analysis, 52–53
Great Ormond Street Hospital for Children (GOSH) (London, England), 293
Group purchasing organizations (GPOs), 7
GROWTH() function, 372

H
Haruspices, 150–151
Health care, competitive dimensions of, 12–14
Health care industries supply chain managers, hard times for, 6
Health care operations and supply chain management, 4–6, 11–12, See also our clients costs; decision models, 144–146; financial aspects of, 21–60; managerial accounting aspects of, 61–73
Health care organizations: and benchmarking, 342–343; scheduling framework for, 469–470; product distribution, and global logistics system, 7
Health care supply chain management, See Supply chain management
Health Insurance Portability and Accessibility Act (HIPAA), 283–284
Health Insurance Portability and Accountability Act (1996), 10
Hennepin County Medical Center (HCMC) minicase, 366–367
Heteroscedasticity, 409
Histogram tool (Excel), 91–100; frequency distributions, 91; Histogram Dialogue box, 98–99; histogram with cumulative percentage overlay, 99; steps in using, 96–98
Histograms, 298–299, 313; and lean organizations, 363; sorted, 116
Holding cost, 505
Hospital gowns order quantity problem, 505–506; in Excel, 507–509
Hospital operations and supply chain manager, relationships of, 5
Hospital personnel, and acoustic privacy, 283
Hurwicz criterion, 159–162; Excel spreadsheet for, 160
Hypergeometric distributions, 204
HyperOffice, 439
Hypothesis testing, 101–115; alternative hypothesis, 105; comparing populations/distributions, 102; interpreting t-test results via p-values, 115; null hypothesis, 104–105; rejection/acceptance regions, 106–107; t-critical value, 106; t-statistic, 105–106; t-test application problem, 107–110; t-test statistic, 103–104; testing of two means, 110–111; for two means, test components, 104–106; Z-test statistic, 102–103
Income statement/operating statement, 24–27; defined, 24; excess of revenues over expenses, 27; expenses, 26; operating income, 26–27; revenues, gains, other support, 25–26
Independent demand, 509–510
 Independent variable, 370
Influence diagrams, 144–145
Information flow, and office layout, 263
Information gathering, as process mapping step, 231–232
Initialization routine, 212
Institute for Supply Management, supply chain management definition, 4
Internal benchmarking, 343
International Organization for Standardization (ISO), and standardization certification, 338–340
Interquartile range (IQR), 87
Interviewing and mapping, as process mapping step, 231, 233
InTime, 471
Inventory management, 500–523; ABC inventory management, 515–519; application of best practices in, 251; continuous review systems, 511–515; costs, 504–506; defined, 502; disaster preparedness, 503–504; economic order quantity (EOQ), 502, 504, 506–509; holding cost, 505; hospital gowns order quantity problem, 505; independent versus dependent demand, 509–510; order cost, 504; periodic review systems, 510–511; purpose of, 502–504; radio-frequency identification (RFID), 519–520; stock-out costs, 505; technology, 516–519; third-party logistics (3PL), 520; vendor-managed inventory (VMI), 8, 17, 521

I
I Ching, 150
Improved coordination and within supply chain, and bullwhip effect, 15
Improving inpatient care using concepts of lean organizations, 366–367
Incentives realignment, and bullwhip effect, 15
Inventory turnover ratio, 36–37
Investing activities, cash flows from, 34
Irregular data, 374–375
Ishikawa, K., 313
ISO 14000 series, 338–339
ISO certification, 338–340

J
Job completion time, 474
Job due date, 474
Job processing time/duration, 474
Job sequencing, 474–475
Job shops, 474
Jockeying, 217
Johnson, S. M., 475
Johnson’s rule, 475–480; example, 476; in Excel, 478–480; steps, 475–476
Just-in-time (JIT): inventory and logistics systems, 7–8; and TQM, 337–338

K
Kaizen: defined, 359–360; teian kaizen, 360
Kaizen events, 237, 354, 359–362, 365; day-to-day vs. special event, 360–361; goal of, 360; in health care, 361–362; individual vs. teamed, 360; quality circles, 360
Kanban systems, 354, 365; controlling flow with, 357–359; defined, 357; example from health care, 358–359; rules for managing by means of kanbans, 358; sample, 357–358
Kehoe, 7
Kendall-Lee notation for queuing systems, 217–218
Key performance indicators (KPIs), 13–14, 17
Kishwaukee Community Hospital (KCH), DeKalb County, IL, kaizen events, 361–362
Kronos, 471

L
Labor as cost driver, 467
Laplace criterion, 159–160
Laplace, P.-S., 159
Last come, first served (LCFS), 217
Lean: defined, 354; improving inpatient care using concepts of, 366–367; and six sigma, 311–313; as way of thinking, 355
Lean Enterprise Institute, 354
Lean organizations: becoming too lean, adverse effects of, 364; cause-and-effect (fishbone) diagram, 363; check sheets, 363; control charts, 364; defined, 354; 5S tool, 364; histograms, 363; lean measures, 362–363; lean tools, 363–364, 365; lean transformation, 355; Pareto analysis, 363; production and throughput times, 355; scatter diagrams, 363; value stream mapping (VSM), 362; waste, controlling, 355–357, 365
Left without treatment (LWOT), 250
Length of stay (LOS), 249, 250
Level of significance, 106
Liabilities, 30–31
Library routine, 212
Linear regression, 370, 398–401, See also Multiple linear regression
Linear trends, 371–372
Liquidity ratios, 35, 42–45; average pay period, 43–44; current ratio, 42–43; days of working capital, 44–45; defined, 42; quick ratio, 43; working capital, 44
Little’s formula, 218–219
Location analysis, service facility, 484–487
Logistics function, 7, 17
Longest processing time (LPT), 475

M
Machine That Changed the World, The (Womack), 354
Main program, 212
Malcolm Baldrige award, 340–343
Malmquist index, 247
Managerial accounting, 62–65; activity-based costing (ABC), 63–64; choices, summary of, 65; cost data and ABC, 64; cost drivers, 63, 64–65; cost drivers, identifying, 65; cost information, 63; resource usage, 63
Maps/charts in health care, 240–241
Marginal analysis, 50
Market research, and project planning, 436–437
Materials management, use of term, 4
Maximax criterion, 152–153
Maximin criterion, 154–155
Maximum likelihood theory, 402
Mean, compared to median, 84–85
Mean absolute deviation (MAD), 409–410, 411, 423
Mean absolute error or mean absolute deviation (MAD), 409–410, 423
Mean absolute percentage error (MAPE), 409, 411, 423
Mean percentage error (MPE), 409–411, 423
Mean square error (MSE), 409–410, 423
Measure of risk, regret as, 158-159
Measures of central tendency, 82–86, 86–91; comparison of mean and median, 84–85; in health care, 83; median, 83–84; most common measure, 85–86; simple mean, 82–83
Measures of dispersion, 86–91, 158; defined, 86; interquartile range, 87; range, 86–87; standard deviation, 88–89, 90; variance, 88
Median, 83–84; compared to mean, 84–85
Medicare: and diagnosis-related groups (DRGs), 23; and hospital-acquired infections, 434
Methods Time Measurement Association, 356
Microsoft Project, 439
Minimax regret criterion, 155–157; buyer’s remorse, 156–157; cognitive dissonance, 156; operations and supply chain management, definition of regret, 155; opportunity cost, 155; postdecision doubt, 156; process, 157–158
Modeling, 177–179; as aid to presentations, 178–179; building from necessity, 177; and decision making, 177–178; and insight, 178; and intuition, 178; purpose of, 177; reasons for, 177–179
Monitoring and information systems, 455
Monte Carlo simulation, 213–215
Moving Average tool (Excel), 378–380
Moving averages, 378–381, See also Weighted moving averages
MS Project, 480
MTM-HC database, 356
Muda, 233
Multicollinearity, 408
Multinomial distributions, 204, 205; graph of, 206
Multiple linear regression, 402–409; adjusted R-squared, 406, 419; autocorrelation, 408–409; example, 403–404; F-statistic, 407; heteroscedasticity, 409; model, 402–409; multicollinearity, 408; multiple R, 405–406; p-value, 407–408; performance measures, 405–408; R-squared, 405, 419; t-statistic, 406–407

Multiple R, 405–406, 419
Multiple regression, 402–409
Multiplicative model, 375
Multistage decision trees, 184
Muther diagrams, 263, 264–266; construction of, 264–265; for health care (example), 264, 265–266

N
Naive forecasting, 376–378; smoothing, 377–378; trend analysis, 376–377; TREND() function, 376
Natural variation, assignable variation vs., 325–326
Naval School of Healthcare Administration, 10
Negative binomial distributions, 204
Net assets, 31
Net income, See Excess of revenues over expenses
Neyman, J., 395
NIST, 341
Noncurrent assets, 30
Noncurrent liabilities, 31
Nonlinear trends, 372
Nonprobabilistic criteria, 151
Normal curve, defined, 209
Normal distribution, 208–210
Not-for-profit health care organization, balance sheet for, 28; net assets, 31
Notes, balance sheet, 32
Nursing homes, quality improvement (QI) in, 326

O
Objectives/tradeoffs, 433–435
Office layout, 263
Operating activities, cash flows from, 32–34
Operating margin, 46
Operating statement, 24–27; for a health care organization, 25; revenues, gains, other support, 25–26
Operational planning, 436
Operational scheduling, 469–470
Operations, applied to health care, 5
Opportunity cost, 155
Optimization, 270–284; defined, 270; of facility design, 280–284; of facility layout, 270–284; formulation, 271–272; and Health Insurance Portability and Accessibility Act (HIPAA), 283–284; and objective, 270; using Excel Solver Add-In, 272–280
Oracle at Delphi, 150
ORBIS, 471
Order cost, 504
Overstaffing, 470

P
P-charts, 333–334
p-value, 115, 407–408, 421
Pareto analysis, 116–117; applying to health care operations and supply chain management, 116–117; defined, 116; and lean organizations, 363; Pareto diagrams, creating/interpreting, 117–118
Pareto charts (diagrams), 299–300
Productivity: improving, 245, 249–251; measuring, 247
Productivity analysis, 245–248; health care example, 246–247
Productivity measures, 245–246, 248–249; health care, 248–249
Profit and volume models, 50–53; break-even example, 51–52; graphical break-even solution, 52–53
Profitability ratios, 35, 45–47; operating margin, 46; return on assets (ROA), 46–47
Program Evaluation and Review Technique (PERT), 432, 439, 451–453; examples, 452–453
Project crashing, 443–444
Project management, 431–459, See also Project scheduling; application of best practices in, 251; budgeting/cost estimation, 453–454; control, 437; critical path method (CPM), 440–448; defined, 432; direct ranking methods, 434–435; Gantt charts, 448–450; implementation, 453–455; monitoring and information systems, 455; objectives/tradeoffs, 433–435; planning, 435–437; Program Evaluation and Review Technique (PERT), 451–453; resource allocation, 454–455; scheduling, 437–439; weighting methods, 435
Project management information systems (PMIS), 455
Project Management Institute (PMI), 432
Project manager: communication skills, 433; controlling, 433; leadership skills, 432–433; organization skills, 433; planning, 433; responsibility of, 433; role of, 432–433; scheduling, 433; teamwork, 432–433
Project planning, types of, 436
Project scheduling, 437–439; probabilistic project scheduling models, 439; quantitative project scheduling methods, 439; work breakdown structure (WBS), 437–438
Proportional order cost, 504
Purchasing function, 17

Q
Quality, See also Total quality management (TQM): defined, 324, 344; and financial performance, 292–294; functional, 290–291; managing in health care settings, 289–322; planning/control/improvement, 291–292; service, 290–291; technical, 290
Quality circles, 360
Quality control: and improvement, 323–349; systems, design of, 324; variables control, 327–331
Quality control tools, 294–302; benchmarking, 342–343; cause-and-effect (fishbone) diagram, 297–298; check sheets, 294–295; control charts, 301–304; flowcharts, 295–297; histograms, 298–299; Pareto charts (diagrams), 299–300; quality function deployment (QFD), 341–342; scatter diagrams, 300–301; 7 QC tools, 294–305, 313–314
Quality filter mapping, 240
Quality function deployment (QFD), 341–342
Quality improvement (QI), 305–311, See also Six sigma; in nursing homes, 326
Quality principles in health care organizations, 304–305
Quantitative project scheduling methods, 439
Queuing analysis, 216–223; applications of, 219; arrivals of customers, 216; example, 220–223; first come, first served (FCFS), 217; jockeying, use of term, 217; Kendall-Lee notation for queuing systems, 217–218; last come, first served (LCFS), 217; Little’s formula, 218–219; priority queuing discipline, 217; queue disciplines, 217; service, 216–217; service in random order (SIRO), 217
Queuing analysis example, 220–223; modeling in Excel, 220–222; scenario, 220; summary statistics, 222–223
Queuing theory, 216
Quick ratio, 43
Quintiq, 439

R
R chart, 301; interpreting, 330–331
R-squared, 405, 419
Radio-frequency identification (RFID), 519–520; active tags, 519–520; passive tags, 520
Random number generation, 210–211
Range, 86–87; risk defined/quantified, 175
Ratios of departmental costs to charges (RCCs), 66
Realignment of incentives, and bullwhip effect, 15
Reduced reimbursements to health care providers, 10
Reduction of uncertainty, and bullwhip effect, 15
Reduction of variability, and bullwhip effect, 15
Redundancy, in American industry, 292
Regression, 393–402; as forecasting technique, 393–402; history of, 394–395; model, forecasting and use of, 424; scatter plots, 363, 395–398; scientists of, 401–402; and seasonality, 393; simple linear regression equation, 398–401
Regression analysis (RA), 247, 248
Regret: as measure of risk, 158–159, 176; as upside/downside risk, 158
Report generator, 212
Resource allocation, 454–455
Resource availability, 454
Resource leveling, 444–447
Resource planning and control, 464–468
Resource smoothing, 447–448
Resource utilization, 454–455
Retail layout, 263
Retail store arrangement, 263
Return on assets (ROA), 46–47
Revenue and volume models, 50
Revenues, 25; excess of, 27
RFID, See Radio-frequency identification (RFID)
Risk: defined and quantified by range, 175; defined and quantified by regret, 176, 176–177; downside, 158; upside, 158
Risk-return tradeoff, 176
Romans, and use of hard data, 150
Room turnover process, 232

S
Safety stock, 503
Sampling, 326
Scatter diagrams, 300–301, 313, 363; and lean organizations, 363
Scatter plots, 363, 395–398
Scenario analysis, See Sensitivity analysis
ScheduleSource, 471
Scheduling, 465–466, 468; basic classes of problems, 472–473; Gantt charts, 480–484; Johnson’s rule, 475–480; problem solving, 470–471
Scheduling framework, for health care organizations, 469–470
Scheduling packages, 471
Seasonal adjustments, 388–391
Seasonal time series patterns, 372–376; additive model, 375; analyzing/interpreting models in data, 375–376; combined trend and seasonal data pattern (example), 373–374; cyclical behavior, characteristics of, 374; cyclical data, 373–374; example, 373; irregular data, 374–375; multiplicative model, 375
Seasonality, 387–388; and autocorrelation, 387–388; and regression, 393
Seattle Children’s Hospital kanban system, 361
Sensitivity analysis, 164–175, 177–178, 250; data calculations, 167; defined, 164; dominance, 164; dominant decision, establishing, 165; importance of, 166; medical equipment example, 167–172, 174; process of, 165–167; risks, 164, 165–166; sensitivity graph, 168–175; trade-offs, 164–165
Sensitivity graph, 168–175; analyzing, 173–175; constructing in Excel, 168–172; dominance, establishing, 173–174; risk, defining/quantifying, 175; strict dominance, 174; trade-off analysis, 174; trade-off point, 174
Service developers, as 3PL providers, 520
Service facility location analysis, 484–487; location alternatives, methods of evaluating, 488; location problems, methods for solving, 488; main objective for, 484–486
Service groupings, 250
Service in random order (SIRO), 217
Service-level performance statistics, improving process flow to improve (minicase), 253–255
Service levels, 242
Service quality, 290–291, 313; in surgical handovers, 293–294
Services for Australian Rural and Remote Allied Health, 244
SFA, See Stochastic frontier analysis (SFA)
Shareholders’ equity, See Net assets
Shewart, W., 325
Shift scheduling, 473
ShiftMaker, 471
Shipping/receiving docks, location, 264
Shortest processing time (SPT), 475
Simple linear regression equation, 398–401
Simple mean, 82–83
Simulation, 201–227, 250; agent-based, 215; continuous, 212–213; defined,
INDEX

Simulation clock, 212

Single-factor sensitivity analysis, 129–130

Six sigma: analyze phase, 309; black belts, 310–311; control phase, 310; cost savings/waste reductions created by, 306; define phase, 308; defined, 305; development of, 305–306; green belts, 310–311; improve phase, 310; and lean, 311–313; measure phase, 308–309; misconceptions regarding, 311; phases of, 307–308; practitioners, 310–311; use of term, 306–307

Smoothing, 377–378; exponential, 383–386; resource, 447–448

Smoothing constant, choosing, 386

Solver add-in, 437

Specialization, and workload management, 244

Speed of delivery, as competitive dimension, 12

SPSS, 408

St. Hampton’s Hospital electronic medical records implementation (minicase), 457–458

Staffing, 242–243; profile, 242; work shift scheduling, 243

StaffSchedule.com, 471

Standard deviation, 88–89, 90, 306; Excel formula for, 89

Standard error of estimates, 420–421

Standard provides, as 3PL providers, 520

Standardization certification, and International Organization for Standardization (ISO), 338–340

Starwood Hotels & Resorts Worldwide, and six sigma, 306

Statesman’s Yearbook, The, 394

Statement of cash flows, 32–35; cash and cash equivalents at end of year, 34–35; defined, 32; financing activities, 34; investing activities, 34; operating activities, 32–34

Statistical counter, 212

Statistical process control (SPC), 301, 324–326; charts, 326; control charts, 301–304, 331–334; process capability, 334–337; sampling, 326; total quality management (TQM), 337–338

Stochastic frontier analysis (SFA), 246–249

Stock-keeping unit (SKU), 502, 515

Stock-out costs, 505

Stock point, defined, 502

Straight aisles, 269

Strategic partnership development, and bullwhip effect, 15

Strategic planning, 436

Strict dominance, 162, 174

Supply chain management: applied to health care, 5; brief history of, 9–11; cost drivers at hospitals, 69–70; definitions of, 4–5; and executive leadership, 6; and hospital profit margins, 6

Supply chain response matrix, 240

Supply costs, 7

Supply expense: to adjusted discharges (ratio), 40–42; to adjusted patient days (ratio), 39–40; to net patient revenue (ratio), 38; to total operating revenue (ratio), 39

Support after service, as competitive dimension, 12
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surgical handovers, service quality in</td>
<td>293–294</td>
</tr>
<tr>
<td>SWOT analysis, and project planning</td>
<td>436–437</td>
</tr>
<tr>
<td>System state</td>
<td>212</td>
</tr>
<tr>
<td>T</td>
<td></td>
</tr>
<tr>
<td>T-critical value</td>
<td>106</td>
</tr>
<tr>
<td>t-test</td>
<td>420; application problem,</td>
</tr>
<tr>
<td>statistic</td>
<td>103–104</td>
</tr>
<tr>
<td>Tactical scheduling</td>
<td>469–470</td>
</tr>
<tr>
<td>Taguchi capability index</td>
<td>334–335, 337</td>
</tr>
<tr>
<td>Talmud</td>
<td>150–151</td>
</tr>
<tr>
<td>Technical quality</td>
<td>290</td>
</tr>
<tr>
<td>Technology forecasting, and project planning</td>
<td>436</td>
</tr>
<tr>
<td>Teian kaizen</td>
<td>360</td>
</tr>
<tr>
<td>Testing of two means</td>
<td>102, 104</td>
</tr>
<tr>
<td>Third-party logistics (3PL)</td>
<td>520; providers 7, 11</td>
</tr>
<tr>
<td>Three-year moving average</td>
<td>378</td>
</tr>
<tr>
<td>Time-driven ABC</td>
<td>66</td>
</tr>
<tr>
<td>Time series: analysis</td>
<td>370–371; models, 375;</td>
</tr>
<tr>
<td>techniques, 375</td>
<td></td>
</tr>
<tr>
<td>Time value of money: defined</td>
<td>47, 47–48; future value,</td>
</tr>
<tr>
<td>Timing routine</td>
<td>212</td>
</tr>
<tr>
<td>Tornado diagrams</td>
<td>129–135; creating in Excel, 130–132; data set, 130; defined, 129; disadvantages of, 135; interpretation of, 132–133; preliminary bar chart for, 131; single-factor sensitivity analysis, 129–130</td>
</tr>
<tr>
<td>Total quality management (TQM)</td>
<td>337–338; benchmarking, 337; continuous improvement, 337; employee empowerment, 338; just in time (JIT), 337–338; TQM tools, knowledge of, 337</td>
</tr>
<tr>
<td>Tour scheduling</td>
<td>473</td>
</tr>
<tr>
<td>Traceable costs</td>
<td>66</td>
</tr>
<tr>
<td>Trade-offs</td>
<td>164–165; and competitive dimensions of health care, 13; between dominant decisions, 165</td>
</tr>
<tr>
<td>Traditional hospital costing methods, characteristics of</td>
<td>66</td>
</tr>
<tr>
<td>Transportation waste</td>
<td>356</td>
</tr>
<tr>
<td>TreePlan</td>
<td>186–192; accessing, 186–187; adding to a decision tree in, 189–192; chance nodes, adding, 190; decision nodes, modifying, 190–191; defined, 186; initial decision tree, creating in, 187–189; loading, 186–187; modifying a decision tree in, 189–191; typing in cells containing formulas, 189, 191</td>
</tr>
<tr>
<td>Trend analysis</td>
<td>244, 376–377</td>
</tr>
<tr>
<td>TREND() function (Excel)</td>
<td>371, 376, 392–393</td>
</tr>
<tr>
<td>Trivial many</td>
<td>116</td>
</tr>
<tr>
<td>U</td>
<td></td>
</tr>
<tr>
<td>Understaffing, impacts of</td>
<td>470</td>
</tr>
<tr>
<td>Uniform distributions</td>
<td>204–205</td>
</tr>
<tr>
<td>United Healthcare, and six sigma</td>
<td>306</td>
</tr>
<tr>
<td>Upside risk</td>
<td>158</td>
</tr>
<tr>
<td>U.S. military, and six sigma</td>
<td>306</td>
</tr>
<tr>
<td>Utilization, 474; of resources vs. service offered, balance between levels of, 468</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Value</td>
<td>8–9, 17</td>
</tr>
<tr>
<td>Value-added processes</td>
<td>295</td>
</tr>
<tr>
<td>Value stream mapping (VSM)</td>
<td>233–240, 250, 354, 362; compared to process mapping, 241; current state map, 234–238; decision point analysis, 240; defined, 233; demand amplification mapping, 240; future state map, 235,</td>
</tr>
</tbody>
</table>
238–240; kaizen bursts, 237; muda, 233; physical structure mapping, 240; process, 233–234; process activity mapping, 240; production variety funnel, 240; quality filter mapping, 240; supply chain response matrix, 240; symbols used for, 235–236; tools, 240

Vanguard Group, and six sigma, 306

Variables control, 327–331; control chart limits, setting, 327–329; control chart spreadsheet calculations, formulas for, 329; defined, 327; R chart, interpreting, 330–331; x-bar chart, interpreting, 329–330

Variance, 88

Vendor-managed inventory (VMI), 8, 17, 521

Visual privacy, and hospital personnel, 283

Vital few, use of term, 116

von Neumann, J., 192–193

VSS Pro, 471

W

Warehouse layout, 263–264

Waste: in American industry, 292; controlling, 355–357, 365; defective products, 357; outdated items, disposing, 357; processing, 356–357; transportation, 356; wasted time/waiting in line, elimination of, 357

WBS, See Work breakdown structure (WBS)

Weighted averages, 159–160

Weighted moving averages, 381–383; advantage of, 383; expression, 382; weighting scheme, 382

Weighting methods, 435

What-if analysis, See also Sensitivity analysis; and project planning, 436–437

Womack, J., 354

Work breakdown structure (WBS), 437–438, 439

Work shift scheduling, 243

Workforce scheduling, 468–473

Working capital, 44

Workload management, 243–244; assignment of new customers/activities to workers, 244; and case complexity, 244; and cross-training, 244; and specialization, 244

WorkZone, 439

X

x-bar chart, 301–303; interpreting, 329–330

Y

Yule, G. U., 395, 401

Yule process/Yule distribution, 401

Z

Zoho Projects, 439