PROTEOMICS TODAY
PROTEOMICS TODAY
Protein Assessment and Biomarkers Using Mass Spectrometry, 2D Electrophoresis, and Microarray Technology

MAHMOUD HAMDAN
GlaxoSmithKline

PIER GIORGIO RIGHETTI
University of Verona, Italy
To Fatima, Giovanna, Mohammed, Jamilah
To my nephews Mohsin, Hamdan, Mahmoud and Suad

M.H.
CONTENTS

PREFACE XV

ACKNOWLEDGMENT XVII

I INTRODUCTION TO PART I 1

1 INSTRUMENTATION AND DEVELOPMENTS 7

1.1 Introduction / 7

1.2 Ionization Techniques for Macromolecules / 8

1.2.1 252Cf Plasma Desorption Ionization / 9

1.2.2 Fast Atom/Ion Bombardment / 10

1.2.3 Type of Fragment Ions and Nomenclature / 12

1.3 Examples on Analytical Solutions Based on FAB–MS / 12

1.3.1 Detection of Abnormalities in Hemoglobin / 13

1.3.2 Glycoprotein Structure Determination / 14

1.3.3 Early Scanning Functions on Sector Machines / 16

1.4 Electrospray Ionization / 16

1.5 Matrix-Assisted Laser Desorption Ionization / 18

1.5.1 MALDI at High Pressure / 21
CONTENTS

1.5.2 Desorption Ionization on Silicon (DIOS) / 21
1.5.3 Delayed Extraction / 23
1.6 Ion Detection / 24
 1.6.1 Microchannel Plates (MCPs) / 25
 1.6.2 Cryogenic Detectors / 26
 1.6.2.1 Superconducting Tunnel Junction / 27
 1.6.2.2 Thermal Detectors / 27
1.7 Types of Analyzers / 30
 1.7.1 Quadrupole Mass Filter / 30
 1.7.2 Three-Dimensional Quadrupole Ion Trap / 31
 1.7.3 Linear Ion Trap / 32
 1.7.4 Time of Flight / 34
 1.7.5 Fourier Transform Ion Cyclotron Resonance / 35
1.8 Hybrid Analyzers / 38
 1.8.1 Quadrupole Time of Flight / 38
 1.8.2 Ion Mobility–TOF / 40
 1.8.3 Linear Ion Trap–FT–ICR / 41
 1.8.4 Ion Trap–TOF / 42
1.9 Tandem Mass Spectrometry / 42
 1.9.1 Postsource Decay / 43
 1.9.2 MS–MS Measurements / 44
 1.9.3 Collisional Activation / 45
1.10 Current MS Instrumentation in Proteome Analyses / 47
 1.10.1 MALDI–TOF / 47
 1.10.2 MALDI–TOF–TOF / 49
 1.10.3 FT–ICR–MS / 50
 1.10.4 ION Mobility–MS / 51
1.11 Current MS-Based Proteomics / 52
 1.11.1 Delivering Peptides to Ion Source / 53
 1.11.2 Peptide Sequencing and Database Searching / 56
 1.11.3 Peptide Mass Fingerprinting / 56
 1.11.4 Searching with MS–MS Data / 58
 1.11.5 Databases for MS Data Search / 58
1.12 Recent Achievements and Future Challenges / 59
 1.12.1 Current Applications / 59
 1.12.2 Signal Transduction Pathways / 60
1.13 Concluding Remarks / 61
References / 63
2 PROTEOMICS IN CANCER RESEARCH 69

2.1 Introduction / 69
 2.1.1 Two-Dimensional Gel Electrophoresis / 70
 2.1.2 Surface-Enhanced Laser Desorption Ionization / 72
 2.1.3 Protein Microarrays / 73
 2.1.4 Getting More Than Just Simple Change in Protein Expression / 74
 2.1.5 Laser Capture Microdissection / 76

2.2 Pancreatic Ductal Adenocarcinoma / 80
 2.2.1 Analyses Based on Chip Technology / 81
 2.2.2 SELDI Analysis of Pancreatic Ductal Adenocarcinoma / 84
 2.2.3 Protein Profiling Following Treatment with DNA Methylation/Histone Deacetylation Inhibitors / 85
 2.2.4 Proteomic Profiling of PDAC Following Treatment with Trichostatin A / 86
 2.2.5 Proteomic Profiling of PDAC Following Treatment with 5′-aza-2′-deoxycytidine / 88

2.3 Proteomic Analysis of Human Breast Carcinoma / 90
 2.3.1 Two-DE Analysis in Breast Cancer / 91
 2.3.2 Proteomic Profiling of Breast Cancer Cell Membranes / 94
 2.3.3 Proteomic Analysis on Selected Tissue Samples / 96

2.4 Proteomic Profiling of Chemoresistant Cancer Cells / 97
 2.4.1 Protein Alterations in Pancreas Carcinoma Cells Exposed to Anticancer Drug / 97
 2.4.2 Proteomic Profiling of Cervix Squamous Cell Carcinoma Treated with Cisplatin / 99

2.5 Signal Pathway Profiling of Prostate Cancer / 101

2.6 Emerging Role of Functional and Activity-Based Proteomics in Disease Understanding / 103

2.7 Activity-Based Protein Profiling / 105

2.8 Probing Protein Functions Using Chromophore-Assisted Laser Inactivation / 106

2.9 Role of Protein–Tyrosine Kinases / 107

2.10 Concluding Remarks and Future Prospects / 109

References / 117

3 CURRENT STRATEGIES FOR PROTEIN QUANTIFICATION 127

3.1 Introduction / 127
 3.1.1 Strategies Based on Labeling a Specific Amino Acid Residue / 128
 3.1.2 Isotope-Coded Affinity Tags / 128
CONTENTS

4.2.1.2 Applications and Limitations / 191
4.2.1.3 Specific Advantages / 192
4.2.1.4 Carrier Ampholytes / 192

4.2.2 Equipment / 194
4.2.2.1 Electrophoretic Equipment / 194
4.2.2.2 Polymerization Cassette / 195

4.2.3 Polyacrylamide Gel Matrix / 198
4.2.3.1 Reagents / 198
4.2.3.2 Gel Formulations / 200
4.2.3.3 Choice of Carrier Ampholytes / 200

4.2.4 Gel Preparation and Electrophoresis / 202
4.2.4.1 Assembling Gel Mold / 202
4.2.4.2 Filling Mold / 203
4.2.4.3 Gel Polymerization / 204
4.2.4.4 Sample Loading and Electrophoresis / 204

4.2.5 General Protein Staining / 209
4.2.5.1 Micellar Coomassie Blue G-250 / 213
4.2.5.2 Coomassie Blue R-250/CuSO₄ / 213
4.2.5.3 Coomassie Blue R-250/Sulfosalicylic Acid / 213
4.2.5.4 Coomassie Blue G-250/Urea/Perchloric Acid / 214
4.2.5.5 Silver Stain / 214

4.2.6 Specific Protein Detection Methods / 214

4.2.7 Quantitation of Focused Bands / 214

4.2.8 Troubleshooting / 216
4.2.8.1 Waviness of Bands Near Anode / 216
4.2.8.2 Burning along Cathodic Strip / 216
4.2.8.3 pH Gradients Different from Expected / 217
4.2.8.4 Sample Precipitation at Application Point / 217

4.2.9 Some Typical Applications of IEF / 218

4.2.10 Examples of Some Fractionations / 218

4.2.11 Artifacts or Not? / 222

4.3 Immobilized pH Gradients / 225

4.3.1 General Considerations / 225
4.3.1.1 Problems of Conventional IEF / 225
4.3.1.2 Immobiline Matrix / 227
4.3.1.3 Narrow and Ultrannarrow pH Gradients / 230
4.3.1.4 Extended pH Gradients: General Rules for Their Generation and Optimization / 230
xii CONTENTS

4.3.1.1 Nonlinear, Extended pH Gradients / 232
4.3.1.6 Extremely Alkaline pH Gradients / 234

4.3.2 IPG Methodology / 235
4.3.2.1 Casting an Immobiline Gel / 235
4.3.2.2 Reswelling Dry Immobiline Gels / 237
4.3.2.3 Electrophoresis / 240
4.3.2.4 Staining and pH Measurements / 240
4.3.2.5 Storage of Immobiline Chemicals / 241
4.3.2.6 Mixed-Bed CA–IPG Gels / 242

4.3.3 Troubleshooting / 243

4.3.4 Some Analytical Results with IPGs / 243

4.4 Capillary Isoelectric Focusing / 247
4.4.1 General Considerations / 247

4.4.2 cIEF Methodology / 248
4.4.2.1 Increasing Resolution by Altering Slope of pH Gradient / 249
4.4.2.2 On Problem of Protein Solubility at Their pI / 251
4.4.2.3 Assessment of pH Gradients and pI Values in cIEF / 252

4.5 Separation of Peptides and Proteins by CZE in Isoelectric Buffers / 255
4.5.1 General Properties of Amphoteric, Isoelectric Buffers / 255
4.5.2 Troubleshooting for CZE in Isoelectric Buffers / 258
4.5.3 Novel EOF Modulators / 259

4.6 Conclusions / 260

References / 261

5 SODIUM DODECYL SULFATE–POLYACRYLAMIDE GEL ELECTROPHORESIS

5.1 Introduction / 273

5.2 SDS–Protein Complexes: a Refinement of the Model / 275

5.3 Theoretical Background of Mr Measurement by SDS–PAGE / 277

5.4 Methodology / 281
5.4.1 Purity and Detection of SDS / 281
5.4.2 Molecular Mass Markers / 281
5.4.3 Prelabeling with Dyes or Fluorescent Markers / 283
5.4.4 Postelectrophoretic Detection / 285
5.4.4.1 Nondiamine, Silver Nitrate Stain / 285
5.4.4.2 Colloidal Staining / 287
5.4.4.3 “Hot” Coomassie Staining / 288
CONTENTS

5.4.4.4 Turbidimetric Protein Detection (Negative Stain) / 289
5.4.4.5 Negative Metal Stains / 290
5.4.4.6 Fluorescent Detection / 291
5.4.5 Possible Sources of Artifactual Protein Modification / 294
5.4.6 On Use and Properties of Surfactants / 296
5.4.7 The Use of Surfactants Other Than SDS / 300
5.4.7.1 Acid-Labile Surfactants / 302
5.4.8 Anomalous Behavior / 302
5.5 Gel Casting and Buffer Systems / 303
5.5.1 Sample Pretreatment / 304
5.5.2 Standard Method Using Continuous Buffers / 306
5.5.2.1 Composition of Gels and Buffers / 307
5.5.3 Use of Discontinuous Buffers / 308
5.5.3.1 Method of Neville / 309
5.5.3.2 Method of Laemmli / 310
5.5.4 Porosity Gradient Gels / 311
5.5.5 Peptide Mapping by SDS–PAGE / 314
5.5.6 SDS–PAGE in Photopolymerized Gels / 318
5.5.7 Blue Native PAGE and Other Native PAGE Protocols / 321
5.6 Blotting Procedures / 322
5.6.1 Capillary and Electrophoretic Transfer / 324
5.6.2 Detection Systems after Blotting / 327
5.7 Conclusions / 331
References / 332

6 TWO-DIMENSIONAL MAPS 341

6.1 Introduction / 341
6.1.1 Early Days and Evolution of 2D PAGE / 342
6.1.2 A Glimpse at Modern Times / 344
6.2 Some Basic Methodology Pertaining to 2D PAGE / 346
6.2.1 Methods of Cell Disruption / 348
6.2.2 Proteolytic Attack during Cell Disruption / 349
6.2.3 Precipitation Procedures / 351
6.2.4 Removal of Interfering Substances / 353
6.2.5 Solubilization Cocktail / 357
6.2.6 Sample Application / 365
6.2.7 Sequential Sample Extraction / 370
6.2.8 True Artifacts and Fata Morganas / 371
6.3 Prefractionation Tools in Proteome Analysis / 373
 6.3.1 Sample Prefractionation via Different Chromatographic Approaches / 374
 6.3.2 Sample Prefractionation via Different Electrophoretic Techniques / 377
 6.3.2.1 Rotationally Stabilized Focusing Apparatus: Rotofor / 378
 6.3.2.2 Continuous Free-Flow Isoelectric Focusing / 379
 6.3.2.3 Continuous Free-Flow Electrophoresis / 381
 6.3.2.4 Gradiflow / 381
 6.3.2.5 Sample Prefractionation via Multicompartment Electrolyzers with Immobiline Membranes / 384
 6.3.2.6 Off-Gel IEF in Multicompartment Devices / 387
 6.3.3 Prefractionation via Subcellular Organelle Purification / 388
 6.3.4 Prefractionation of Membrane Proteins / 389
6.4 Multidimensional Chromatography Coupled to MS / 390
 6.4.1 Eavesdropping on Thy Neighbor / 391
6.5 Protein Chips and Microarrays / 393
6.6 Nondenaturing Protein Maps / 396
6.7 Spot Matching in 2D Gels via Commercial Software / 397
6.8 Conclusions / 403
References / 405
Prior to starting Part I of this book, and while searching existing literature on current proteomic activities, I came across a number of statements, that caught my attention and in a way have influenced my choice of the material in Part I. Therefore, it is reasonable to list them in here: First, mass spectrometry is a central component in modern proteomic research, second, the ability to determine statistically significant alterations in protein expression that might be provoked by disease, environmental, pharmacological, or genetic factors is a central component in current proteomic research, third, at the biochemical level, proteins rarely act alone; rather they interact with other proteins to perform a given cellular task. Although data obtained by various expression proteomics strategies have functional relevance by detecting changes in protein abundance, such measurements offer only an indirect readout of dynamics in protein activity. This means that numerous post-translational forms of protein regulation, including those governed by protein–protein interactions, remain undetected; and forth, biomarkers are not necessarily proteins. They can be DNA, RNA, or metabolites that can be associated with a measurable change with a given disease. Having stated that, protein-based analyses have two attractive features: First, proteins can be found regularly in blood, urine, and other biological fluids which make such approaches rather noninvasive, and second, proteins are the real executioners of various biological functions which make them key players in many diseases. To resolve the various issues contained within these statements, the last decade has witnessed an unprecedented use of a wide range of technologies and the fall of conventional barriers among the various disciplines. Within the wide host of technologies employed in the area of proteomic research, mass spectrometry emerges as a central component. The first three chapters of this book is an attempt to capture the recent contribution of this technology and its interaction with other technologies to tackle various proteomic challenges. The organization of Part I begins with a chapter dedicated to the major
PREFACE

components of current mass spectrometers with a particular emphasis on the developments which have influenced sensitivity, resolution and the capability to perform various tandem mass spectrometry functions. Chapter 2 deals with the various approaches including mass spectrometry in the field of disease biomarkers. To provide a broader perspective of the role of mass spectrometry in this particular area, some material has been included that is not circumscribed by mass spectrometry, per se. I have dedicated Chapter 3 to the argument of protein quantification including the emerging strategies for the quantification of phosphorylated and glycosylated proteins.

Of course regardless of the size of any given book and the good intentions of the author, it would be a pure scientific arrogance to pretend that such book would provide a comprehensive coverage of the arguments raised within. On the other hand, I would like to think that this text will be looked upon by prospective readers as a contribution to a vast and continuously evolving debate, where single contributions are required to enrich and possibly stimulate such debate.

I can not end this Preface without acknowledging that the years I spent at the University of Wales, Swansea working with Professor J. H. Beynon (founding editor-in-chief of the journal, *Rapid Communications of Mass Spectrometry*) had an immense impact on my appreciation of mass spectrometry as a tool, that can be applied in a wide range of applications including present day proteomics.

Verona, Italy
November 2004

Mahmoud Hamdan
ACKNOWLEDGMENTS

The author of Part I of this book would like to acknowledge the scientific inspiration and the lasting friendship of professors, Keith Birkinshaw, Pietro Traldi, and John H. Beynon. The author is also grateful for the support and patience of all members of the Mass Spectrometry & Separation Technologies group at GlaxoSmithKline Research Centre in Verona.

The striking developments in Part II of this book, reported as part of the research from my group in the field of immobilized pH gradients, would have been impossible without the heroic efforts of a group of close collaborators, among whom I would like to mention Drs. E. Gianazza, C. Gelfi, and M. Chiari. For our own developments in the field of capillary isoelectric focusing and the use of isoelectric buffers, I would like to express my appreciation of the work of Drs. C. Gelfi, A. Bossi, E. Olivieri, L. Castelletti, and B. Verzola. Our recent work in two-dimensional map analysis would have been impossible without the help and close collaboration of Drs. B. Herbert, A. Castagna, F. Antonucci, D. Ceconi, and N. Campostrini. The research from my own group reported here has been supported over the years by grants from MURST (Ministero Università e Ricerca Scientifica e Technologica), 1999 (Protein Folding) and 2000 (New Techniques in Proteome Analysis), by FIRB (2001), and by PRIN (2003). Finally, I would like to thank the colleagues who have supplied me with original photographs of their work.

M.H.
P.G.R