Index

Note: page numbers in *italics* refer to figures and tables.

aluminium-zinc-oxide electrodes 304–6
AMOLED displays see OLED
amorphous materials, types of 47–8
amorphous silicon 145–7
Arylite™ 106
atomic layer deposition (ALD) 282–5, 290–2, 295, 305
bias stress 311–13
BPhen layer 302
Brody, Peter 146
buffer layers 301–3, 352–5
Burstein–Moss shift 2, 11–12

C12A7 see nanoporous calcium aluminate
cadmium oxide
electronic properties 2–5, 35
substitutional doping 6–8
cadmium-indium-antimony-oxide 132–3
cesium carbonate 356–9
cage conduction band 22–3, 44, 45
calcium aluminate see nanoporous calcium aluminate
carbon nanotubes 79–80, 185–6, 328
chemical doping 188–9, 196, 201–3
chirality and bond structure 186–7
electrical properties 193, 201–3
sheet resistance and transport 193–6, 198–9
temperature-dependent effects 203–5
morphology 196–8
network deposition 188
optical properties 189–91, 198–9
optical constants 192–3
transparency 191–2
separated carbon nanotubes 200–3, 204–5
synthesis and purification 187

TCO properties compared 199–200
carrier generation
 oxygen reduction 8–10
 substitutional doping 5–8
carrier localization 20–2
carrier transport design 33–5
cavity conduction band 22–3, 44, 45
cellulose paper FETs 171–4
cesium carbonate 356–9
chalcogenides 36–40, 65, 68, 76–9
channel materials 309–11
chemical warfare agents 430–3, 438–9
chemoresistive sensing see gas sensors
clahrated ions 41–2
complex oxides 20–3
copper aluminates see delaffosites
copper(I)oxides 56, 69–72
Cu₃TaS₄ 79
Cu₃TaSe₄ 79
defect doping see oxygen vacancy
delafossites 31, 68, 69–72, 133
crystal structure 70
deposition methods 114–16, 153–4
 for carbon nanotubes 188
 for gate dielectrics 280, 281–5
 see also solution-processed electronics
dielectrics see gate dielectrics
dimethyl methylphosphonate 431–3, 438–9
dopants and doping 1, 5–8, 34–5
 of carbon nanotubes 188–9
 p-type semiconductors 65–7
 qualitative TCO doping model 113
 transition metal 10–12
 see also oxygen vacancy
driver circuits 317–19
E Ink display 216–17

effective mass see electron effective mass
electro-optic modulators, organic
applications and background 373–4
RF photonics 375
conventional modulator structures 375–8
RF propagation loss 379–80
RF velocity mismatch 380–1
TCO modification 378–9
modulator structures based on TCOs 382
basic design structures 384–9
lowest voltage and lowest switching regions 389
material requirements 382–3
RF loss/impedance and velocity matching 390–2
transmission line/full design analysis 392–3
frequency response/switching voltage 396–7
full electro optic-modulator structure 394–5
metal electrodes width 396
metallic-transmission-line-in-air analysis 393–4
substrate dielectric effect 395–6
TCO modulator fabricated and characterized 397–8
electrochromics
applications and benefits 325–6, 336–7
device design and materials 327–9
flexible devices 330–2
long term durability 335–6
research developments
contrast ratio 332–3
transmittance 332
UV irradiation 333–4
electrodes, transparent
electro-optic modulators 373–4
OLED displays 300–4
polymer solar cells 344–55
electron beam evaporation 114–15
electron effective mass 3, 4–5
carrier transport design 33–4
electron localization 20–2
electronic glue 359–62
electronic paper 213–14
applications 214
demands and benefits 214–15
IGZO TFT array 219–21

gallium oxide 18, 20
gallium-indium-zinc-oxide see indium-gallium
gallium-zinc-oxide 157
gas sensors 417–19
background principles 418–20
mechanism of nanowire sensing 427–8
chemical warfare agents 430–3, 438–9
indium oxide nanowires
chemoresistive sensing 436–7, 438–9
synthesis of nanostructures 424–6
transistor devices 437–8
tin oxide nanowires
chemoresistive sensing 428–30, 430–3
optical sensing/photoluminescence 435–6
synthesis of nanostructures 420–4
gate dielectrics 279–81
deposition methods 281–5, 290
on flexible plastics 287–92
SAND dielectrics 248–9
GIZO see indium-gallium-zinc-oxide
glass
electrochromic 325–6
plastic vs glass substrates 107–9
value-added 174
global warming 326
graphene lattice 186
Gyricon display 215

Heil, Oskar 143–4
historical review of semiconductor devices 141–2
nanoporous calcium aluminate (C12A7) 22–3, 33
C12A7:e− 43–6
C12A7:H+ 42–3
crystal structure 40–1
electronic structure of clathrated ions 41–2
embedded quantum dots 45–6
nanotubes see carbon nanotubes
nanowire electronics 243–4, 257
nanowire transistors
backgated network and single TFTs 245
device performance summary 244
indium oxide 247–50, 437–8
tin oxide 250–1, 433–4
zinc oxide 246–7
transparent circuits and displays 251–7
see also gas sensors
naphthalenetetracarboxylic diimides (NTCDI)
background 403–4, 405
initial studies of NTCDI FETs 404–5
N,N'-substitution/electrochemical stability 405–10
structural elaboration
core-cyano substituted derivatives 411–12
cyclohexy substituted 411
fluoroalkylated benzyl derivatives 410–11
use of NTCDIs in multifunctional transistors 41–4
naphthalenetetracarboxylic dianhydride 404, 405
nerve gases 430–1, 438–9
nickel oxide
electrochromics 325, 328, 330–1
p-type 73
noise spectroscopy 335
NTCDI see naphthalenetetracarboxylic diimides
OFET 151–2
OLED displays 54–5, 154–5, 299–320
applications of transparent displays 299
indium free/aluminium-zinc-oxide electrodes 304–6
light extraction 307–8
stacked OLED structures 306–7
transparent AMOLED technology 152–5
active OLED pixels 316–17
driver circuits 317–19
flexible displays 251–7
transparent TFTs 308–9
channel materials 309–11
sensitivity to light 313–16
stability vs bias stress 311–13
transparent top electrode 300–4
optical band gaps 3–4
optical fibre communication 374–5
optical intensity modulators see electro-optic modulators
organic light emitting diode see OLED
organic semiconductors 151–2
see also electro-optic modulators;
naphthalenetetracarboxylic diimides
oxychalcogenides 36–7, 76–9
electronic structure 38–40
epitaxial film fabrication 37–8
optical and electrical properties 38
oxygen vacancy 8–10, 17–18, 23, 111–12, 135
p-type semiconductors 31, 33
applications and prospects 55–7, 61–2, 81–2
p++ contacts 63–4
p-channel TTFT 63
p-n junctions 63, 133–5
passive applications 65
solar cells 64
materials 35–6, 133
chalcogenides 36–40, 65, 68, 74–9
delafossites 69–72
p-type spinels and ZnRh2O4 73–4
p-ZnO and p-NiO 73, 81
synthesis/deposition 3–8, 80–1
nanomaterials 79–80
organic semiconductors 7
properties
band structure and dopability 65–7
optical 38, 68–9
transport 38, 67–8
paper transistors 142, 171–3, 289
see also electronic paper
patterning 292–3, 294
PCBM polymer 343
PCPDTBT polymer 344
PEDOT:PSS polymer 344, 352–5
as transparent electric glue 359–62
pentacene 403, 404
TFTs 151–2
perylenetetracarboxylic dianhydride 404, 405
photoluminescence 435–6
phthalocyanines 403, 404
446 Index
Index 447

pinning energies 66
plasma-enhanced chemical vapor deposition 281
plastic substrates 103–4, 265–7, 285–6
applications and key points 103–4, 136–7, 265–7
deposition methods 114
atomic layer 282–5, 290–2, 295
evaporation 114–15, 289, 290
sputtering 115–16, 287, 288
deposition process procedures 116–17
controlling E/O properties 119–21
interpreting results 119
glass vs plastic substrates 107–9
substrate limits and challenges
mechanical/thermal expansion limits 105–7
temperature processing range 105, 107, 285–6
TCO microstructure 112
TCO/ITO conductivity outlined 109–13
optical properties 109–10
transparent oxide electronics 121–4
binary oxide materials 124–9
p-type materials 133–5
ternary oxide materials 129–33
see also electronic paper, flexible electronics
PLEDs 344, 347–51
poly(3-hexylthiophene) 343
crystalline silicon 147–50
polyethylene naphthalate (PEN) 285–6, 288, 290–2
polyethylene terephthalate (PET) 285–6, 330, 332
polyimide substrate 286, 287–8, 290
polymer solar cells see solar cells
post transition metal oxides 49–50
printed electronics 232
survey of printed materials 233–4
see also patterning
pulsed laser deposition 80–1, 115
Riston® 292–3, 294
RR-P3HT polymer 343
SAND dielectrics 248–9
Sarin 431
self-assembled nanodielectric 248–9
single-wall carbon nanotubes see carbon nanotubes
smart windows 326
solar cells, transparent polymer 64, 343–4, 369–70
anode for high performance 352
inverted configuration 355–9
transition metal oxide buffer layers 352–5
cathodes
single layer semi-transparent metal film 344–7
stacked metallic thin film 347–51
solar cell fabrication by lamination 359
cell characteristics summarized 366–9
conducting polymer as electronic glue 359–62
process steps 362–6
solution-processed electronics 231
printed electronics 232
printed materials survey 233–4
transparent conductive oxides
case for 234
nanoparticles 234–7
nanowires 238–9
solution-deposited thin films 239–41
Soman 431
Spear, Walter 146–7
spinel, p-type 73–4
sputtering 115–16
binary metal oxides 267–70, 273–5, 279
buffers 301–3
SrCu2O2 72
substitutional doping 5–8
TCO see transparent conducting oxides
TCTA transport material 302
Teonix® 285
tetracyano-2, 6-quinodimethane 405
thin film transistors (TFTs) 51–2, 308–9
applications and developments 152–5
bias stress and stability 311–13
channel materials 309–11
display applications overview 51–5
history of see historical review
thin film transistors (TFTs) (Continued)
indium oxide TFT 275–8
IZO/GIZO study 161–2
annealing temperature 166–8
ceramic target composition 162–4
partial pressure/oxygen content 164–6
stability over time 168–9
stability under current stress 170–1
materials/technologies compared 153–4, 176
nanowire see nanowire electronics
p-channel 55–7, 62–3, 79–80
sensitivity to light 313–16
thin film deposition and performance 122–4
binary materials 124–9
p-type materials 133–5
ternary/multicomponent materials 129–33
tin oxide TFT 279
zinc oxide TFT 270–3, 284
on plastic substrates 287–92
thiophene oligomers 403, 404
Thornton diagram 329
tight-binding model 15
tin oxide 152
electronic properties 2–5, 156
films 127–9
nanowires
chemoresistive sensing 428–33
optical sensing/photoluminescence 435–6
synthesis 420–4
transistors 250–1, 433–4
TFTs on silicon substrate 279
TPBi layer 302
transition metal oxides 302
transparency, conditions for 1–2, 141–2
transparent conducting oxides (TCOs) 1–2
applications
general overviews 31–3, 103–4, 155–7, 174–5
p-type devices 62–6
binary oxides
carrier transport 33–5
oxygen reduction 8–10
qualitative doping model 113
substitutional doping 5–8
electronic properties 2–5, 156
band structure chematic 2, 24
optical properties 109–10
thin films 112, 124–9
light metal oxides 16–20
magnetically mediated TCOs 10–12
ternary/multicomponent oxides
carrier delocalization 20–2
electronic properties 12–16, 50–1, 108, 109
impurity doping 110–11
materials design 48–50
metallic conductivity 109
optical properties 109–10
oxygen vacancy 111–12
qualitative doping model 113
thin films 112, 129–33, 157–60
see also nanoporous calcium aluminate transparent displays see OLED displays
TFTs see thin film transistors
tungsten oxide 303–4
electrochromics 325, 328, 330–1, 333
Tyvek® 289–90
vacuum evaporation 114
vanadium oxide buffer 352–5
variable range hopping 67
Vizplex imaging film 217
Weimer, Paul 145
window glass
smart/electrochromic 325–6
value-added 174
WO3 see tungsten oxide
zeolites 24
zinc oxide 152, 157
aluminium doped electrodes 304–5
electronic properties 2–5, 156
nanoparticles 234–7, 239–41
nanowire devices 238–42, 244, 246–7
transistors 244, 246–7
p-type 73, 81, 133
TFTs on plastic 285–92
TFTs on silicon
Al2O3/HfSiOx/HfO2 dielectrics 283–5
silicon oxide dielectric 270–3, 280
SiNx:H/Si dielectric 281–2
thin film properties 125–7, 267–70
zinc-tin-oxide 129–30
TFTs 308–16
ZnRh2O4 73–4