INDEX

ABR abrasimetre abrasion coefficient, 21
Abrasion value (AV), 22–23
Abrasiveness (rock), 162, 177
ABS, 22–23
Accelerators (shotcrete), 314
ACI (American Concrete Institute), 229
Acoustical waves, 130
Acrylate grouts, 235
Active ground support, 187–197
 blocking, 195
 installing steel sets, 191, 193–195
 lagging, 195–197
 steel set types, 188–190
 wall plates, 191–193
Additives (shotcrete), 314–315
Advanced heading, 140–141
Aeolian deposits, 66
Aeronautical engineering, 1
Airborne shock waves, 129
Air concussion, with blasting, 128–133
Air flow, 368–379
 dynamic pressure, 370
 and energy, 369–370
 fan characteristic curves, 374–379
 fans, 370–377
 pressure calculation, 369
 and pressure differences, 368
 shock loss, 374
 static pressure, 369, 370, 375–376
 total pressure, 370, 373
 types of, 369
Air-powered drifter drills, 109–110
Air pressure:
 calculation of, 369
 differences in, 368
 dynamic, 370
 static, 369, 370, 375–376
 total, 370, 373
AirROC T25 Top Hammer Surface Drill, 109
Airtracs, 108–109
Alimak muckers, 296, 299
Alimak Raise Climber, 303
Alkaline silicate grouts, 232–233
Alluvium, 65
Aluminum:
 in emulsions, 124
 in explosives, 118
American Concrete Institute (ACI), 229
Ammonia dynamites, 121
Ammonia gelatins, 121
Ammonium nitrate (AN), 114
Ammonium nitrate and fuel oil (ANFO), 114, 121–123
Amplitude (vibrations), 130–131
AN (ammonium nitrate), 114
AN-based explosives, 114–115
ANFO (ammonium nitrate and fuel oil), 114, 121–123
Angle cuts, 144–147
Anthracite, 14
Anticlines:
 defined, 17
 and tunnel location, 26–27
Arch action:
 and soil load, 74, 76–80
 Terzaghi’s rock categories, 30–37
Argillization, 18
Atlas Copco Robins 34RH Raise Borer Rig, 301
Atterberg Limits, 70
Auger boring, 351–354
Austrian tunneling method, see New Austrian tunneling method (NATM)
Autochthonous deposit, 67
AV (abrasion value), 22–23
INDEX

Axial cutting (roadheaders), 160
Axial fans, 371
Baby pyramid cuts:
 shaft construction, 294–295
 tunneling in rock, 146–147
Backfill grouting, 253–257
Backhoes, 211, 295
Back holes, 139
Backup equipment (TBMs), 182–184
Bacon, Roger, 112
Bank quantity, 209
Barre, Vermont, comparison to, 23
Bar reinforcement, see Reinforcing bar (rebar)
Barrier bar deposits, 67
Batholiths, 11
Bauer, Alan, 136
Beaches, 67
Beam lagging, 197
Beaumont, Fredrick, 172–174
Beaumont/English TBM, 172–174
Bedding, 16
 driving parallel to, 24–26
 horizontal, 23–25
 orientation of, 23–26
Bedding planes, 15
Beryllium, in explosives, 118
Bickford, William, 112
Biogenic sediment, 11
Bioherms, 66
Bit life:
 parameters for, 21
 roadheaders, 159–160, 165–166
Bituminous coal, 13
Bit wear index (BWI), 22
Black lung disease, 365
Black powder, 127
Blasting, 106, 124–138. See also Explosives
 advantages of TBMs over, 184
 air concussion and vibrations, 128–133
 breakage theory, 124–125
 controlled, 153
 cushion, 154–155
 drilling and blasting cycle, 106–107
 flyrock, 137–138
geology, energy, and geometry needed for, 125–127
in igneous rock, 11
in metamorphic rock, 15
mucking blasted rock, 209
OSM methods for controlling, 134–137
scaled distance formula, 132–135
in sedimentary rock, 14
shaft construction, 292–295
smooth-wall (contour), 155–156
tunnel driving by, 138–156
 advanced heading, 140–141
 controlled blasting, 153
 cushion, 154–155
 delay detonators, 151–153
 full-face method, 138–140
 line drilling, 153
 parallel (burnhole) method, 141–147
 patterns for tunnel headings, 147–150
 presplitting, 153–154
 smooth-wall (contour), 155–156
 stemming, 150–151
Blasting agents, 121–123
Blind shaft drilling, 302
Blocking, for ground support, 195
 Blowout, 341
Borings, 2–3, 6–7
Boulders, 65–66
Boxhole borer, 301
Box jacking, 362–363
Brisance, 119
Break cuts, 142–144
Breakage theory, 124–125
Breach holes, 139
Breach, 15
Brisance, 119
Brookville Locomotive, 215
Brunel, Marc, 88
Brunton, John D., 172
Brunton TBM, 172, 173
Burn cuts, 142–144
Burnhole method, see Parallel method
Button cutters (TBMs), 179–180
BWI (bit wear index), 22
Cactus grab muckers, 296, 298
CAI (Cerchar abrasivity index), 21
Calder, Peter, 136
California switch, 217–218
Cal/OSHA (California), 369
Capillary pressure, 71
Cast-in-place concrete tunnel linings, 387–389
Cavity pumps, 266
CEMIX Mixer, 264
Cerchar abrasivity index (CAI), 21
Cerchar scratch test, 21–22
CFP (collated fibrillated polypropylene) fiber reinforcement, 316
Channel lagging, 196
Channel tunnel, 172
 Chapin Mine, Missouri, 342
ChemGrout CG-3X8 Electric Hydraulic Double-Acting Positive-Displacement Plunger Pump, 268
ChemGrout CG-L8 Progressive-Cavity Grout Pump, 266
Chemical erosion, 12
Chemical explosives, 116–117
Chemical grout, 228, 230–237
Choosing, 230–233
types of, 233–237
Chemical weathering:
causes of, 12
soil resulting from, 65
Chunnel project, 382
Circular rib supports, 188–190
Civil engineering, 1, 2
Clastic rocks, 11–13
Clay(s), 12
in lakes, 66
plasticity index, 70
porosity of, 224
raveling, 71
squeeze in, 72
stand-up time, 71
swelling, 72, 74, 79–80
USCS system, 68
USDA system, 69
CLI (cutter life index), 22
Coeur d’Alene mining district, Idaho, 368
Cohesion, 71
Cohesionless soils, 70, 74
Cohesive soils, 69–70
Cohesive strength, 59, 70
Collar, shaft, 280–282
Collated fibrillated polypropylene (CFP) fiber reinforcement, 316
Colloidal mill, 263–264
Colloidal mixers, 261
Colloidal pumps, 261
Commercial explosives, 119–124
Compensation grouting, 238
Compressed air machine shields, 92
Compressed air method (water handling), 340–342
Compression/displacement, 350
Compression waves, 10, 126
Compressive strength (rock), 124, 161, 162
Compressive to tensile strength (UCS:T) ratio, 66, 162, 177–178
Concrete, sprayed (shotcrete), 307–322
additives, 314–315
application of, 317–322
dry mix, 308–310
wet mix, 310–314
dry mix, 308–310
reinforcement, 315–316
bar, 316
fiber, 315–316
as tunnel lining, 384
wet mix, 310–314
Concrete, for two-pass tunnel linings:
cast-in-place, 387–389
precast concrete segments, 384–388
Conglomerates, 15
Contact grouting, 257–260
Continuous mucking machines, 213
Continuous rib supports, 188, 189
Contour (smooth-wall) blasting, 155–156
Controlled blasting, 153
Conveyors (mucking), 220–222
Cook, Melvin A., 114
Coromant cuts, 144
Crawler excavators, 210, 211
Crawler-mounted hydraulic rock drills, 111–112
Crown bar, 191, 193, 194
Crown holes, 139
Cryderman muckers, 296, 297
Cup tests, 253
Cushion blasting, 154–155
INDEX

Cutterhead (TBMs), 181–182
Cutter life:
 parameters for, 21
 roadheaders, 165–166
Cutter life index (CLI), 22
Cutting, 350
Cutting bits:
 roadheaders, 164–166
 for soft ground tunneling, 94
 for tunneling in rock, 107, 109–111, 127, 143
Cutting capacity (roadheaders), 166
Cutting tools (TBMs), 179–181

Dead pressing, 143
Deep wells, 336–338
Deere, D.U., 27
Delay detonators, 151–153
Delta deposits, 67
Density:
 of explosives, 120
 of gravel and sand, 70
 of rock, 162
Detonation:
 delay detonators, 151–153
 energy produced by oxidation, 117–118
 velocity of, 119
Dewatering, 336–340
 deep wells, 336–338
 defined, 336
 wellpoint, 337–340
Diagenesis, 13
Diamond indenter, 21, 22
Diatomaceous earth, 67
Differential displacement, 131–132
Dip, 15–16
Disc cutters (TBMs), 180–182
Discontinuities, 15–16. See also Joints
 continuity of, 45
 displacement, 15
 and fragmentation, 20
 in igneous rock, 11
 joint spacing, 44, 45
 and TBM operation, 178
 Terzaghi’s rock classes, 30–32
 and tunneling in rock, 162, 163
 Discordant intrusions, 11
 Displacement discontinuities, 15
 Dittmar, Carl, 113–114
 Dolerite, 11
 Dolomite, 13
 Double-beam wall plates, 191, 192
 Double-canopy grouting, 243
 Double-fluid jet grouting, 238, 239
 Double-packer grouting, 249–250
 Downstage grouting, 252
 Drag cutters (picks):
 roadheaders, 164
 TBMs, 179
 Drawhammer cut, 146
 DRI (drilling rate index), 22
 Drifter drills, 108–110
 Drills:
 hydraulic, 110–112
 pneumatic, 107–110
 Drillability (rock), 20, 23
 Drill core quality, 44
 Drilling, 106–112
 advantages of TBMs over, 184
 blind shaft, 302
 drilling and blasting cycle, 106–107
 hydraulic drills, 110–112
 line, 153
 percussive, 246
 pneumatic drills, 107–110
 rotary, 246
 shafts, 292–295, 302
 in stage grouting, 252
 Drilling rate index (DRI), 22
 Dry mix application (shotcrete), 308–310
 Ductile iron, 382
 Dupont, 114
 Dynamic air pressure, 370
 Earth Mechanics Institute, Colorado School
 of Mines, 162
 Earth pressure balance machine (EPBM), 91, 97–104
 Eccentric screw pumps, 266
 Eimco 630 overshot mucker, 210, 295–296
 Elastic motion, 130
 Elastic rock, 15
 Electrical engineering, 1
 Emulsification, 124
Emulsions, 115, 123, 124
Energy:
 and air flow, 369–370
 and blasting, 126–127
Engineering properties:
 defined, 67
 and grouting, 223–228
 of rock, 5, 19–20, 124
 discontinuities, 15–16
 hardness, 20–23
 Q-system of classification, 49, 53–63
 rock mass determinations, 29–30
 rock mass rating, 40, 43–52
 rock quality designation, 27–29
 and TBM operation, 177–178
 Terzaghi’s rock categories, 30–43
 of soils, 67–80
 defined, 67
 firm ground, 71
 flowing ground, 72
 raveling ground, 71–72
 squeezing ground, 72
 swelling ground, 72–80
English, Thomas, 173
English Channel tunnel, 172, 174, 382
EPBM (earth pressure balance machine),
 91, 97–104
Epoxy grout, 236–267
Erosion, 12
ESR (excavation support ratio), 53, 57–63
Estuarine deposits, 67
Excavation:
 guidelines for, 48
 trenchless, 349–363
 auger boring, 351–354
 box jacking, 362–363
 horizontal directional drilling,
 353–354
 methods for creating holes, 350
 microtunneling, 354, 361–362
 pipejacking, 354–363
 ramming, 350–351
 unitary, 81–83
 excavation support ratio (ESR), 53,
 57–63
 expansion shell anchored rock bolts,
 197–198
Explosions:
 in mines, 365
 types of, 115–116
Explosives, 111–124. See also Blasting
 blasting agents, 121–123
 chemical, 116–117
 commercial, 119–124
 detonation of, 117–118
 heat of explosion, 118
 history of, 111–115
 military, 118–119
 OSM methods for controlling effects of,
 134–137
 primary, 116
 properties of, 119–120
 secondary, 116
 types of explosions, 115–116
 External-percussion drills, 110
 Fans, 370–379
 axial, 371
 fan characteristic curves, 374–379
 and pressure, 372–373
 Fan characteristic curves, 374–379
 Fan cut, 145–146, 149
 Faults, 15, 18, 19
 FELs (front-end loaders), 211, 295
 Felsic minerals, 11
 Felsite, 11
 Fiber reinforcement (shotcrete), 315–316
 Field tests (soil), 70
 Final tunnel linings, 381, 382
 Firm ground, 71
 Flat wall plates, 191, 193
 Flexural folds, 18
 Flexural rupture (rock), 126
 Flowing ground, 72
 Fly ash, 314–315
 Flyrock, 137–138
 Folds, 16–18
 flexural, 18
 slip, 18
 Foliation plane, 15
 Forepoling:
 in full-arch mining, 87–88
 in new Austrian method, 331, 332
Forward-attack picks (roadheaders), 164
Foundation Company, 174
Fractures, 18
 faults, 18, 19
 joints, 18, 19
 shear zones, 19–20
Free boring, 352
Freezing:
 in burn cutting, 142
 for water control, see Ground freezing
French Channel Tunnel Company, 172
Frequency (vibrations), 131, 134
Frictionless air flow, 369
Friction rock bolts (split-sets), 198–203
Front-end loaders (FELs), 211, 295
Frost, 12
Full-arch mining, 83–88
Full-face method, 138–140
Fume class, 120
Funding, 5–6
Garnet, 14
Gauges (grouting), 268
Gauge savers (grouting), 269
GEG (geology, energy, and geometry), 126–127
Gelatin dynamites, 121
Geology, 126, 177
 discontinuities, 15–16
 faults, 18, 19
 folds, 16–18
 fractures, 18
 igneous rock, 10–11
 joints, 18, 19
 metamorphic rock, 14–15
 sedimentary rock, 11–14
 shear zones, 19–20
 subsurface, 5
Geology, energy, and geometry (GEG), 126–127
Geometry, 127, 163
Geophysical investigations, 8–10
Geotechnical considerations, see Engineering properties
Geotechnical engineering, 1
Glacial deposits, 65–66
Glacial till, 65
Glass-reinforced polymer (GRP) rods, 207
Gneiss, 23
Gonabad qanat, 3
Grand Central Station, New York City, 111–112
Granite, 10, 23
Gray beard” business, tunneling as, 2
Greathead, James Henry, 88
Greathead shield, 88
Ground arch:
 and rock load, 33–37
 and soil load, 74, 76–80
Ground control (ground support), 187–208
 active support, 188–197
 blocking, 195
 installing steel sets, 191, 193–195
 lagging, 195–197
 steel set types, 188–190
 wall plates, 191–193
 based on type of ground, 38, 39
 guidelines for, 48
 in highly weathered areas, 11
 with high water inflows, 27
 passive support, 197–208
 friction, 198–203
 glass-reinforced polymer rods, 207
 grouted rock bolts, 203–207
 mechanical, 197–199
 self-drilling, 208
 and rock mass rating, 40
 steel, 39, 41–42
 support system objectives, 187
 types of, 188
Ground freezing:
 in shaft construction, 292
 for water control, 342–347
Ground support, see Ground control
Groundwater. See also Water handling
 near faults, 18
 and rock mass behavior, 45, 46
Grout:
 chemical, 230–237
 defined, 223
 stability of, 230
 test of, 253
 types of, 223, 228–230
 viscosity of, 230
Grouted rock bolts, 203–207
Grouting, 223–270
 backfilling, 253–257
 behind shaft liner plates, 288
 chemical grout, 230–237
 compensation, 238
 contact grouting, 257–260
 defined, 223–270
 equipment for, 260–269
 geotechnical considerations in, 223–228
 jet, 238–242
 materials, 228–230
 objectives of, 223
 operating tips, 269–270
 permeation, 237–238, 240
 postgrouting, 243, 246
 pregrouting, 240–246
 pressures with, 246–251
 sequence for, 240
 stage grouting, 252–253
 test of, 253
Grouting equipment, 260–269
 gauges, 268
 gauge savers, 269
 high-speed/high-shear mixers, 261–265
 operating tips for, 269–270
 paddle mixers, 260–261, 265
 pumps, 265–268
Grouting pressures, 246–251
Grout zone, 250
GRP (glass-reinforced polymer) rods, 207
HDD (horizontal directional drilling), 353–354
Heat of explosion, 118
Helical screw pumps, 266
Henn, R. W., 257, 262–263
High explosives, 119
High-speed/high-shear mixers, 261–265
Hoosac Tunnel, Massachusetts, 113, 171
Horizontal directional drilling (HDD), 353–354
Hotspots (explosives), 124
H-sections, 188
Humber River sewer project, 174
Hydraulic drills, 110–112
Hydraulic impact hammers, 156–157
Hydrologic survey, 27
Hypabyssal rocks, 10–11
Ideal air flow, 369
Igneous rock, 10–11
Impact hammers, hydraulic, 156–157
Indiana limestone, 23
Inflatable packers, 248–251
Initial tunnel linings, 381
Inline cutting (roadheaders), 160
International Society for Rock Mechanics, 228
Intrusive rocks, 10–11
Invert struts, 189
Iron, 105
Jacking:
 box, 362–363
 pipejacking, 354–363
 drive lengths, 356–359
 process for, 355–356
 types of excavators, 359–362
 Jacking pipe, 360–361
 Jacking pits, 278–279
 Jacking shields, 356
 Jackleg, 107–108
 Jacobs sliding floors, 217–220
Jet grouting, 238–242
 double-fluid, 238, 239
 in new Austrian method, 333
 single-fluid, 238–239
 triple-fluid, 238, 239
Hardness (rock), 20–23
 Cerchar scratch test, 21–22
 comparison to Barre, Vermont, 23
 LCPC abrasimeter test, 22
 Mohs scale of, 20–21
 NTNU abrasion test, 22–23
Haulage, see Mucking and haulage
Hazards of tunneling, 2, 365
Joints, 18, 19. See also Discontinuities
 condition of, 44, 45
 formation of, 15
 in igneous rock, 11
 orientation of, 45–52, 163
 spacing of, 44, 45
Jooste two-shot technique, 233

Kerf principle, 181
Kieselghur, 113

Laboratoire Central des Points et Chaussée, 21
Lacustrine deposits, 66
Lagging:
 for active ground support, 195–197
 defined, 194
 full-arch mining, 83–86
 shafts, 284–288
 steel sets with, 188
Lagoon deposits, 67
Lakes, 66, 67
Lake marl, 67
Laminar air flow, 369
Lattice girders, 193–195
Law, George, 113
LCPC abrasimeter index, 21
LCPC abrasimeter test, 22
LHD (load–haul–dump) machines, 12, 211–213
 LHD Scoop Tram, 211
Lifter holes, 139
Lignin-based grouts, 236
Limestone, 13, 23
Line drilling, 153
Liner plate, 81
 in glacial deposits, 65
 as primary lining, 382
 for shafts, 286, 288–289
 steel, 197
 in unitary excavation, 81–83
Linings, tunnel, 381–389
 characteristics of, 381
 effects of water on, 27
 materials for, 382
 one-pass, 384
 shotcrete, 384
 two-pass, 384–389
 cast-in-place concrete, 387–389
 precast concrete segments, 384–388
Liquid limit (LL), 70
Lithification, 13
Load–haul–dump (LHD) machines, 12, 211–213
Loess, 66
London Underground, 88, 382
Longitudinal ventilation systems, 366–367
Low-shear-strength grouts, 234
Lung cancer, 366
Mafic minerals, 11
MAI self-drilling anchor, 208
Marine deposits, 66–67
Marsh cone, 230
Marsh funnel, 230
Marsh funnel tests, 253
Mechanical-anchored rock bolts, 197–199
Mechanical erosion, 12
Mechanical packers, 247–248
Mechanical ventilation, 365–368
Mechanical weathering, 12
Metallurgy, 1
Metamorphic rock, 14–15
Microfine cement, 228
Microsilica (silica fume), 314–315
Microtunnel-boring machines (MTBMs), 361
Microtunneling, 354, 361–362
Microtunneling shields, 359
Midtown Tunnel, New York City, 382, 383
Military applications of tunneling, 3
Military engineering, 1
Military explosives, 118–119
Milling, 160
Mill-tooth cutters (TBMs), 179
Miners, hazards for, 2, 365, 366
Minerals, in marine waters, 67
Mine trucks, 212, 213
Mini-excavators, 279
Mining. See also Tunneling
 full-arch, 83–88
 hazards of, 2, 365, 366
 with open shield, 89
INDEX 407

in rock, 105
with slurry, 93
use of term, 1
under the water table, 27
Mittry mole, 174
Mohs scratch test, 20–21
Moisture content (rock), 178
Moles, 105. See also Tunnel-boring machines (TBMs)
Mono pumps, 266
Moyno pumps, 266, 267
MT 42 Mine Truck, 213
MTBMs (microtunnel-boring machines), 361
Muck bays, 213
Muck cars, 216–217
Mucking and haulage, 209–222
continuous mucking machines, 213
earth pressure balance machines, 97–98, 102
load–haul–dump machines, 211–213
methods of mucking, 209–211
mine trucks, 212, 213
with pipejacking, 354–355, 360
rail transport, 214–222
roadheaders, 161–163, 167, 168
for rock shafts, 295–299
shaft areas for, 281–282
slurry machines, 94–96
tunnel-boring machines, 171
Muds:
in marine waters, 67
tunneling through, 341
Mud balance tests, 253
Mylonites, 18
Nitroglycerin Act (Great Britain), 113
NMT (Norwegian method of tunneling), 323, 333–334
Nobel, Alfred, 105, 113, 114
Nobel, Immanuel, 113
Nonclastic rocks, 13
Normal faults, 18
Northern Pacific Railroad Company, 354
Norwegian method of tunneling (NMT), 323, 333–334
Norwegian University of Science and Technology (NTNU), 21
NTNU abrasion test, 21–23
Nuclear engineering, 1
Oahe Dam, South Dakota, 174
OCR (operational cutting rate), 167
Ohio sandstone, 23
One-pass tunnel linings, 384
OPC grout, 228, 229
Operating principle:
roadheaders, 159–161
tunnel-boring machines, 176–184
Operational cutting rate (OCR), 167
Operational parameters (roadheaders), 166–169
Organic soils, 68
Orientation:
of fractures, 18
of joints, 45–52, 163
of tunnels, 23–26
axis perpendicular to strike, 23, 24
driving parallel to bedding, 24–26
horizontal bedding, 23–25
OSM (U.S. Office of Surface Mining), 134
Overpressure, 128–133
Overshot rail-mounted muckers, 210
Oxidation, 117–118
Packers, 246–251
Paddle mixers, 260–261, 265
Panning, 335
Parallel (burnhole) method, 141–147
angle cuts, 144–147
burn cuts, 142–144
coromant cuts, 144
INDEX

Particle sizes, 12–13
USCS system, 67, 68
and velocity of rivers, 65
Particle velocity (vibrations), 130
Passive ground support, 187, 197–208
friction, 198–203
glass-reinforced polymer rods, 207
grouted rock bolts, 203–207
mechanical, 197–199
self-drilling, 208
Peak particle velocity (PPV), 130, 134
Peat, 67
Percussion, 350
Percussive drilling, 246
Performance prediction (roadheaders), 167
Perimeter control explosives, 155
Permeability, grouting and, 224–226
Permeable layers, weathering and, 17–18
Permeation grouting, 237–238, 240
Physical weathering, soil resulting from, 65
PI (plasticity index), 70
Picks (drag cutters):
roadheaders, 164
TBMs, 179
Piles:
secant, 291–292
soldier, 284–287
steel sheet, 283–284
wood sheet, 282–283
Pilot-tunnel method, 141
Pipejacking (PJ), 354–363
drive lengths, 356–359
process for, 355–356
types of excavators, 359–362
Pipe ramming, 350–351
Piston pumps, 265–266
PJ, see Pipejacking
PL (plastic limit), 70
Plasticity (rock), 178
Plasticity index (PI), 70
Plastic limit (PL), 70
Plastic rock, 15, 18
Plastic zone, 130
Plenum method, 340
Plow cuts, 144
Plumer, Sir Herbert, 3
Plunger pumps, 267–268
Plutonic rocks, 10, 11
Pneumatic drills, 107–110
Pneumatic packers, 248, 249
Poatina TBM, 175
Poatina Tunnel, Tasmania, 175
Poetsch, F. H., 342, 343
Point load test, 178
Point-of-attack bits (roadheaders), 164
Porosity:
and grouting, 224
of rock, 178
secondary, 224
Ports, 273–277
construction of, 276
criticality of, 273, 275
shapes of, 273–274
water handling with, 276
Portland cement, 228–229, 231, 235
Postgrouting, 243, 246
PPV (peak particle velocity), 130, 134
Precast concrete segments (tunnel linings), 384–388
Precompression, 143
Pregrouting, 240–246
pressures for, 246
purpose of, 240
and schedule, 243–244
Presplitting, 153–154
Pressed channel lagging, 197
Pressure(s):
air flow, 369–370, 373, 375–376
capillary, 71
defining, 340
grouting, 246–251
overpressure, 128–133
support, based on RMR values, 39, 40, 43
Prestressed rock anchors/tendons, 207
Primary breakage, 157
Primary explosives, 116
Primary tunnel linings, 381, 382
Progressive cavity pumps, 266–267
Propagation sensitivity, 120
Pudding stone, 15
Pumps (grouting), 265–268
Pumping water, 335–336
Punch strength, 178
INDEX

Pusher leg, 107
Pyramid cuts:
 shaft construction, 294–295
 tunneling in rock, 146–147
Qanat, oldest/largest, 3
Q-system of rock mass classification, 49, 53–63
determining support measures, 53, 57–63
 parameters, 53–57
Quartzite, 15, 23
Quick-gelling grouts, 234
Radial auger cutting (roadheaders), 160
Radial picks (roadheaders), 164
Radon, 366
Rail-mounted mucking loaders, 210
Rail transport (mucking), 210, 214–222
cars for, 216–217
 conveyors, 220–222
 factors in, 214–216, 221–222
 maintenance of, 216
 passing structures, 217–220
Raise borer, 296–301
Raise climbers, 302–304
Ramming, 350–351
Ram pumps, 267
Rapid-setting-time grouts, 234
Raveling ground, 71–72, 79
Real air flow, 369
Rebar, see Reinforcing bar
Reefs, 66
Reflection, seismic, 9
Refraction, seismic, 9
Reinforcement, of shotcrete, 315–316
Reinforcing bar (rebar):
 fully grouted, 203–205
 glass-reinforced polymer rods, 207
 for shotcrete, 316
 shotcreting, 318–321
 threaded, 203, 204, 207
Residual soils, 65, 67
Resin, 204–207
Resin grouts, 236–267
Resistivity, 10
Reverse faults, 18
Ribs:
 in full-arch mining, 83, 84
 shafts, 286, 288
 steel, 188–190
Rib-and-post-type supports, 188, 189
Rib and wall plate supports, 188, 191
Rib holes, 139
Rifling, 150
Ripping, 160
Rivers, 65
RMR, see Rock mass rating
Roadheaders, 159–169
 advantages of, 168
 cutting bits, 164–166
 cutting capacity, 166
 machine parameters, 164–166
 mucking, 161–163
 operating principle, 159–161
 operational parameters, 166–169
 performance prediction, 167
 shortcomings of, 168–169
Robbins, James S., 105, 174, 176
The Robbins Company, 174–176, 304–305
Robbins Vertical Shaft Sinking Machine, 305
Rock, 5–63. See also Tunneling in rock
 borings, 2–3, 6–7
 breakage theory, 124–125
 discontinuities, 15–16
 folds, 16–18
 fractures, 18
 faults, 18, 19
 joints, 18, 19
 shear zones, 19–20
 hardness, 20–23
 Cerchar scratch test, 21–22
 comparison to Barre, Vermont, 23
 LCPC abrasimeter test, 22
 Mohs scale of, 20–21
 NTNU abrasion test, 22–23
 igneous, 10–11
 mass classification, 27–63
 Q-system, 49, 53–63
 rock mass determinations, 29–30
 rock mass rating, 40, 43–52
 rock quality designation, 27–29
 Terzaghi’s rock categories, 30–43
Rock (cont’d)
metamorphic, 14–15
obtaining samples, 7–8
permeability of, 224–226
Q-system, 49, 53–63
determining support measures, 53, 57–63
parameters, 53–57
quality designation, 27–29
rock mass rating, 40, 43–52
condition of joints, 44, 45
drill core quality, 44
groundwater conditions, 45, 46
joint orientation, 45, 46
joint spacing, 44, 45
sedimentary, 11–14
site investigation, 5–10
borings, 6–7
geophysical, 8–10
obtaining samples/testing rock, 7–8
testing, 7–8
tunneling under the water table, 25–27
hydrologic survey, 27
synclines and anticlines, 26–27
tunnel orientation, 23–25
Rock load (Terzaghi’s categories), 30–43
Rock mass classification, 27–63, 162, 163
determination of mass, 29–30
and grouting, 227–228
Q-system of classification, 49, 53–63
determining support measures, 53, 57–63
parameters, 53–57
rock mass rating, 40, 43–52
condition of joints, 44, 45
drill core quality, 44
groundwater conditions, 45, 46
joint orientation, 45, 46
joint spacing, 44, 45
rock quality designation, 27–29
Terzaghi’s rock categories, 30–43
arch action, 30–37
rock load, 30–43
Rock mass rating (RMR), 40, 43–52
condition of joints, 44, 45
drill core quality, 44
groundwater conditions, 45, 46
joint orientation, 45, 46
joint spacing, 44, 45
Rock quality designation (RQD), 27–29, 157
Roller cutters (TBMs, 179
Rotary drilling, 246
RQD (rock quality designation), 27–29, 157
Rubber-tire excavators, 210, 211
Running ground, 74
Sacrificial drill bits, 208
St. Clair Tunnel, 382, 383
Saltation, 12
Samples, rock:
obtaining, 7–8
testing, 7–8
Sand:
 behavior in tunneling, 74, 75
in lakes, 66
in marine waters, 66, 67
porosity of, 224
raveling, 71
stand-up time, 70, 71
USCS system, 68
USDA system, 69
Sand dunes, 66
Sandstones, 13
drillability of, 23
soils formed from, 65
SB (spacing-to-burden) ratio, 149
Scaled distance formula, 132–135
Schists, 23
Schwartz, Berthold, 112
SDAs (self-drilling anchors), 208
Secant piles, 291–292
Secondary breakage, 157
Secondary explosives, 116
Secondary porosity, 224
Secondary tunnel linings, 381, 382
Sedimentary rock, 11–14
Seismic refraction and reflection, 9
Seismic velocity, 177
Seismic waves, 9–10
Self-drilling anchors (SDAs), 208
Semigelatins, 121
Semitransverse ventilation systems, 366, 367
Sensitivity (explosives), 120
SFRS (steel fiber-reinforced shotcrete), 315
Shafts, 277–305
construction of, 279–280
blind shaft drilling, 302
boxhole borer, 301
collar, 280–282
drilling and blasting, 292–295
ground freezing, 292
liner plate, 286, 288–289
raise borer, 296–301
raise climbers, 302–304
ribs and lagging, 286, 288
rock shaft mucking and sinking, 295–299
secant piles, 291–292
slurry walls, 289–291
soldier piles and lagging, 284–287
steel sheet piles, 283–284
wood sheet piles, 282–283
locating, 278
shape of, 278–279
Shaft bottom muckers, 295–296
Shaft drill jumbos, 292–293
Shales, 13
drillability of, 23
in marine waters, 67
soils formed from, 65
Shear folds, 18
Shear planes, 15, 18
Shear strength (rock), 162, 163, 177
Shear waves, 10
Shear zones, 19–20
Shields:
box jacking, 363
jacking, 356
microtunneling, 359
for tunneling in soft ground, 88–104
applications for, 89
composition of, 89
earth pressure balance machine, 97–104
in glacial deposits, 65
loads on, 90
slurry machines, 91–97
Shock loss, 374
Shock waves, 9, 10
Shotcrete, see Sprayed concrete
Silicosis, 365, 366
Silt:
in lakes, 66
plasticity index, 70
USCS system, 68
USDA system, 69
Siltstone, 13
Single-beam wall plates, 191, 192
Single-canopy grouting, 243
Single-fluid jet grouting, 238–239
Single packer grouting, 249
Single-pass system (pipejacking), 360
Sinkers, 108
Sinker drills, 292
Sinking rock shafts, 295–299
Site investigation, 5–10
borings, 6–7
geophysical, 8–10
obtaining samples/testing rock, 7–8
Slaking, 71
Slip folds, 18
Slot-and-wedge anchors, 197
Slurries, 123
Slurry explosives, 120
Slurry pressure balance machine (SPBM), 91–97, 103–104
Slurry walls, 289–291
Smooth-wall (contour) blasting, 155–156
Sobrero, Ascanio, 112–113
Sodium silicate grouts, 232–233, 235
Soft ground (soil), 65–80
classification of, 67–74
defined, 65
engineering properties, 67–80
defined, 67
firm ground, 71
flowing ground, 72
raveling ground, 71–72
squeezing ground, 72
swelling ground, 72–80
particle sizes, 12–13
permeability of, 224–225
Soft ground (soil) (cont’d)
porosity of, 224
residual, 65, 67
transported, 65–67
tunnel behavior in, 74, 75
tunneling in, 81–104
full-arch mining, 83–88
shields, 88–104
unitary excavation, 81–84
Soil, see Soft ground
Soldier piles and lagging (shafts), 284–287
Spacing-to-burden (SB) ratio, 149
SPBM (slurry pressure balance machine), 91–97
Spiling method (full-arch mining), 86–87
Split set bolts, 198, 199
Split-spoon sampler, 70
Sprayed concrete (shotcrete), 307–322
additives, 314–315
application of, 317–322
dry mix, 308–310
wet mix, 310–314
reinforcement, 315–316
bar, 316
fiber, 315–316
as tunnel lining, 384
Squeezing ground, 72
Stage grouting, 250–253
Stall trough (fans), 377
Stand-up time:
rock, 48, 49
soil, 70, 71, 78
Static air pressure, 369, 370, 375–376
Steel fiber-reinforced shotcrete (SFRS), 315
Steel sets (active ground support):
installing, 191, 193–195
types of, 188–190
Steel sheet piles, 283–284
Steel supports, guidelines for, 39, 41–42
Stemming, 150–151
Straight-NG dynamite, 121
Stratification:
of sedimentary rocks, 14
strike and dip of, 15–16
and suitability for tunneling, 15
Strength (rock), 19–20
compressive, 124
for RMR, 43–44
Terzaghi’s rock classes, 30–32
as tunneling factor, 161–162
Strike, 15–16, 23, 24
Sump cut (shaft construction), 293–294
Superfine cement, 228–229
Support, see Ground control (ground support)
Support pressure, based on RMR values, 39, 40, 43
Surface hardness, 22
Surface waves, 130
Swell, 209
Swellex® bolts, 200–203
Swelling ground, 72–80
Synclines:
defined, 17
and tunnel location, 26–27
Synthetic fiber reinforcement (shotcrete), 316
TAM (Tube à Manchette) system, 249–250
TBMs, see Tunnel-boring machines
Tensile strength (rock), 162, 177
Terminal moraine, 65
Terzaghi, Karl, 30, 74
Terzaghi’s rock categories, 30–43
arch action, 30–37
Class I, 30–32
Class II, 30–32
Class III, 30–32
Class IV, 30–32
Class V, 30–32
Class VI, 30–32
Class VII, 30–32
Class VIII, 30–32
Class IX, 30–32
rock load, 30–43
Testing rock samples, 7–8
Textures, soil, 69
Thrust, 178–179
Thrust faults, 18
Thrust ring (pipejacking), 356
Tidal flat deposits, 67
TNT (trinitrotoluene), 119
Top heading, 140–141
Total air pressure, 370, 373
Trailing gear (TBMs), 182
Transported soils, 65–67
Transverse cutting (roadheaders), 160
Transverse ventilation systems, 366, 367
Trenchless excavation, 349–363
 auger boring, 351–354
 box jacking, 362–363
 horizontal directional drilling, 353–354
 methods for creating holes, 350
 microtunneling, 354, 361–362
 pipejacking, 354–363
 drive lengths, 356–359
 and microtunneling, 354, 361–362
 process for, 355–356
 types of excavators, 359–362
 ramming, 350–351
Trinitrotoluene (TNT), 119
Triple-fluid jet grouting, 238, 239
Tube à Manchette (TAM) system, 249–250
Tub mixers, 260
Tuffs, drillability of, 23
Tungsten-carbide-insert cutters, 179
Tunnel-boring machines (TBMs), 171–184
 backup equipment, 182–184
 cutting tools for, 179–181
 disc cutter spacing, 181–182
 dust-reducing features of, 368
 and ground conditions, 92
 and grouting, 256–257
 history of, 171–176
 kerf principle, 181
 operating principle, 176–184
 shielded, 91, 92
 and strength of rock, 20
Tunnel construction, 1, 2
Tunnel design, 1–2
Tunnel headings, patterns for, 147–150
Tunneling (in general):
 conditions for, 2–3
 hazards in, 2
 new Austrian and Norwegian methods, 323–334
 reasons for, 1
 in rock, see Tunneling in rock
 in soft ground, see Tunneling in soft ground
 use of term, 1
 under the water table, 25–27
 hydrologic survey, 27
 synclines and anticlines, 26–27
Tunneling in rock, 105–157
 blasting, 106, 124–138
 advanced heading, 140–141
 air concussion and vibrations, 128–133
 breakage theory, 124–125
 controlled, 153
 cushion, 154–155
 delay detonators, 151–153
 drilling and blasting cycle, 106–107
 flyrock, 137–138
 full-face method, 138–140
 geology, energy, and geometry needed for, 125–127
 line drilling, 153
 OSM methods for controlling, 134–137
 parallel (burnhole) method, 141–147
 patterns for tunnel headings, 147–150
 presplitting, 153–154
 scaled distance formula, 132–135
 smooth-wall (contour), 155–156
 stemming, 150–151
 tunnel driving by, 138–156
 borings, 2–3, 6–7
 drill core quality, 44
 drilling, 106–112
 hydraulic drills, 110–112
 pneumatic drills, 107–110
 drilling and blasting cycle, 106–107
 explosives, 111–124
 blasting agents, 121–123
 chemical, 116–117
 commercial, 119–124
 detonation of, 117–118
 heat of explosion, 118
 history of, 111–115
 military, 118–119
 primary, 116
 properties of, 119–120
Tunneling in rock (cont’d)
 secondary, 116
types of explosions, 115–116
factors in method selection, 106
hydraulic impact hammer, 156–157
site investigation, 5–10
tunnel driving by blasting, 138–156
advanced heading, 140–141
controlled blasting, 153
cushion, 154–155
delay detonators, 151–153
full-face method, 138–140
line drilling, 153
parallel (burnhole) method, 141–147
patterns for tunnel headings, 147–150
presplitting, 153–154
smooth-wall (contour), 155–156
stemming, 150–151
tunnel orientation, 23–26
axis perpendicular to strike, 23, 24
driving parallel to bedding, 24–26
horizontal bedding, 23–25
Tunneling in soft ground, 81–104
full-arch mining, 83–88
linings for, 382
shields, 88–104
earth pressure balance machine, 97–104
slurry machines, 91–97
unitary excavation, 81–84
Tunnel/mining engineering, 1, 2
Two-pass tunnel linings, 384–389
cast-in-place concrete, 387–389
precast concrete segments, 384–388
Type I portland cement, 228
Type III portland cement, 228
UCS (uniaxial compressive strength), 177
UCS (unconfined compressive strength) test, 19, 161
UCS:T ratio, see Compressive to tensile strength ratio
UFC grout, 228
Ultrafine cement, 228
Ultrasonic pulse velocity, 162
Uncased boring, 352
Unconfined compressive strength (UCS) test, 19, 161
Uniaxial compression test, 19
Uniaxial compressive strength (UCS), 177
Unified Soil Classification System (USCS), 67–68
Unitary excavation, 81–83
U.S. Bureau of Mines, 133, 134
U.S. Department of Agriculture (USDA) soil classification, 69
U.S. Occupational Safety and Health Administration, 368
U.S. Office of Surface Mining (OSM), 134
Upstage grouting, 252
Urethane grouts, 235–236
USCS (Unified Soil Classification System), 67–68
V-cuts, 144, 149
Velocity head, 372, 373
Velocity of detonation (VOD), 119
Ventilation, 365–379
air flow, 368–379
fan characteristic curves, 374–379
fans, 370, 371
mechanical, 365–368
natural, 365
portals, 277
Vibrations, with blasting, 128–133
Vickers hardness number (VHN), 21
Vickers test, 21
Viscosity (grout), 230–232
VOD (velocity of detonation), 119
Voids, 66
Wall plates:
 for active ground support, 191–193
 steel sets with, 190
types of, 191
Wall plate and post supports, 188, 191
Washington Glebe Colliery, England, 342
Water:
categories of, 45
effect of, 25
erosion by, 12
hydrologic survey, 27
and weathering, 12
Water gels, 114–115, 123
Water handling, 335–347
 compressed air method, 340–342
 dewatering, 336–340
 deep wells, 336–338
 wellpoint, 337–340
 ground freezing, 342–347
 in grouting, 243–246
 panning, 335
 for portals, 276
 pumping, 335–336
Water jet cutting heads, 164
Water table:
 and raveling, 71–72
 tunneling under, 25–27
 hydrologic survey, 27
 synclines and anticlines, 26–27
Wear capacity index, 22–23
Weathering, 11, 12
 chemical, 12, 65
 in igneous rock, 11
 mechanical, 12
 and permeable layers, 17–18
 physical, 65
 and water inflow, 27
Wedge cuts:
 shaft construction, 294
 tunneling in rock, 144–145
Welded wire fabric reinforcement
 (shotcrete), 316
Wellpoint dewatering, 337–340
Wet mix application (shotcrete), 310–314
Wilson, Charles, 171
Wilson TBM, 171, 172
Wire fabric reinforcement (shotcrete), 316
Wood lagging, 196
Wood sheet piles, 282–283
Worm, 266
Wrench faults, 18