Preface to the First Edition xxxv
Preface to the Second Edition xxix
Acknowledgments xxxiii
List of Operators and Notational Conventions xxxv
List of Symbols xxxix
List of Abbreviations xliii

CHAPTER 1 An Introduction to Identification 1
1.1 What Is Identification? 1
1.2 Identification: A Simple Example 2
 1.2.1 Estimation of the Value of a Resistor 2
 1.2.2 Simplified Analysis of the Estimators 6
 1.2.3 Interpretation of the Estimators: A Cost Function–Based Approach 11
1.3 Description of the Stochastic Behavior of Estimators 12
 1.3.1 Location Properties: Unbiased and Consistent Estimates 13
 1.3.2 Dispersion Properties: Efficient Estimators 14
1.4 Basic Steps in the Identification Process 17
 1.4.1 Collect Information about the System 17
 1.4.2 Select a Model Structure to Represent the System 17
 1.4.3 Match the Selected Model Structure to the Measurements 19
 1.4.4 Validate the Selected Model 19
 1.4.5 Conclusion 19
1.5 A Statistical Approach to the Estimation Problem 19
 1.5.1 Least Squares Estimation 20
1.5.2 Weighted Least Squares Estimation 22
1.5.3 The Maximum Likelihood Estimator 23
1.5.4 The Bayes Estimator 25
1.5.5 Instrumental Variables 27

1.6 Exercises 29

CHAPTER 2 Measurement of Frequency Response Functions – Standard Solutions 33

2.1 Introduction 33
2.2 An Introduction to the Discrete Fourier Transform 34
 2.2.1 The Sampling Process 34
 2.2.2 The Discrete Fourier Transform (DFT-FFT) 35
 2.2.3 DFT Properties of Periodic Signals 40
 2.2.4 DFT of Burst Signals 42
 2.2.5 Conclusion 43

2.3 Spectral Representations of Periodic Signals 43
2.4 Analysis of FRF Measurements Using Periodic Excitations 44
 2.4.1 Measurement Setup 44
 2.4.2 Error Analysis 45

2.5 Reducing FRF Measurement Errors for Periodic Excitations 49
 2.5.1 Basic Principles 49
 2.5.2 Processing Repeated Measurements 51
 2.5.3 Improved Averaging Methods for Nonsynchronized Measurements 52
 2.5.4 Coherence 53

2.6 FRF Measurements Using Random Excitations 54
 2.6.1 Basic Principles 54
 2.6.2 Reducing the Noise Influence 54
 2.6.3 Leakage Errors 59
 2.6.4 Indirect FRF Measurements 61
 2.6.5 Improved FRF Measurements Using Overlapping Segments 62

2.7 FRF Measurements of Multiple-Input, Multiple-Output Systems 64
 2.7.1 One Experiment 64
 2.7.2 Multiple Experiments 65
 2.7.3 Discussion 67

2.8 Guidelines for FRF Measurements 68
 2.8.1 Guideline 1: Use Periodic Excitations 68
 2.8.2 Guideline 2: Select the Best FRF Estimator 68
 2.8.3 Guideline 3: Pretreatment of Data 69

2.9 Conclusion 69
2.10 Exercises 69

2.11 Appendixes 70
 Appendix 2.A Radius of a Circular Confidence Region of the FRF 70
 Appendix 2.B Asymptotic Behavior of Averaging Techniques 71
 Appendix 2.C Covariance of the FRM Measurement 72

CHAPTER 3 Frequency Response Function Measurements in the Presence of Nonlinear Distortions 73

3.1 Introduction 73
3.2 Intuitive Understanding of the Behavior of Nonlinear Systems 74
3.3 A Formal Framework to Describe Nonlinear Distortions 75
3.3.1 Class of Excitation Signals 76
3.3.2 Selection of a Model Structure for the Nonlinear System 77
3.4 Study of the Properties of FRF Measurements in the Presence of Nonlinear Distortions 78
3.4.1 Study of the Expected Value of the FRF for a Constant Number of Harmonics 80
3.4.2 Asymptotic Behavior of the FRF if the Number of Harmonics Tends to Infinity 81
3.4.3 Further Comments on the Best Linear Approximation 83
3.4.4 Further Comments on the Output Stochastic Nonlinear Contributions 86
3.5 Extension to Discrete-Time Modeling 88
3.5.1 Periodic Signals 88
3.5.2 Random Signals 89
3.6 Experimental Illustration 90
3.6.1 Visualization of the Nonlinearity Using Stepped Sine Measurements 90
3.6.2 Measurement of the Best Linear Approximation 91
3.7 Multivariable Systems 92
3.8 Best Linear Approximation of a System Operating in Closed Loop 93
3.9 Conclusion 95
3.10 Exercises 95
3.11 Appendixes 96
 Appendix 3.A Bias and Stochastic Contributions of the Nonlinear Distortions 96
 Appendix 3.B Study of the Moments of the Stochastic Nonlinear Contributions 97
 Appendix 3.C Mixing Property of the Stochastic Nonlinear Contributions 101
 Appendix 3.D Structure of the Indecomposable Sets 104
 Appendix 3.E Distribution of the Stochastic Nonlinearities 105
 Appendix 3.F Extension to Random Amplitudes and Nonuniform Phases 109
 Appendix 3.G Response of a Nonlinear System to a Gaussian Excitation 109
 Appendix 3.H Proof of Theorem 3.12 111
 Appendix 3.I Proof of Theorem 3.15 113
 Appendix 3.J Proof of Theorem 3.16 113
 Appendix 3.K Proof of Theorem 3.17 113
 Appendix 3.L Proof of Theorem 3.18 114
 Appendix 3.M Proof of Theorem 3.21 117
 Appendix 3.N Covariance of the Multivariate BLA 117
 Appendix 3.O Proof of Theorem 3.22 118

CHAPTER 4 Detection, Quantification, and Qualification of Nonlinear Distortions in FRF Measurements 119
4.1 Introduction 119
4.2 The Riemann Equivalence Class of Excitation Signals 120
 4.2.1 Definition of the Excitation Signals 121
 4.2.2 Definition of the Riemann Equivalences 122
CHAPTER 5 Design of Excitation Signals 151
5.1 Introduction 151
5.2 General Remarks on Excitation Signals for Nonparametric Frequency Response Measurements 152
5.2.1 Quantifying the Quality of an Excitation Signal 153
5.2.2 Stepped Sine versus Broadband Excitations 154
5.3 Study of Broadband Excitation Signals 155
5.3.1 General Purpose Signals 155
5.3.2 Optimized Test Signals 162
5.3.3 Advanced Test Signals 165
5.4 Optimization of Excitation Signals for Parametric Measurements 167
5.4.1 Introduction 167
5.4.2 Optimization of the Power Spectrum of a Signal 168
5.5 Experiment Design for Control 173
5.6 Appendix 174
Appendix 5.A Minimizing the Crest Factor of a Multisine 174

CHAPTER 6 Models of Linear Time-Invariant Systems 177
6.1 Introduction 177
6.2 Plant Models 182
6.3 Relation Between the Input-Output DFT Spectra 184
6.3.1 Models for Periodic Signals 185
6.3.2 Models for Arbitrary Signals 185
6.3.3 Models for Records with Missing Data 188
6.3.4 Models for Concatenated Data Sets 189
6.4 Models for Damped (Complex) Exponentials 190
6.5 Identifiability 191
6.5.1 Models for Periodic Signals 191
6.5.2 Models for Arbitrary Signals 192
6.5.3 Models for Records with Missing Data 192
6.5.4 Model for Concatenated Data Sets 193
6.6 Multivariable Systems 193
6.7 Noise Models 195
6.7.1 Introduction 195
6.7.2 Nonparametric Noise Model 195
6.7.3 Parametric Noise Model 195

6.8 Nonlinear Systems 202
6.9 Exercises 203
6.10 Appendixes 204

Appendix 6.A Stability and Minimum Phase Regions 204
Appendix 6.B Relation between DFT Spectra and Transfer Function for
Arbitrary Signals 206
Appendix 6.C Parameterizations of the Extended Transfer Function
Model 209
Appendix 6.D Convergence Rate of the Equivalent Initial Conditions 209
Appendix 6.E Some Integral Expressions 210
Appendix 6.F Convergence Rate of the Residual Alias Errors 212
Appendix 6.G Relation between DFT Spectra and Transfer Function for
Arbitrary Signals with Missing Data 216
Appendix 6.H Relationship between DFT Spectra of Concatenated Data
Sets and Transfer Function 217
Appendix 6.I Free Decay Response of a Finite-Dimensional System 217
Appendix 6.J Relation between the Free Decay Parameters and the
Partial Fraction Expansion 218
Appendix 6.K Some Properties of Polynomials 218
Appendix 6.L Proof of the Identifiability of Transfer Function
Model (6-32) (Theorem 6.9) 219
Appendix 6.M Proof of the Identifiability of Transfer Function
Model (6-34) 220
Appendix 6.N Rank of the Residue Matrices of Multivariable Transfer
Function Models 221
Appendix 6.O Band-Limited Observation of Continuous-Time Noise
(Theorem 6.14) 221
Appendix 6.P Correlation Noise Transient with Noise Input
(Theorem 6.15) 222
Appendix 6.Q Correlation Noise Alias Error with Noise Input
(Theorem 6.16) 224
Appendix 6.R Correlation Plant Transient and Plant Alias Error with
Plant Input (Theorem 6.17) 224

CHAPTER 7 Measurement of Frequency Response Functions – The Local
Polynomial Approach 225

7.1 Introduction 225
7.2 Arbitrary Excitations 227

7.2.1 Problem Statement and Assumptions 227
7.2.2 The Local Polynomial Method 228
7.2.3 The Spectral Analysis Method 233
7.2.4 Confidence Regions of the FRM 236
7.2.5 Comparison of the Methods 237
7.2.6 Bias-Variance Trade-Off 239
7.2.7 The Noisy Input, Noisy Output Case 240
7.2.8 Nonlinear Systems 241
7.2.9 Concatenating Data Records 243
7.2.10 Experimental Illustration 246

7.3 Periodic Excitations 248

7.3.1 Introduction 248
7.3.2 Suppression of the Noise Transient (Leakage) Errors in Periodic Signals 250
7.3.3 The Robust Method for Measuring the Frequency Response Matrix 252
7.3.4 The Fast Method for Measuring the Frequency Response Matrix 253
7.3.5 Nonlinear Systems 254
7.3.6 The Robust Method for Measuring the Best Linear Approximation 254
7.3.7 The Fast Method for Measuring the Best Linear Approximation 258
7.3.8 Non-Steady State Conditions 260
7.3.9 Experimental Illustration 261
7.4 Comparison Periodic – Random Excitations 263
7.4.1 Discussion 263
7.4.2 Experimental Illustration 264
7.5 Guidelines for Advanced FRF Measurements 268
7.6 Appendixes 269
Appendix 7.A Proof of Equation (7-10) 269
Appendix 7.B Proof of Equation (7-13) 269
Appendix 7.C System Leakage Contribution to the Bias on the FRM Estimates 270
Appendix 7.D Proof of Equations (7-17) and (7-18) 271
Appendix 7.E Proof of Equation (7-19) 272
Appendix 7.F Proof of Equation (7-50) 273
Appendix 7.G Proof of Equation (7-55) 273
Appendix 7.H Proof of Equation (7-74) 274
Appendix 7.I Proof of Equation (7-76) 275
Appendix 7.J Zero Pattern of the Inverse of a Matrix 276
Appendix 7.K Covariance Matrix of (7-86) 276
Appendix 7.L Expected Value of the Sample Noise and Total Covariances (7-93) 277
Appendix 7.M The Generator Noise Does Not Contribute to the Covariance of the FRM 277
Appendix 7.N Bias Robust FRM Estimate under Transient Conditions 278

CHAPTER 8 An Intuitive Introduction to Frequency Domain Identification 279
8.1 Intuitive approach 279
8.2 The Errors-in-Variables Formulation 280
8.3 Generating Starting Values 282
8.4 Comparison with the “Classical” Time Domain Identification Framework 283
8.5 Extensions of the Model: Dealing with Unknown Delays and Transients 284

CHAPTER 9 Estimation with Known Noise Model 285
9.1 Introduction 285
9.2 Frequency Domain Data 286
9.3 Plant Model 288
9.4 Estimation Algorithms 289
9.5 Quick Tools to Analyze Estimators 291
9.6 Assumptions 293
 9.6.1 Stochastic Convergence 293
 9.6.2 Stochastic Convergence Rate 295
 9.6.3 Systematic and Stochastic Errors 295
 9.6.4 Asymptotic Normality 295
 9.6.5 Deterministic Convergence 296
 9.6.6 Consistency 297
 9.6.7 Asymptotic Bias 297
 9.6.8 Asymptotic Efficiency 297
9.7 Asymptotic Properties 298
9.8 Linear Least Squares 301
 9.8.1 Introduction 301
 9.8.2 Linear Least Squares 301
 9.8.3 Iterative Weighted Linear Least Squares 303
 9.8.4 A Simple Example 304
9.9 Nonlinear Least Squares 305
 9.9.1 Output Error 305
 9.9.2 Logarithmic Least Squares 308
 9.9.3 A Simple Example—Continued 310
9.10 Total Least Squares 310
 9.10.1 Introduction 310
 9.10.2 Total Least Squares 312
 9.10.3 Generalized Total Least Squares 313
9.11 Maximum Likelihood 314
 9.11.1 The Maximum Likelihood Solution 314
 9.11.2 Discussion 316
 9.11.3 Asymptotic Properties 317
 9.11.4 Calculation of Uncertainty Bounds 318
9.12 Approximate Maximum Likelihood 319
 9.12.1 Introduction 319
 9.12.2 Iterative Quadratic Maximum Likelihood 319
 9.12.3 Bootstrapped Total Least Squares 320
 9.12.4 Weighted (Total) Least Squares 321
9.13 Instrumental Variables 323
9.14 Subspace Algorithms 324
 9.14.1 Model Equations 324
 9.14.2 Subspace Identification Algorithms 325
 9.14.3 Stochastic Properties 329
9.15 Illustration and Overview of the Properties 330
 9.15.1 Simulation Example 1 330
 9.15.2 Simulation Example 2 332
 9.15.3 Real Measurement Examples 334
 9.15.4 Overview of the Properties 339
9.16 High-Order Systems 341
 9.16.1 Scalar Orthogonal Polynomials 341
 9.16.2 Vector Orthogonal Polynomials 342
 9.16.3 Application to the Estimators 343
 9.16.4 Notes 344
9.17 Systems with Time Delay 344
9.18 Identification in Feedback 345
9.19 Modeling in the Presence of Nonlinear Distortions 346
CHAPTER 10 Estimation with Unknown Noise Model – Standard Solutions 383

10.1 Introduction 383

10.2 Discussion of the Disturbing Noise Assumptions 385

10.2.1 Assuming Independent Normally Distributed Noise for Time Domain Experiments 385
10.2.2 Considering Successive Periods as Independent Realizations 386

10.3 Properties of the ML Estimator Using a Sample Covariance Matrix 386
 10.3.1 The Sample Maximum Likelihood Estimator: Definition of the Cost Function 386
 10.3.2 Properties of the Sample Maximum Likelihood Estimator 387
 10.3.3 Discussion 389
 10.3.4 Estimation of Covariance Matrix of the Model Parameters 389
 10.3.5 Properties of the Cost Function in Its Global Minimum 389

10.4 Properties of the GTLS Estimator Using a Sample Covariance Matrix 390

10.5 Properties of the BTLS Estimator Using a Sample Covariance Matrix 392

10.6 Properties of the SUB Estimator Using a Sample Covariance Matrix 395

10.7 Identification in the Presence of Nonlinear Distortions 396

10.8 Illustration and Overview of the Properties 398
 10.8.1 Real Measurement Example 398
 10.8.2 Overview of the Properties 399

10.9 Identification of Parametric Noise Models 401
 10.9.1 Generalized Output Error Stochastic Framework 402
 10.9.2 A Frequency Domain Solution 403
 10.9.3 Asymptotic Properties of the Gaussian Maximum Likelihood Estimator 406
 10.9.4 Discussion 409
 10.9.5 Experimental Illustration 410

10.10 Identification in Feedback 411

10.11 Appendixes 413
 Appendix 10.A Expected Value and Variance of the Inverse of Chi-Square Random Variable 413
 Appendix 10.B First and Second Moments of the Ratio of the True and the Sample Variance of the Equation Error 413
 Appendix 10.C Calculation of Some First- and Second-Order Moments 414
 Appendix 10.D Proof of Theorem 10.3 415
 Appendix 10.E Approximation of the Derivative of the Cost Function 416
 Appendix 10.F Loss in Efficiency of the Sample Estimator 417
 Appendix 10.G Mean and Variance of the Sample Cost in Its Global Minimum 418
 Appendix 10.H Asymptotic Properties of the SGTLS Estimator (Theorem 10.6) 420
 Appendix 10.I Relationship between the GTLS and the SGTLS Estimates (Theorem 10.7) 421
 Appendix 10.J Asymptotic Properties of SBTLS Estimator (Theorem 10.8) 421
 Appendix 10.K Relationship between the BTLS and the SBTLS Estimates (Theorem 10.9) 422
 Appendix 10.L Asymptotic Properties of SSUB Algorithms (Theorem 10.10) 422
 Appendix 10.M Best Linear Approximation of a Cascade of Nonlinear Systems 424
 Appendix 10.N Sum of Analytic Function Values over a Uniform Grid of the Unit Circle 424
CHAPTER 11 Model Selection and Validation 431
11.1 Introduction 431
11.2 Assessing the Model Quality: Quantifying the Stochastic Errors 432
11.2.1 Uncertainty Bounds on the Calculated Transfer Functions 433
11.2.2 Uncertainty Bounds on the Residuals 433
11.2.3 Uncertainty Bounds on the Poles/Zeros 435
11.3 Avoiding Overmodeling 437
11.3.1 Introduction: Impact of an Increasing Number of Parameters on the Uncertainty 437
11.3.2 Balancing the Model Complexity versus the Model Variability 438
11.4 Detection of Undermodeling 441
11.4.1 Undermodeling: A Good Idea? 441
11.4.2 Detecting Model Errors 442
11.4.3 Qualifying and Quantifying the Model Errors 444
11.4.4 Illustration on a Mechanical System 448
11.5 Model Selection 449
11.5.1 Model Structure Selection Based on Preliminary Data Processing: Initial Guess 450
11.5.2 "Postidentification" Model Structure Updating 451
11.6 Guidelines for the User 452
11.7 Exercises 453
11.8 Appendixes 453
Appendix 11.A Proof of Equation (11-3) 453
Appendix 11.B Proof of Equation (11-4) 454
Appendix 11.D Calculation of Improved Uncertainty Bounds for the Estimated Poles and Zeros 455
Appendix 11.E Sample Correlation at Lags Different from Zero (Proof of Theorem 11.5) 457
Appendix 11.F Sample Correlation at Lag Zero (Proof of Theorem 11.5) 459
Appendix 11.G Variance of the Sample Correlation (Proof of Theorem 11.5) 459
Appendix 11.H Study of the Sample Correlation at Lag One (Proof of Theorem 11.7) 460
Appendix 11.I Expected Value Sample Correlation 461
Appendix 11.J Standard Deviation Sample Correlation 461

CHAPTER 12 Estimation with Unknown Noise Model – The Local Polynomial Approach 463
12.1 Introduction 463
12.2 Generalized Sample Mean and Sample Covariance 464
12.2.1 Arbitrary Excitations 465
12.2.2 Periodic Excitations 468
12.2.3 Choice Frequency Width of the Local Polynomial Approach 469
12.2.4 Overview of the Properties 470
12.3 Sample Maximum Likelihood Estimator 470
12.3.1 Sample Maximum Likelihood Cost Function 470
12.3.2 Asymptotic Properties 472
12.3.3 Computational Issues 474
12.3.4 Calculation of the Asymptotic Covariance Matrix 475
12.3.5 Generation of Starting Values 476
12.3.6 Model Selection and Validation 477
12.4 Identification in the Presence of Nonlinear Distortions 479
12.5 Experimental Illustration 480
12.6 Guidelines for Parametric Transfer Function Modeling 483
12.7 Appendices 484
Appendix 12.A Proof of Lemma 12.1 484
Appendix 12.B Proof of Lemma 12.2 485
Appendix 12.C Proof of Lemma 12.3 486
Appendix 12.D Proof of Lemma 12.4 486
Appendix 12.E Proof of Equation (12.7) 487
Appendix 12.F Proof of Lemma 12.5 487
Appendix 12.G Proof of Theorem 12.7 488
Appendix 12.H Proof of Theorem 12.8 489
Appendix 12.I Proof of the Pseudo-Jacobian (12.25) 491
Appendix 12.J Proof of (12.30) 492
Appendix 12.K Proof of Theorem 12.9 493
Appendix 12.L Properties Generalized Sample Means and Sample Covariances in the Presence of Nonlinear Distortions 494
Appendix 12.M Covariance Model Parameters and Variance SML Cost Function in the Presence of Nonlinear Distortions 495
Appendix 12.N Linear Plant and Nonlinear Actuator or Controller 496

CHAPTER 13 Basic Choices in System Identification 497
13.1 Introduction 497
13.2 Intersample Assumptions: Facts 498
13.2.1 Formal Description of the Zero-Order-Hold and Band-Limited Assumptions 498
13.2.2 Relation between the Intersample Behavior and the Model 500
13.2.3 Mixing the Intersample Behavior and the Model 502
13.2.4 Experimental Illustration 504
13.3 The Intersample Assumption: Appreciation of the Facts 509
13.3.1 Intended Use of the Model 509
13.3.2 Impact of the Intersample Assumption on the Setup 511
13.3.3 Impact of the Intersample Behavior Assumption on the Identification Methods 512
13.4 Nonparametric Noise Models: Facts 513
13.5 Nonparametric Noise Models: Detailed Discussion and Appreciation of the Facts 513
13.5.1 The Quality of the Noise Model 513
13.5.2 Improved/Simplified Model Validation 514
13.5.3 Simplified Model Selection/Minimization Cost Function 514
13.5.4 Errors-in-Variables Identification and Identification in Feedback 515
13.5.5 Increased Uncertainty of the Plant Model 515
13.5.6 Not Suitable for Output Data Only 516
13.6 Periodic Excitations: Facts 516
13.7 Periodic Excitations: Detailed Discussion and Appreciation of the Facts 516
 13.7.1 Data Reduction Linked to an Improved Signal-to-Noise Ratio of the Raw Data 516
 13.7.2 Elimination of Nonexcited Frequencies 517
 13.7.3 Improved Frequency Response Function Measurements 518
 13.7.4 Detection, Qualification, and Quantification of Nonlinear Distortions 519
 13.7.5 Detection and Removal of Trends 520
 13.7.6 Reduced Frequency Resolution 520
 13.7.7 Increased Uncertainty if the Nonlinear Distortions Dominate over the Noise 520
13.8 Periodic versus Random Excitations: User Aspects 520
 13.8.1 Design Aspects: Required User Interaction 520
13.9 Time and Frequency Domain Identification 522
13.10 Time and Frequency Domain Identification: Equivalences 522
 13.10.1 Initial Conditions: Transient versus Leakage Errors 522
 13.10.2 Windowing in the Frequency Domain, (Noncausal) Filtering in the Time Domain 523
 13.10.3 Cost Function Interpretation 524
13.11 Time and Frequency Domain Identification: Differences 525
 13.11.1 Choice of the Model 525
 13.11.2 Unstable Plants 525
 13.11.3 Noise Models: Parametric or Nonparametric 526
 13.11.4 Extended Frequency Range: Combination of Different Experiments 526
 13.11.5 The Errors-in-Variables Problem 527
13.12 Imposing Constraints on the Identified Model 528
13.13 Conclusions 529
13.14 Exercises 530

CHAPTER 14 Guidelines for the User 531
14.1 Introduction 531
14.2 Selection of an Identification Scheme 531
 14.2.1 Questions – Proposed Solutions 531
14.3 Identification Step-by-Step 533
 14.3.1 Check and Selection of the Experimental Setup 533
 14.3.2 Design of an Experiment 534
 14.3.3 Choice Noise Model 536
 14.3.4 Preprocessing 536
 14.3.5 Identification 539
14.4 Validation 542
14.5 Conclusion 543
14.6 Appendixes 544
 Appendix 14.A Independent Experiments 544
 Appendix 14.B Relationship between Averaged DFT Spectra and Transfer Function for Arbitrary Excitations 544

CHAPTER 15 Some Linear Algebra Fundamentals 545
15.1 Notations and Definitions 545
15.2 Operators and Functions 546
15.3 Norms 547
15.4 Decompositions 548
 15.4.1 Singular Value Decomposition 548
 15.4.2 Generalized Singular Value Decomposition 549
 15.4.3 The QR Factorization 550
 15.4.4 Square Root of a Positive (Semi-)Definite Matrix 550
15.5 Moore-Penrose Pseudoinverse 550
15.6 Idempotent Matrices 551
15.7 Kronecker Algebra 552
15.8 Isomorphism between Complex and Real Matrices 553
15.9 Derivatives 554
 15.9.1 Derivatives of Functions and Vectors w.r.t. a Vector 554
 15.9.2 Derivative of a Function w.r.t. a Matrix 555
15.10 Inner Product 556
15.11 Gram-Schmidt Orthogonalization 558
15.12 Calculating the Roots of Polynomials 560
 15.12.1 Scalar Orthogonal Polynomials 560
 15.12.2 Vector Orthogonal Polynomials 561
15.13 Sensitivity of the Least Squares Solution 562
15.14 Exercises 563
15.15 Appendix 565
 Appendix 15.5A Calculation of the Roots of a Polynomial 565

CHAPTER 16 Some Probability and Stochastic Convergence Fundamentals 567
16.1 Notations and Definitions 567
16.2 The Covariance Matrix of a Function of a Random Variable 571
16.3 Sample Variables 572
16.4 Mixing Random Variables 573
 16.4.1 Definition 573
 16.4.2 Properties 574
16.5 Preliminary Example 576
16.6 Definitions of Stochastic Limits 578
16.7 Interrelations between Stochastic Limits 579
16.8 Properties of Stochastic Limits 582
16.9 Laws of Large Numbers 583
16.10 Central Limit Theorems 585
16.11 Properties of Estimators 586
16.12 Cramér-Rao Lower Bound 588
16.13 How to Prove Asymptotic Properties of Estimators? 591
 16.13.1 Convergence—Consistency 591
 16.13.2 Convergence Rate 592
 16.13.3 Asymptotic Bias 594
 16.13.4 Asymptotic Normality 595
 16.13.5 Asymptotic Efficiency 595
16.14 Pitfalls 595
16.15 Preliminary Example—Continued 596
 16.15.1 Consistency 597
 16.15.2 Convergence Rate 598
 16.15.3 Asymptotic Normality 598
16.15.4 Asymptotic Efficiency 599
16.15.5 Asymptotic Bias 600
16.15.6 Robustness 600
16.16 Properties of the Noise after a Discrete Fourier Transform 601
16.17 Exercises 605
16.18 Appendixes 606
 Appendix 16.A Indecomposable Sets 606
 Appendix 16.B Proof of Lemma 16.5 608
 Appendix 16.C Proof of Lemma 16.8 608
 Appendix 16.D Almost Sure Convergence Implies Convergence in Probability 610
 Appendix 16.E Convergence in Mean Square Implies Convergence in Probability 610
 Appendix 16.F The Borel-Cantelli Lemma 610
 Appendix 16.G Proof of the (Strong) Law of Large Numbers for Mixing Sequences 611
 Appendix 16.H Proof of the Central Limit Theorem for Mixing Sequences 613
 Appendix 16.I Generalized Cauchy-Schwarz Inequality for Random Vectors 614
 Appendix 16.L Proof of Lemma 16.24 616
 Appendix 16.M Proof of Lemma 16.26 617
 Appendix 16.N Proof of Lemma 16.27 618
 Appendix 16.O Proof of Theorem 16.28 619
 Appendix 16.P Proof of Theorem 16.29 621
 Appendix 16.Q Proof of Corollary 16.30 622
 Appendix 16.R Proof of Lemma 16.31 622
 Appendix 16.S Proof of Theorem 16.32 623
 Appendix 16.T Proof of Theorem 16.33 624

CHAPTER 17 Properties of Least Squares Estimators with Deterministic Weighting 627
17.1 Introduction 627
17.2 Strong Convergence 628
 17.2.1 Strong Convergence of the Cost Function 629
 17.2.2 Strong Convergence of the Minimizer 630
17.3 Strong Consistency 631
17.4 Convergence Rate 632
 17.4.1 Convergence of the Derivatives of the Cost Function 633
 17.4.2 Convergence Rate of $\hat{\theta}(x)$ to $\hat{\theta}(x_0)$ 633
 17.4.3 Convergence Rate of $\hat{\theta}(x_0)$ to θ_0 634
17.5 Asymptotic Bias 634
17.6 Asymptotic Normality 636
17.7 Asymptotic Efficiency 637
17.8 Overview of the Asymptotic Properties 637
17.9 Exercises 638
17.10 Appendixes 639
 Appendix 17.A Proof of the Strong Convergence of the Cost Function (Lemma 17.3) 639
Appendix 17.B Proof of the Strong Convergence of the Minimizer
(Theorem 17.6) 640
Appendix 17.C Lemmas 641
Appendix 17.D Proof of the Convergence Rate of the Minimizer
(Theorem 17.19) 646
Appendix 17.E Proof of the Improved Convergence Rate of the Minimizer
(Theorem 17.21) 647
Appendix 17.F Equivalence between the Truncated and the Original
Minimizer (Lemma 17.27) 648
Appendix 17.G Proof of the Asymptotic Bias on the Truncated Minimizer
(Theorem 17.28) 648
Appendix 17.H Cumulants of the Partial Sum of a Mixing Sequence 649
Appendix 17.I Proof of the Asymptotic Distribution of the Minimizer
(Theorem 17.29) 649
Appendix 17.J Proof of the Existence and the Convergence of the
Covariance Matrix of the Truncated Minimizer
(Theorem 17.30) 650

CHAPTER 18 Properties of Least Squares Estimators with Stochastic
Weighting 651
18.1 Introduction—Notational Conventions 651
18.2 Strong Convergence 652
18.2.1 Strong Convergence of the Cost Function 653
18.2.2 Strong Convergence of the Minimizer 653
18.3 Strong Consistency 654
18.4 Convergence Rate 654
18.4.1 Convergence of the Derivatives of the Cost Function 655
18.4.2 Convergence Rate of \(\hat{\theta}(x) \) to \(\hat{\theta}(x_0) \) 656
18.5 Asymptotic Bias 657
18.6 Asymptotic Normality 658
18.7 Overview of the Asymptotic Properties 659
18.8 Exercises 660
18.9 Appendixes 661
Appendix 18.A Proof of the Strong Convergence of the Cost Function
(Lemma 18.4) 661
Appendix 18.B Proof of the Convergence Rate of the Minimizer
(Theorem 18.16) 661
Appendix 18.C Proof of the Asymptotic Bias of the Truncated Minimizer
(Theorem 18.22) 662
Appendix 18.D Proof of the Asymptotic Normality of the Minimizer
(Theorem 18.25) 663

CHAPTER 19 Identification of Semilinear Models 665
19.1 The Semilinear Model 665
19.1.1 Signal Model 666
19.1.2 Transfer Function Model 666
19.2 The Markov Estimator 666
19.2.1 Real Case 666
19.2.2 Complex Case 668
19.3 Cramér-Rao Lower Bound 668
19.3.1 Real Case 668
19.3.2 Complex Case 669
19.4 Properties of the Markov Estimator 670
19.4.1 Consistency 671
19.4.2 Strong Convergence 672
19.4.3 Convergence Rate 672
19.4.4 Asymptotic Normality 673
19.4.5 Asymptotic Efficiency 674
19.4.6 Robustness 674
19.4.7 Practical Calculation of Uncertainty Bounds 674
19.5 Residuals of the Model Equation 675
19.5.1 Real Case 675
19.5.2 Complex Case 677
19.6 Mean and Variance of the Cost Function 678
19.6.1 Real Case 678
19.6.2 Complex Case 679
19.7 Model Selection and Model Validation 680
19.7.1 Real Case 680
19.7.2 Complex Case 682
19.8 Exercises 683
19.9 Appendixes 684
Appendix 19.A Constrained Minimization (19-6) 684
Appendix 19.D Proof of the Convergence Rate of the Markov Estimates for Large Signal-to-Noise Ratios and Small Model Errors (Theorem 19.2) 688
Appendix 19.E Proof of the Asymptotic Distribution of the Markov Estimates without Model Errors 690
Appendix 19.F Proof of the Asymptotic Efficiency of the Markov Estimates (Theorem 19.4) 691
Appendix 19.G Proof of the Convergence Rate of the Residuals (Lemma 19.8) 691
Appendix 19.H Properties of the Projection Matrix in Lemma 19.9 691
Appendix 19.I Proof of the Improved Convergence Rate of the Residuals (Lemma 19.9) 692
Appendix 19.J Proof of the Properties of the Sample Correlation of the Residuals (Theorem 19.10) 692
Appendix 19.K Proof of the Convergence Rate of the Minimum of the Cost Function (Lemma 19.11) 694
Appendix 19.L Proof of the Properties of the Cost Function (Theorem 19.12) 697
Appendix 19.M Model Selection Criteria 697
Appendix 19.N Proof of the Modified AIC and MDL Criteria (Theorem 19.15) 697

CHAPTER 20 Identification of Invariants of (Over)Parameterized Models 699
20.1 Introduction 699
20.2 (Over)Parameterized Models and Their Invariants 700
20.3 Cramér-Rao Lower Bound for Invariants of (Over)Parameterized Models 702
20.4 Estimates of Invariants of (Over)Parameterized Models – Finite Sample Results 703
 20.4.1 The Estimators 703
 20.4.2 Main Result 705
20.5 A Simple Numerical Example 706
20.6 Exercises 708
20.7 Appendixes 708
 Appendix 20.A Proof of Theorem 20.8 (Cramér-Rao Bound of (Over)Parameterized Models) 708
 Appendix 20.B Proof of Theorem 20.15 (Jacobian Matrix of (Over)Parameterized Models) 709
 Appendix 20.C Proof of Theorem 20.16 709

References 711

Subject Index 729

Author Index 739

About the Authors 743