A
Ability to do science, confidence in, 42, 58, 141; demonstrating, 173–174; gains in, 45–47, 72–74; markers of, 172
Academic Excellence study, 10, 11
Adhikari, A., 35
Advisor. See Research advisor
Alexander, B. B., 35
Alumni, comparison: becoming a scientist gains, 93–96; career choice, 90–91; career clarification gains, 93; career decision making, 97–100; career outcomes, 94–96; career placement, 96–97; career preparation, 93; 101–102; coding research from, 42; comparison alumni, defining, 16; definition of UR, 16; interview protocol for, 228, 245–250; lasting changes from authentic experiences, 102–110; longitudinal changes in intellectual gains, 104; overall career impact, 102; personal/professional gains, 93; skill gains, 93; thinking/working like a scientist gains, 93; 103–107
American Association of Colleges and Universities, 8
American Chemical Society, 6
American Society for Biochemistry and Molecular Biology, 8–9
Apprenticeship: and authenticity, 100, 146–147, 206, 245; and career advising, 168; overall career impact of, 102; and STEM education, 211, 217, 218; traditional role of, 7
Apprenticeship model, 3, 14, 31, 65, 238
Asera, R., 133
Assessment: informal vs. formal, 209, 235; instruments for, 176–177, 209–210, 231
Assessment markers, 170–173, 171t–172t
Astin, A. W., 38
Astin, H. S., 38
At-risk Ph.D. completers, 95–96
Attributes, student, 141–142
Attrition of minority students, 35, 39, 116–117; in STEM fields, 116–117
Authenticity: and apprenticeship, 100, 146–147, 206, 245; as central organizing principle, 205–207; diluting, 193; and student outcomes, 124
Authentic projects, challenges with, 186

B
Baker, S. M., 11
Ball, D. B., 11
Barab, S. A., 206
Barlow, A. E. L., 35–36
Baxter Magolda, M., 107
Becoming a professional gains, 77–80
Becoming a scientist, 42; alumni gains, 93; 107–110; defining, 201; frequency counts of gains, 255; markers of, 172t; networking and, 61; student gains, 42, 44t, 53–56, 92t, 119–120, 173, 174
Behavior, student, 167
Biology Undergraduate Scholars Program (BUSP) at the University of California, Davis, 35–36
Blau, P. M., 138–139
Boyer Commission, 6, 8, 9
Brown, D. R., 11
B students, 142
Building Engineering and Science Talent, 39
Burnout, 127, 188, 211

C
Camille and Henry Dreyfus Foundation, 6
Campbell, G., 115
Career advising, 168–170
Career choice: alignment of findings on, 33; of UR and comparison alumni, 90t–91t
Career clarification/refinement gains: for alumni, 93; for students, 92t, 120
Career decision making, by alumni, 97–100
Career goal gains: clarification/confirmation of, 61–63, 84–86; frequency counts of, 257t–258t
Career/long-term impacts, of UR. See Alumni, comparison
Career networks, 60
Career outcomes, 13; alumni, 94–96; minority students, 132–133
Career placement, 94, 96–97
Career preparation, 60, 61, 63; alumni gains, 93f, 101–102; and comparison students, 72; enhanced, 82–84, 120; frequency counts of gains, 256t–257t; and research students, 82; student gains, 59–61, 92f, 120
Career readiness markers, 172t
Clinic program, 69, 74, 80, 82, 83–84, 87
Collegiality/collaboration, 56, 58, 109, 120; comparison student gains, 74–75; markers for, 172t; student gains, 47–49
Communication skills, 46, 57, 80–81, 87, 159–161; minority students, 125–127
Comparable gains, 251, 252
Comparison alumni: defining, 16. See also Alumni, comparison
Comparison student: defining, 16. See also Gains from conducting research, UR/comparison students
Computer skills, 56, 81, 120
Conceptual/theoretical understanding gains, 49–50, 77
Conference presentations, 126, 161, 162. See also Presentations
Confidence to do science gains, 45–47, 173–174
Content validity, 230
Contextual knowing, 107
Council on Undergraduate Research (CUR): definition of undergraduate research, 2–3; founding of, 6; list of research journals, 12
Critical thinking skills, 5, 32, 50–51, 70–71, 75–76, 87, 117, 119, 17f, 173
Critique, learning to give and take, 160
Cultural capital, 116, 117
Curiosity, 53, 141, 142, 166–167, 199
CUR Quarterly. 11
Curriculum, research-supportive, 11
Czaja, J. A., 107

D

Data analysis, four-college study, 229–231
Data coding, four-college study, 17, 230
Data skills, 58

Data transcription, four-college study, 229
Disciplinary interest gains, 85–86
Division of Chemistry, 11
Domains, 18, 230
Donohue, R., II, 37
Drinker, C. K., 4–5

E

Early-entry students, 215
Educational goals: clarification/confirmation of, 84–86; frequency counts of gains, 257t–258t; student gains, 61–63
Educational outcomes, of minority students, 132–133
Emphasis factors, 92t–93t, 232–233
Enhanced preparation for career/graduate school, 59–61
Epistemological growth, 52, 105–107
Ethics, 18, 109–110, 167, 216, 229
The Ethnograph (software program), 229, 230
Evaluation, implications of UR for, 209–210
Evaluation research, index to, 30e
Evaluations literature review on, 24
Evidence and interpretation, nature of, 201–202

F

Faculty: career-related benefits of UR, 195–196; costs and benefits of UR, 180f; defining, 16; student relationships with, 47–48, 110; women, 64, 143, 169, 189–190
Faculty-led UR, 3
Faculty scholarship, UR as, 5–6
Feedback, on scientific writing, 58
Feeling like a scientist, 34, 46, 53, 103, 175
“Feel of research,” 54–55
Field skills, 101
Fitzsimmons, S. J., 32
Focus group interviews, 118, 222, 229
Foertsch, J. A., 35
Four-college study: advisor interview protocol, 229; alumni interview protocol, 228; data analysis, 229–231; data coding, 17, 230; data transcription, 229; interview protocols development, 228–229; limitations/strengths of, 19; presentation of text data information, 230–233; research design/methodology, 227–233; student interview protocol, 228; study methods, 16–18; study samples, 15–16; study sites, 14–15; validity/reliability, 18–19
Frequency counts, 18, 230–231, 233; comparable gains, 251, 252; noncomparable gains, 251, 252; on student gains, 253t–258t
Funding, 5–6, 10, 11, 217

G

Gaglione, O. L., 11
Gains: categories of student, 45 (see also individual category); checklist for, 235–237; as transferable, 92, 208, 213
Gains from conducting research, UR/comparison students: ability to apply knowledge and skills, 76–77; becoming professional, 77–80; clarification/confirmation of goals, 84–86; conceptual/theoretical understanding, 77; confidence to do science, 72–74; developing temperament of scientist, 78–79; disciplinary interests, 85–86; distribution of STEM educational experiences, 68; enhanced preparation for career/graduate school, 82–84; interview findings overview, 70–72; learning to work/think independently, 78; personal/professional, 72–75; population-weighted sources, 71; professional experience, 67–70, 73; real-world experience, 82–83; refinement of career and educational goals, 84–85; skills, 80–81; thinking/working like a scientist, 75–77; understanding professional practice, 79–80; UR and other professional experiences gains, 72–87. See also Gains from conducting research, UR students

Gains from conducting research, UR students: frequency counts, relative weight of opinion, 43–44; group differences, 63–65; probing student gains from research, 41–42; robust patterns in, 43–44. See also Gains from conducting research, UR/comparison students

Gándara, P., 134

Gender: differences in gains frequencies, 63–64; effect on advising, 169, 190–191; and selection criteria, 143

Generalizability, of findings, 202–204

Gentile, J., 10

Givant, S., 35

Graduate school: alignment of findings on, 33; career preparation, 82–84

Gregerman, S., 36

Grinnell College. See Four-college study

Handelsman, J., 11

Harvey Mudd College. See Four-college study

Hathaway, R., 36

Hay, K. E., 206

Hewitt, N. M., 95

Higgins, T. B., 212

Higher-order skills, 64, 107, 202, 214

High-impact educational practices, 39–40

Hope College. See Four-college study

Howard Hughes Medical Institute, 6

How-to manual, 204

Hrabowski, F., 36–37

Hunter, A.-B., 13, 17, 23, 24, 30, 41, 42, 64, 65, 67, 102, 146, 177, 187, 209, 214, 227

Husic, D. W., 212

Identity, as scientist, 34, 46, 53, 56, 103, 174–175

Independence, developing, 153–154, 171f

Independent knowing, 107

Index to research and evaluation studies, 30e

Inquiry-based approaches, 218–219

Institutional recognition/support, 194

Institutional Review Board (IRB), 229

Instrumental views, on benefits of UR, 61

Intellectual growth, 104f, 152–153, 171f, 173

International UR, 216

Internships: and career path, 100; comparison students, 69, 72, 74; and networking opportunities, 83, 97; real-world projects, 78, 82

Interviews: focus groups, 118, 222, 229; open-ended, 223; sample for, 221–225, 222f, 223t; telephone, 232

J

Journal of Chemical Education, 11

K

K–12, 203

Kardash, C. M., 107

Katkin, W., 10–11, 12

Kenny, S. S., 11

Kinkead, J., 11

Knowing, contextual, 107

Knowledge construction, 105, 106, 108

Knowledge/skills application gains, 50–53, 76–77

Kuh, G. D., 9, 39–40, 217

Laboratory skills, 81, 101, 158

Laursen, S., 8, 13, 17, 23, 24, 30, 41, 42, 61, 64, 65, 67, 96, 102, 146, 161, 170, 177, 209, 213, 214, 227,

Leadership skills, 100, 119, 120

Leaky pipeline, 7

Learning about science vs. learning to do science, 52–53

Limitations/strengths, of four-college study, 19

Literature review, on student findings, 23–31

Lopatto, D., 32

Louis Stokes Alliances for Minority Participation (LSAMP), 37, 130–131

Lovitts, B. E., 95–96

M

Massachusetts Institute of Technology (MIT), 5

Maton, K., 36–37

Melton, G., 37, 118

Member checks, 19, 230

Mentoring, 74–75; SOARS and, 119; as time/effort intensive, 189

Merkel, C. A., 2, 5, 9, 11

Metacognition, 207–209
Metaphorical pyramid, 202
Meyerhoff Scholars Program, 36–37, 130–131
Minority Research and Training Programs (NIH), 37
Minority students: academic skills/advising, 129; approaches to diversity, 129–131; attrition of, 35–36, 39, 116–117; broadening participation of, 215; challenges/risks in STEM majors, 115–117; communication skills emphasis, 125–127; critical program elements, 122–131; early entry/multiyear engagement, 125; financial aid, 129; and general features of UR, 122–124; institutional commitment, 131–132; network of multiple mentors, 127; peer community, 127–129; underrepresentation of, 7, 24, 143. See also Significant Opportunities in Atmospheric Research and Science (SOARS)
Mixed student gains, 43, 70
Motivation, 142
Nagda, B., 36
National Aeronautics and Space Administration, 11
National Center for Atmospheric Research (NCAR), 37, 131
National Conference on Undergraduate Research, 6, 161
National Institutes of Health (NIH) Minority Research and Training Programs, 37
National Research Council, 39
National Science Foundation (NSF), 5–6, 11, 37
National Survey of Student Engagement, 9
Nature of evidence, 90–93
Negative student gains, 43
Networking, 83–84, 121
Nolan, D., 35
Noncomparable gains, 251, 252
Noves, A., 4
Oberlin report, 5
Observations, per capita, 231–232, 233
Off-site conference presentations, 126, 161
One-on-one telephone interviews, 232
On-track Ph.D. completers, 96
Open-ended interviews, 232
Oral argumentation skills, 81, 160
Organization skills, 58–59, 81, 87, 160
Orwell, G., 193
Outreach, 96
Ownership, 54, 78, 149, 155, 172t, 174, 207
Parent codes, 17, 18, 42
Participation in UR, increase in, 10–12
Pascalella, E., 38
Pedersen-Gallegos, L., 37
Peer learning community, 151
Peer mentors, 128
Peer relationships, 48–49, 110
Penberthy, D. L., 35
Per capita observations, 231–232, 233
Personal/professional gains: for alumni, 93; frequency counts of, 253t; student gains, 45–49, 92f, 119
Petroleum Research Fund, 6
Premed students, benefits of UR to, 61
Presentations, 46–47; conference, 126, 161, 162; formal, 160–161; off-campus, 207; off-site, 126, 161; professional, 207; skills for, 57, 80–81, 120, 126
Preston, A. E., 96
Primarily undergraduate institutions (PUIs), 3
Problem-solving skills, 32–33, 50, 75, 76–77, 117, 171t
Professional communication, markers of gains in, 172t
Professional experience gains, 67–70, 73t
Professional recognition, 192
Professional socialization, 109–110, 121–122. See also Becoming a scientist
Protégés, 118
Publishing: positive/negative impacts on faculty, 187; student, 120
Pyramid, metaphorical, 202
Racism, 116, 120
Ramsay, L., 217
Rauckhorst, W. H., 107
Reading for comprehension skills, 157–158
Real research, 2
“Real science,” and educational/professional growth, 1–2
Real-world experience gains, 82–83
Real-world work experience, value of, 60
Record keeping, 159
Reflection, 208
Reigle-Crumb, C., 63–64
Reliability, inter-rater, 230
Research advisor: career advising, 168–170; effectiveness of teaching/mentoring work, 173–175; evaluation of teaching/mentoring work, 175–177; interview protocol, 229; markers of student progress, 170–173, 171t–172t; as mentors, 165–168; quality of advising, 203–204; women, 189–190. See also Research advisor, methods; Research advisor, teacher role
Research advisor, methods: on becoming a scientist category, 42; central organizing principle, 144–147; choice of research project, 148–149; defining, 16; nature of evidence, 136–137; relationship with, 48, 109–110
Research advisor, teacher role, 149–157; engaging with intellectual content, 152–153; fostering independence, 153–154; getting started, 151–152; how students responded, 156–157; interventions, 155; interventions, radical, 155–156; problem solving as pedagogy, 153; and research peer group, 150–151; risk/uncertainty, normalizing, 154–155; talking it through, 155
Research at Undergraduate Institutions program, 6
Research design/methodology, four-college study, 227–233
Research/evaluation studies findings, publishing, 251–29
Research Experiences for Undergraduates (REU) program, 6, 32
Research project selection, 185
Research universities, challenges of UR in, 212–213
Résumé enhancement, 82–83
Rice University, 35
Risky students, 215–216
Robustness, of student outcomes, 203
Russell, S. H., 9
Schmitt, C., 36–37
Science, technology, engineering, and mathematics (STEM): apprenticeships, 211, 217, 218; attrition in, 116–117; classroom reform, 216–219; implications for broadening participation in, 213–216; progress from STEM degrees to STEM workforce, 96; retention/recruitment, 37–38; underrepresented groups, 24
Second tier, of science students, 95
Self-confidence, student, 116
Seymour, E., 8, 17, 23, 24, 30, 41, 42, 95, 102, 115, 116, 133, 146, 210, 216–217, 227
Significant Opportunities in Atmospheric Research and Science (SOARS), 37, 38; case study, minority students, 117–122; critical program elements, 122–131, 123; financial aid, 122, 124, 126, 129; goal of, 117–118; longer-term outcomes, 132–133; multiple-mentor model, 127; program description, 118–119; protégés, 118; student gains, 119–122
Skills: alumni and gains in, 92; collaborative work, 56, 93, 256; communication, 46, 57, 80–81, 87, 125–127, 159–161; computer, 56, 81, 120; computer programming, 120, 142; critical thinking, 5, 32, 50–51, 70–71, 75–76, 87, 117, 119, 171; data, 58; field, 101; frequency counts of gains, 255; higher-order, 64, 107, 202, 214; laboratory, 81, 101, 158; leadership, 100, 119, 120; markers of gains in, 172; oral argumentation, 81, 160; organization, 58–59, 81, 87, 160; problem-solving, 32–33, 50, 75, 76–77, 117, 171; reading for comprehension, 157–158; teamwork, 17, 81, 87; technical, 87, 158; time management, 56, 59, 120, 190; as transferable, 5, 58, 101–102, 126; writing, 58, 81, 126–127, 161–162; writing/editing, 58, 81, 126–127, 161–162
Software: The Ethnograph, 229, 230; text analysis, 17–18
Spencer, J. N., 5
Spend a Summer with a Scientist program, 35
SRI International, 9, 10, 32
Status of belonging within science markers, 172
STEM-ENGINES, 212
Stereotype threat, 115, 116, 130
Structured UR summer program, 13
Student: definition of UR, 16; interview protocol, 228; relationship with advisor, 207; relationship with faculty, 47–48
Student Assessment of their Learning Gains (SALG), 210
Student gains checklist, 17, 235–237
Student outcomes of UR: alignment of findings across studies, 32–34, 65; benefits of UR, 31–32; documented outcomes, explaining, 38–39; literature overview, 23–31; retention/recruitment, 34–38; survey instruments for assessing, 176–177
Student recruitment, selection, and matching, 137–144; criteria for selection, 139–140, 140; formal selection process, 137–138, 139; informal selection process, 138–139; student attributes, 141–142; student group preferences, 142–144
Study design/sampling, four-college study, 15–16, 222
Study methods, four-college study, 16–18
Study sites, four-college study, 14–15
Summer Institute in the Mathematical Sciences (SIMS), 35
Summer jobs, comparison students, 69
Summer Mathematics Institute for Minorities, 35
Summer Undergraduate Research Program (SURP), 35
Survey of Undergraduate Research Experiences (SURE), 32, 177
Switzer science students, 95
Teachers, future, benefits of UR to, 61
Teamwork skills, 17, 81, 87
Technical skills, 87, 158
Telephone interviews, 229, 232
Temperament of scientist, developing, 78–79, 153, 170
Tenacity, 141, 142
Tenure, 154, 167, 183, 187, 188, 194, 196
Terenzini, P. T., 38
Text analysis software, 17–18
Thinking/working like a scientist: and alumni, 92; and authentic research experiences, 103–107, 104; and comparison students, 75–77; frequency counts of gains, 254–255; student gains, 49–53, 92
Thiry, H., 13, 61, 64, 65, 67, 96, 161, 177, 187, 209, 214, 227
Time management skills, 56, 59, 120, 190
Tinto, V., 38
Tobias, S., 95
Transferable: confidence as, 173–174; gains as, 92, 208, 213; ownership as, 174; skills as, 5, 58, 101–102, 126
Transitional/independent knowing, 107
Treisman, U., 35, 38, 133
Triangulation, 19, 42, 230
Tsui, L., 39, 133, 134
Undergraduate research (UR): context for, 7–9; defining, 2–3; history of, 4–7; scope of, 9–12
Undergraduate Research Opportunities Program (UROP), 36
Undergraduate Research Student Self-Assessment (URSSA), 176–177, 209–210, 231
Underrepresented groups: alignment of findings on, 33; cultural capital of, 116, 117; retention/recruitment in STEM fields, 37–38; as selection criteria, 143. See also Minority students
University of California, Berkeley, 35
University of California, Davis, 35–36
University of Colorado, Institutional Review Board, 229
University of Delaware, 31
University of Maryland, Baltimore County, 36–37
University of Michigan, 36
University of Wisconsin–Madison, 35
Untenured faculty, 195, 213
UR, implications: for expanding opportunities for undergraduate research, 210–213
UR alumni, defining, 16
UR student, defining, 16

V

Validity, 18–19, 38, 230
Villarejo, M., 35–36
Vomit Comet, 11

W

Walczyk, J. J., 217
WebGURU, 12
Wellesley College. See Four-college study
Women: career attrition, 96; degree attainment influences, 63–64; recruitment of, 191; SIMS program for, 35; and SOARS, 119, 130; underrepresentation of, 7, 24, 143
Women advisors, 189–190
Women faculty, 64, 143, 169, 189–190
Wood, M., 9, 217–218
Work/personal life balance, 189–191
Writing skills, 58, 81, 126–127, 161–162

X

Xavier University SOAR program. See Significant Opportunities in Atmospheric Research and Science (SOARS)

Y

Yoder, C. H., 5

Z

Zha, P., 217