Contents

Preface xiii
Acknowledgments xvii
List of Acronyms xix
Notes on Editors and Contributors xxix

PART I INTRODUCTION 1

1 Modern Approaches to Radio Network Modelling and Planning 3
 Maciej J. Nawrocki, Mischa Dohler and A. Hamid Aghvami

 1.1 Historical aspects of radio network planning 3
 1.2 Importance and limitations of modelling approaches 5
 1.3 Manual versus automated planning 7
 References 9

2 Introduction to the UTRA FDD Radio Interface 11
 Peter Gould

 2.1 Introduction to CDMA-based networks 11
 2.2 The UTRA FDD air interface 15
 2.2.1 Spreading codes 15
 2.2.2 Common physical channels 20
 2.2.3 Dedicated physical channels 27
 2.3 UTRA FDD key mechanisms 29
 2.3.1 Cell breathing and soft capacity 29
 2.3.2 Interference and power control 31
 2.3.3 Soft handover and compressed mode 32
 2.4 Parameters that require planning 34
 2.4.1 Signal path parameters 34
 2.4.2 Power allocation 35
 2.4.3 System settings 35
 References 35
3 Spectrum and Service Aspects 37
Maciej J. Grzybkowski, Ziemowit Neyman and Marcin Ney

3.1 Spectrum aspects 37
 3.1.1 Spectrum requirements for UMTS 38
 3.1.2 Spectrum identified for UMTS 39
 3.1.3 Frequency arrangements for the UMTS terrestrial component 39
 3.1.4 Operator spectrum demands 45

3.2 Service features and characteristics 46
References 52

4 Trends for the Near Future 55
Maciej J. Nawrocki, Mischa Dohler and A. Hamid Aghvami

4.1 Introduction 55
4.2 Systems yet to be deployed 56
 4.2.1 UTRA TDD 56
 4.2.2 TD-SCDMA 57
 4.2.3 Satellite segment 58
4.3 Enhanced coverage 60
 4.3.1 Ultra High Sites (UHS) 61
 4.3.2 High Altitude Platform System (HAPS) 61
4.4 Enhanced capacity 61
 4.4.1 Hierarchical Cell Structures (HCS) 61
 4.4.2 High Speed Downlink Packet Access (HSDPA) 62
 4.4.3 High Speed Uplink Packet Access (HSUPA) 63
 4.4.4 Orthogonal Frequency Division Modulation (OFDM) 64
4.5 Heterogeneous approaches 64
 4.5.1 Wireless LANs 64
 4.5.2 Wireless MANs (WiMAX) 65
4.6 Concluding Remarks 65
References 65

PART II MODELLING 67

5 Propagation Modelling 69
Kamil Staniec, Maciej J. Grzybkowski and Karsten Erlebach

5.1 Radio channels in wideband CDMA systems 69
 5.1.1 Electromagnetic wave propagation 69
 5.1.2 Wideband radio channel characterisation 73
 5.1.3 Introduction to deterministic methods in modelling WCDMA systems 75
 5.1.4 Deterministic methods: comparison of performance 79
5.2 Application of empirical and deterministic models in picocell planning 80
 5.2.1 Techniques for indoor modelling 80
 5.2.2 Techniques for outdoor-to-indoor modelling 82
5.3 Application of empirical and deterministic models in microcell planning 84
 5.3.1 COST 231 WalFisch–Ikegami model 85
 5.3.2 Manhattan model 87
 5.3.3 Other microcellular propagation models 88
5.4 Application of empirical and deterministic models in macrocell planning 90
 5.4.1 Modified Hata 90
 5.4.2 Other models 91
5.5 Propagation models of interfering signals 94
 5.5.1 ITU-R 1546 model 94
 5.5.2 ITU-R 452 model 100
 5.5.3 Statistics in the Modified Hata model 104
5.6 Radio propagation model calibration 105
 5.6.1 Tuning algorithms 106
 5.6.2 Single and multiple slope approaches 108
Appendix: Calculation of inverse complementary cumulative normal distribution function 110
References 111

6 Theoretical Models for UMTS Radio Networks 115
Hans-Florian Geerdes, Andreas Eisenblätter, Piotr M. Słobodzian,
Mikio Iwamura, Mischa Dohler, Rafał Zdunek, Peter Gould and
Maciej J. Nawrocki

6.1 Antenna modelling 115
 6.1.1 Mobile terminal antenna modelling 117
 6.1.2 Base station antenna modelling 118
6.2 Link level model 122
 6.2.1 Relation to other models 123
 6.2.2 Link level simulation chain 124
 6.2.3 Link level receiver components 126
 6.2.4 Link level receiver detectors 128
6.3 Capacity considerations 134
 6.3.1 Capacity of a single cell system 134
 6.3.2 Downlink power-limited capacity 134
 6.3.3 Uplink power-limited capacity 137
6.4 Static system level model 139
 6.4.1 Link level aspects 140
 6.4.2 Propagation data 141
 6.4.3 Equipment modelling 142
 6.4.4 Transmit powers and power control 144
 6.4.5 Services and user-specific properties 146
 6.4.6 Soft handover 147
 6.4.7 Complete model 148
 6.4.8 Applications of a static system-level network model 149
 6.4.9 Power control at cell level 152
 6.4.10 Equation system solving 157
6.5 Dynamic system level model 161
 6.5.1 Similarities and differences between static and dynamic models 161
 6.5.2 Generic system model 162
 6.5.3 Input/output parameters 164
 6.5.4 Mobility models 164
 6.5.5 Traffic models 165
 6.5.6 Path loss models 167
 6.5.7 Shadowing models 168
6.5.8 Modelling of small scale fading 169
6.5.9 SIR calculation 170
References 172

7 Business Modelling Goals and Methods 177
Marcin Ney

7.1 Business modelling goals 177
 7.1.1 New business planning 177
 7.1.2 Infrastructure development 178
 7.1.3 Budgeting 179

7.2 Business modelling methods 179
 7.2.1 Trends and statistical approach 180
 7.2.2 Benchmarking and drivers 181
 7.2.3 Detailed quantitative models 181
 7.2.4 Other non-quantitative methods 182

References 183

PART III PLANNING 185

8 Fundamentals of Business Planning for Mobile Networks 187
Marcin Ney

8.1 Process description 187
 8.1.1 Market analysis and forecasting 187
 8.1.2 Modelling the system 189
 8.1.3 Financial issues 190
 8.1.4 Recommendations 190

8.2 Technical investment calculation 191
 8.2.1 CAPEX calculation methods 191
 8.2.2 OPEX calculation methods 196
 8.2.3 The role of drivers: Sanity checking 197

8.3 Revenue and non-technical related investment calculation 198
 8.3.1 Input parameters and assumptions 198
 8.3.2 Revenue calculation methods 199
 8.3.3 Non-technical related investments 199

8.4 Business planning results 199
 8.4.1 Business plan output parameters 200
 8.4.2 Business plan assessment methods 200

References 201

9 Fundamentals of Network Characteristics 203
Maciej J. Nawrocki

9.1 Power characteristics estimation 203
 9.1.1 Distance to home base station dependency 203
 9.1.2 Traffic load dependency 207

9.2 Network capacity considerations 210
 9.2.1 Irregular base station distribution grid 210
 9.2.2 Improper antenna azimuth arrangement 212

9.3 Required minimum network size for calculations 214
References 218
10 Fundamentals of Practical Radio Access Network Design

Ziemowit Neyman and Mischa Dohler

10.1 Introduction 219
10.2 Input parameters
 10.2.1 Base station classification 222
 10.2.2 Hardware parameters 222
 10.2.3 Environmental specifics 229
 10.2.4 Technology essentials 231
10.3 Network dimensioning 238
 10.3.1 Coverage versus capacity 238
 10.3.2 Cell coverage 239
 10.3.3 Cell Erlang capacity 249
10.4 Detailed network planning 251
 10.4.1 Site-to-site distance and antenna height 252
 10.4.2 Site location 254
 10.4.3 Sectorisation 256
 10.4.4 Antenna and sector direction 259
 10.4.5 Electrical and mechanical tilt 260
 10.4.6 Temporal aspects in HCS 263

References 268

11 Compatibility of UMTS Systems

Maciej J. Grzybkowski

11.1 Scenarios of interference 272
 11.1.1 Interference between UMTS and other systems 272
 11.1.2 Intra-system interference 274
11.2 Approaches to compatibility calculations 275
 11.2.1 Principles of compatibility calculations 275
 11.2.2 Minimum Coupling Loss (MCL) method 280
 11.2.3 Monte Carlo (MC) method 283
 11.2.4 Propagation models for compatibility calculations 284
 11.2.5 Characteristics of UTRA stations for the compatibility calculations 286
11.3 Internal electromagnetic compatibility 286
11.4 External electromagnetic compatibility 292
 11.4.1 UMTS TDD versus DECT WLL 292
 11.4.2 Compatibility between UMTS and Radio Astronomy Service 294
 11.4.3 Compatibility between UMTS and MMDS 295
11.5 International cross-border coordination 296
 11.5.1 Principles of coordination 296
 11.5.2 Propagation models for coordination calculations 297
 11.5.3 Application of preferential frequencies 298
 11.5.4 Use of preferential codes 300
 11.5.5 Examples of coordination agreements 301

References 305

12 Network Design – Specialised Aspects

Marcin Ney, Peter Gould and Karsten Erlebach

12.1 Network infrastructure sharing 309
 12.1.1 Network sharing methods 309
PART IV OPTIMISATION

13 Introduction to Optimisation of the UMTS Radio Network
Roni Abiri and Maciej J. Nawrocki

13.1 Automation of radio network optimisation 324
13.2 What should be optimised and why? 325
13.3 How do we benchmark the optimisation results?
 13.3.1 Location based information 327
 13.3.2 Sectors and network statistical data 328
 13.3.3 Cost and optimisation efforts 330
References 331

14 Theory of Automated Network Optimisation
Alexander Gerdenitsch, Andreas Eisenblätter, Hans-Florian Geerdes, Roni Abiri,
Michael Livschitz, Ziemowit Neyman and Maciej J. Nawrocki

14.1 Introduction 333
 14.1.1 From practice to optimisation models 334
 14.1.2 Optimisation techniques 335
14.2 Optimisation parameters for static models
 14.2.1 Site location and configuration 340
 14.2.2 Antenna related parameter 340
 14.2.3 CPICH power 344
14.3 Optimisation targets and objective function
 14.3.1 Coverage 345
 14.3.2 Capacity 346
 14.3.3 Soft handover areas and pilot pollution 347
 14.3.4 Cost of implementation 348
 14.3.5 Combination and further possibilities 348
 14.3.6 Additional practical and technical constraints 348
 14.3.7 Example of objective function properties 349
14.4 Network optimisation with evolutionary algorithms
 14.4.1 Genetic algorithms 355
 14.4.2 Evolution strategies 357
 14.4.3 Practical implementation of GA for tilt and CPICH 361
14.5 Optimisation without simulation 366
 14.5.1 Geometry-based configuration methods 366
 14.5.2 Coverage-driven approaches 368
 14.5.3 Advanced models 369
 14.5.4 Expected coupling matrices 372
14.6 Comparison and suitability of algorithms
 14.6.1 General strategies 374
 14.6.2 Discussion of methods 374
 14.6.3 Combination of methods 375
References 375
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.4 Network solutions for UTRAN transmission infrastructure</td>
<td>456</td>
</tr>
<tr>
<td>17.4.1 Leased lines</td>
<td>456</td>
</tr>
<tr>
<td>17.4.2 Point-to-point systems</td>
<td>457</td>
</tr>
<tr>
<td>17.4.3 Point-to-multipoint systems – LMDS</td>
<td>460</td>
</tr>
<tr>
<td>17.4.4 WiMAX as a potential UTRAN backhaul solution</td>
<td>468</td>
</tr>
<tr>
<td>17.5 Efficient use of WiMAX in UTRAN</td>
<td>472</td>
</tr>
<tr>
<td>17.5.1 Dimensioning of WiMAX for UTRAN infrastructure</td>
<td>472</td>
</tr>
<tr>
<td>17.5.2 Current WiMAX limitations</td>
<td>473</td>
</tr>
<tr>
<td>17.6 Cost-effective radio solution for UTRAN infrastructure</td>
<td>474</td>
</tr>
<tr>
<td>17.6.1 RF planning aspects</td>
<td>474</td>
</tr>
<tr>
<td>17.6.2 Throughput dimensioning</td>
<td>475</td>
</tr>
<tr>
<td>17.6.3 Methods of finding optimal LMDS network configurations</td>
<td>476</td>
</tr>
<tr>
<td>17.6.4 Costs evaluation of UTRAN infrastructure – software example</td>
<td>485</td>
</tr>
<tr>
<td>17.6.5 Example calculations and comparison of results</td>
<td>487</td>
</tr>
</tbody>
</table>

References 493

Concluding Remarks 497

Index 501