Index

A
Absolute maximum moment, 350–352
Accuracy of calculations, 7–8
Adjoint matrix, 523
Allowable stress design (ASD), 15–16
American Association of State Highway and Transportation Officials (AASHTO), 39
American Concrete Institute (ACI), 16
American Concrete Institute (ACI) moment coefficients, 318–320
American Institute of Steel Construction (AISC), 16
American Railway Engineering Association (AREA), 40
American Society of Civil Engineers (ASCE), 14, 39
Angle changes, see Deflections
Approximate analysis
ACI coefficients, 318–320
advantages, 316–317
building frames, 320–323, 325–329
cantilever method, 328–329
continuous beams, 318–320
equivalent frame method, 320
exact methods compared to, 316–317, 329–330
lateral loads on buildings, 325–329
points of inflection (PI), 320–321
portal frames, 323–325
portal method, 326–327
statically indeterminate structures, 316–334
structural analysis using, 243
stiffness of truss diagonals, 317–318
trusses, 317–318, 330
vertical loads on buildings, 320–323
Vierendeel “truss,” 330
Arches, three-hinged, 100–103
Archimedes, 3
ASCE-7 loads, 14
ASCE 7-16 information, 494–498
Axial deformation, 213–214, 217, 228
Axial force (N)
building frame analysis of, 327, 328
center of gravity (cg) for, 328
columns, 327, 328
defined, 115
degree of freedom (DOF) for, 400–402, 405
direct stiffness (matrix) method for, 400–405
equations of, 117–120
inclined members, 401–405
stiffness matrix for members, 400–405
Axial force diagrams, 128–129
Axial release, 478–479
B
Baltimore truss, 154
Basic principles of structural analysis, 5
Beam elements
analysis of, 425–428
defined, 422
degrees of freedom (DOF), 422–423, 434–435
direct stiffness (matrix) method for, 421–441
displacement notation, 431
fixed-end forces (FEF), 434–435, 449, 465–468
member end forces, 428–431
plotting deflections, 431–434
shape functions, 431–434
shear, moment, and deflection diagrams, 438–441
statical equivalency, 434–438
stiffness matrix for, 421–425
superposition for, 431–432, 438–441
Beams
absolute maximum bending moment, 350–352
angle changes and deflections of, 217–220
approximate analysis of, 318–320
cantilevered structures, 96–99
centerline, 350–351
connections, 84–85
consistent distortions method for, 244–251, 253–258
continuous, 239–240, 254–256, 318–320
curvature, 349–350
curvature of a segment, 196–197
defined, 50
double integration of, 200–202
elastic beam theory, 195–197
fixed-end moments (FEM), 280, 288–289
girders, 353–354
free-body diagrams (FBD), 90–91, 97
influence lines (IL) for, 337–352, 365–374
internal releases, 85–86, 342
line diagrams for, 47
live load placement, 374–375
maximum bending moment, 349–350
maximum deflection, 240
moment-distribution method for, 278–294
panelized diaphragms using, 70–71
point of inflection (PI), 196–197
procedures for analysis of, 197, 218, 245–246
proportion for reactions, 91
qualitative influence lines for, 341–346, 370–374
reactions and, 83–88, 91–92, 96–99, 103–105
SAP2000 computer applications, 104–105, 202–204, 229–258
sign conventions, 115, 279
simple, 337–339
simple ends, 288–289
single redundant, 244–252
sketching deflections, 191–193, 342
spandrel, 320
statical determinacy of, 86–88
statically determinate, 337–352
statically indeterminate, 365–374
stiffness factors (k), 280–281, 288–289
structural use of, 6
support settlement and, 241, 254–256
supports and connections for, 83–85, 342
temperature change effects on, 241, 465–468
tributary area, 50–52
two more redundants, 253–254
virtual work method for, 217–220
Bending moment diagrams, also see moment diagrams, visual integration using, 221–222
Bending moments (M) absolute maximum, 350–352
beam curvature and, 349–350
defined, 115
equations of, 117–120
girder design simplification and, 135–136
influence lines (IL) for, 338–339, 349–352
maximum, 239–240, 349–350
moving loads, 350–352
relationships between load, shear, and, 120–121
sign conventions for, 338–339
Bernoulli, Johann, 212
Blast loads, 41
Boundary conditions (BC) double integration use of, 197–199
structural analysis and, 242
Bowstring truss, 152
Braced diaphragms, 70–71
Braced frames, 68, 69–70
Bridges cantilever erection, 241
components, 6
deck, 153
floor systems, 352–354
highway loads, 39–40
influence line (IL) for, 350–352
live (traffic) loads, 39–40
moving loads on, 350–352
railroad loads, 40
through, 153
trusses, 6, 153–154
Building codes, 13
Building frames approximate analysis of, 320–323, 325–329
assumptions for, 326
cantilever method, 328–329
column axial forces, 327, 328–329
column moments and shears, 327, 329
girder moments and shears, 327, 328–329
lateral loads on, 325–329
moment diagrams for, 327
points of inflection (PI), 320–321
portal method for, 326–327
vertical loads on, 320–323
Building material weight, 19
Buildings, seismic (earthquake) loads and, 14, 33–38
C
Calculation accuracy, 7–8
Camber, 189
Cantilever erection, 241
Cantilever beam method of superposition, 133–134
Cantilever method, frame analysis using, 328–329
Cantilevered structures, 96–99
Carryover factor, see Carryover moments
Carryover moments (CM), 281–282
Castigliano, A., 4
Center of gravity (cg), 3, 328, 350–351
Centrifugal forces, 42
Checkerboard loading, 375
Chords, 6, 151
Cladding, 67
Clapeyron, B. P. E., 4
Coefficient matrix, 101–103
Coefficient of thermal expansion, 462
Cofactor, 522
Collapse mechanism, 157
Coloumb, Charles Augustin de, 3
Columns axial forces, 327, 328–329
building frame analysis of, 327, 328–329
cantilever method for, 328–329
moments and shears, 327, 329
multi-story building support, 59–60
portal method for, 327
structural use of, 6
tributary areas, 50, 55–56
vertical load path, 48–50
vertical system loading, 48–50, 55–56, 59–60
wind, 67
Compatibility, requirement of, 242, 292
Compatibility equations, 245, 253–254
Compatibility method, 242, 244. See also Force methods
Complex trusses, 172–173
Composite structures, consistent distortions method for, 266–270
Compound trusses, 172
Compression, truss members in, 358–360
Computer-based matrix methods, 243. See also Matrix methods
Computers. See also SAP2000; Spreadsheets structural analysis use of, 9–10
virtual toolbox, 421
Concentrated live loads, 21, 40–41
Concentrated loads, influence lines for, 346–347
Concentrically braced frames, 69
Condensation, see Static condensation
Connections expansion (rollers), 84
hinges, 84–85
internal releases, 85–86, 478–481, 486–487
moment resisting, 85
partially restrained (PR), 474–478, 486–487
SAP2000 computer applications, 486–487
springs, 85–86
Conservation of energy principle, 211–212
Consistent displacements, 242, 244
Consistent distortions method. See also Flexibility method and force methods of analysis beams, 244–251, 253–258
compatibility equation for, 245
Consistent distortions method (continued)
- composite structures, 266–270
- flexibility structure, 245, 262–263
- frames, 244–246, 251–254
- Maxwell’s law of reciprocal deflections, 252–253
- primary structure, 244–245
- procedures for, 245–246, 264–265
- redundant force, 245
- redundant structure, 244–245
- single redundant, 244–252
- structural analysis using, 242, 244
- support settlement and, 254–256
- temperature changes and, 270–271
- trusses, 262–277
- two or more redundants, 253–254
- virtual work for finding deflections, 252, 262–263, 270–271

Continuous beams and structures
- ACI moment coefficients for, 318–320
- approximate analysis of, 318–320
- consistent distortions method for, 253–256
- equivalent frame method, 320
- influence lines for, 374–375
- live load placement, 374–375
- maximum bending moments in, 239–240
- moment envelopes for, 320
- statical indeterminacy of, 239–240
- support settlements, 254–256

Cooper, T., 40
Coordinate systems
- conversion of, 403–405
- direct stiffness (matrix) method, 391, 401, 403–405, 408–409, 442–443
- double integration selection of, 198–199
- global, 391, 401
- inclined axial force truss members, 401, 403–405
- inclined frame elements, 442–443
- local, 391, 401
- member end forces, 408–409
- transformation matrix for, 403–405, 442–443

Creep in concrete, 189
Cross, H., 4, 278, 373
Curvature, maximum bending moment from, 349–350
Curvature of a beam segment, 196–197
Curved-chord (nonparallel) trusses, 153, 357

D
Dead loads, 14, 18–20
Deck bridge, 153
Deflection diagrams, 438–441
Deflections, 187–236
- angle changes and, 217–220
- beam elements, 431–434
- conservation of energy and, 211–212
- direct stiffness (matrix) method, 431–434
- displacement notation, 431
- double integration, 188, 197–202
- elastic beam theory, 195–197
- elastic deformation from, 187
- energy methods, 211
- frames, 193–194, 217–220
- geometric methods, 187–188
- importance of computation of, 188–189
- long term, 189
- maximum bending moments, 239–240

Maxwell’s law of reciprocal, 252–253
piecewise integration, 218
plotting, 431–434
procedures for, 190, 197, 214, 218
qualitative sketches, 189–194
reaction direction from, 189, 194–195
reasons for computing, 188–189
rigidity and, 240
SAP2000 computer applications, 202–204, 228–229
shape functions for, 431–434
shear deformation considerations, 227–228
springs, 225–227
trusses, 213–217, 262–263
virtual work method, 188, 211–236, 262–263
Deformation. See also Deflections
- axial, 213–214, 217, 228
due to shear, 227–228
elastic, 187
flexibility method equations for, 383–384
force–deformation relations, 242
Degree of freedom (DOF)
- axial force members, 400–402, 405
- beam elements, 422–423, 434–435
- defined, 390
- fixed-end forces (FEF) at, 434–435, 437
- inclined supports, 481–482
- internal releases, 479
- joint types and positions, 390, 394
- kinematic determinacy and, 392, 394
- member end forces, 409
- notation for, 390, 396
- procedure for, 392
- reactions at, 394–395
- restrained, 396
- static condensation of, 470–474
- statically equivalent loads, 434–435
- stiffness matrix development and, 396–398
- transformation matrix representation, 405
- unrestrained, 394, 396
Degree of translation, 298–299, 308–309
Derivative relationships for load, shear, and moments, 120–121
Design, 1–10. See also Structural analysis
- Design lane load, 39–40
- Design tandem, 39
- Design wind speed, 30
Determinacy
- kinematic, 392–394
- statical, 86–89, 103–105
Determinant of a square matrix, 522–523
Diagonals, 6, 152, 317–318
Diagrams
- deflection, 438–441
- free-body (FBD), 90–97, 158–159
- procedures for, 190, 289
- shear and moment, 289–291, 438–441
- sketching, 189–195
- superposition for, 438–441
Diaphragms
- braced, 70–71
- construction classification, 70–71
- lateral system loading, 65–66, 70–72, 75–79
- load determination, 66
- load path hierarchy of, 65–66, 70
- panelized, 70–71
- structural use of, 6
- tributary approach to, 75–79
Direct stiffness (displacement) method
 axial force members, 400–405
 beams, 421–441
 comparison of flexibility and stiffness approaches, 389
 compatibility for analysis, 392
 coordinate systems for, 391, 401, 403–405, 408–409
 degree of freedom (DOF), 390, 392, 394–398, 400–402, 405, 409
 displacement from, 398–400
 enforced displacements, 459–462, 485
 equilibrium equations for, 394–396
 equilibrium for analysis, 392
 force–displacement relationships, 392
 frames, 441–448
 inclined elements, 401–405, 442–443, 450–452
 inclined supports, 481–485, 487–488
 kinematic determinacy and, 392–394
 matrix form of, 389–493
 member end forces, 408–411, 428–431
 misfit members, 468–470, 486
 partially restrained connections, 474–478, 486–487
 planar trusses, 405–408
 plotting deflections, 431–434
 procedures for, 392, 396, 398
 reaction forces from, 398–400
 releases, 478–481, 486–487
 SAP2000 computer applications, 450–452, 485–488
 shape functions for, 431–434
 shear, moment, and deflection diagrams, 438–441
 spreadsheet computer applications, 412–416, 448–450
 static condensation, 470–474
 statical equivalency, 434–438
 statically indeterminate structure analysis using, 389–493
 stiffness factors, 391–392
 stiffness formulations, 459–470
 stiffness matrix for, 396–398, 400–408, 411, 421–423, 441–442
 structural analysis requirements, 392
 structure analysis using, 398–400
 superposition for, 431–432, 438–441
 temperature changes, 462–468, 485–486
 transformation matrix for, 403–405, 442–443
 trusses, 389–420

Displacement
 deflection diagrams for, 438–441
 enforced, 459–462
 force–displacement relationship, 212–213, 392
 inclined axial members, 401–402
 reactions and, 398–400
 sketching at joints, 190–191
 spreadsheet operations, 415–416
 trusses, 151, 398–400
 unit, 342–343, 401–402

Displacement methods
 direct stiffness method, 243, 389–493
 force methods compared to, 382
 matrix stiffness methods using, 243
 structural analysis using, 243, 382
 Displacement vector, 399, 415–416, 441–442
 Distributed loads, 93, 134–136
 Distributed moments (DM), 281
 Distribution factor (DF), 40, 281, 282–284

Double integration
 deflection by, 188, 197–202
 beams, 200–202
 boundary conditions (BC), 197–199
 coordinate selection, 198–199
 procedure for, 197
 Drainage systems, roofs, 24–26
 Drawings, see Free-body diagrams (FBD); Sketching
 Dual frame systems, 68, 70
 Ductility, seismic loads and, 36
 Dummy unit load method, see Virtual work

E
 E loads, 40
 Earthquake effect, 14. See also Seismic loads
 Eccentrically braced frames, 69–70
 Economy
 continuous structures, 239–240
 savings in materials, 240
 Effective seismic weight of building, 36
 Elastic beam theory, 195–197
 Elastic curve, 195
 Elastic deformation, 187
 Elements, 400. See also Members
 End posts, 152
 Energy methods, 211. See also Virtual work
 Enforced displacements
 fixed-end forces (FEF) due to, 460
 member end forces, 462
 misaligned supports, 459–461
 procedure for, 460
 SAP2000 computer applications, 485
 stiffness formulation for structures with, 459–462
 Envelope procedure for wind speed estimation, 31–33
 Environmental loads, 14, 24–38, 41
 ASCE identification of, 14
 ice, 41
 rain loads, 14, 24–26
 seismic (earthquake) loads, 14, 33–38
 snow loads, 14, 26–29
 wind loads, 14, 29–33
 Equilibrium
 calculation of unknowns using, 83
 direct stiffness (matrix) method, 392, 394–396
 equations of, 82–83, 394–396
 geometric instability, 89–90
 laws of motion expressed for, 5
 method of sections, 166–167
 reactions and, 82–83, 89–90, 91–96
 single rigid-body systems and, 91–96
 static equations for, 5, 82–83, 91–96
 statical determinacy and, 86–89
 structural analysis requirement, 242, 392
 subscript notation for, 395
 unstable, 86, 89–90
 Equilibrium method, 382. See also Direct stiffness method; Displacement methods
 Equivalent frame method, 320
 Equivalent lateral force (ELF), 34–38
 Exact methods of analysis, approximate methods compared to, 316–317, 329–330
 Excel commands, 412–413. See also Spreadsheets
 Expansion connections, 84
 Expansion of matrices by minors, 522–523
 Exposure coefficient, 27
 External redundant forces, 262–264
Fabrication errors in trusses, 27
Falsework, 241
Fink truss, 172, 174
Fixed-end forces (FEF), beams, 434–435, 449, 465–468
degree of freedom (DOF) location of, 434–435, 437
enforced displacements, 460
misfit members, 468–469
spreadsheet application of, 449
statical equivalency and, 434–435, 437
temperature changes and, 462–468
truss bars, 462–465
Fixed-end moments (FEM), 280, 288–289, 298–299, 434–435
Fixed-end shear (FEV), 434–435
Fixed-end supports, 84
Flexibility coefficients, 245, 253, 382–383
Flexibility (force) method. See also Consistent distortions method; Force methods of analysis
comparison of flexibility and stiffness approaches, 389
equations for deformation, 383–384
matrix form of, 382–388
primary structure, 382–383
procedure for, 382
statically indeterminate structure analysis using, 382–383
structural analysis using, 242, 244
structure approach for, 382–383
Flexibility structure, 245, 262–263, 382–383
Flexural elements, see Beam elements
Flooding, loads from, 41
Floor beams, 353–354
Floor systems
bridge arrangements, 352–354
distributed loads, 134–136
girder simplification for design, 135–136
influence lines for, 352–354
line diagrams for, 46–47
live load reductions, 57–59
load transfers, 353–354
procedure for, 354
strings, 352–354
trusses, 352–354
vertical load path, 48–49, 353
vertical system loading, 46–49, 57–59
Force
axial, 114
bending moments, 115
centrifugal, 42
compression, 358–360
free-body diagrams (FBD) of, 90–91
internal, 114–117
pressure from wind loads, 30
primary, 151
secondary, 151
shear, 114–115
structural systems and, 7–8
tension, 358–359
trusses, 357–360
unknown, 159
Force-based method, see force methods of analysis
Force–deformation plot, 211, 221
Force–deformation relations, structural analysis and, 242
Force–displacement relationship, 212–213, 392
Force methods of analysis
beams, 244–251, 253–258, 278–294
composite structures, 266–270
consistent distortions method, 242, 244–277
displacement methods compared to, 382
flexibility method, 242, 244, 382–388
flexibility structure, 245, 262–263, 382–383
frames, 244–246, 251–254
matrix method, 242–243, 382–388
Maxwell-Mohr method, 242
moment-distribution method, 242–243, 278–294
primary structure, 244–245, 382–383
procedures for, 245–246, 264–265, 284, 382
structural analysis using, 242–243
trusses, 262–277
Frame elements
analysis of, 443–448
combined beam and truss elements for, 441
coordinate systems, 442–443
direct stiffness (matrix) method for, 441–448
force and displacement vectors, 441–442
inclined, 442–443
stiffness matrix for, 441–442
transformation matrix for, 442–443
Frames
angle changes and deflections of, 217–220
approximate analysis of, 320–323, 325–329
axial deformation in, 217
braced, 68, 69–70
building, 320–323, 325–329
cantilever method, 328–329
centrically braced frames, 69
consistent distortions method for, 244–246, 251–254
deflections, 193–194, 217–220
degree of translation, 298–299, 308–309
dual systems, 68, 70
eccentrically braced frames, 69–70
fixed-end moments (FEM), 298–299
inclined structures, 94–96
influence lines (IL) for, 370–375
lateral system loading, 64–65, 69–70, 325–329
live load placement, 374–375
matrix formulation for, 100–103
moment resisting, 68, 69
moment-distribution method, 295–315
multistory, 311
natural period calculation and variables, 35
points of inflection (PI), 320–321
portal, 64–65, 323–325
portal method, 326–327
prevention of sidesway, 295–298
procedure for analysis of, 218, 245–246, 298–299, 304
qualitative influence lines for, 370–374
reactions and, 88–90, 93–96, 100–101, 105
SAP2000 application, 105
seismic loads, 35
sidesway of, 303–308
single redundant, 244–246, 252
sketching deflections, 193–194
sloping members (legs) of, 308–311
static equilibrium equations for, 93–96
statical determinacy of, 88–89
structural components of, 5–6
sway with point loads at joints, 298–303
three-hinged, 100–103
two more redundants, 253–254
vertical loads on, 320–323
virtual work method for, 217–220
Free-body diagrams (FBD)
forces shown by, 90–91
multiple connected rigid-body systems, 97
sign convention for, 159
single rigid-body systems, 93–95
trusses, 158–159
Frictionless pins, 150–151

G
Geometric instability, 89–90
Girders
building frame analysis, 327, 328–329
cantilever method for, 328–329
defined, 50
maximum shear and bending moments of, 135–136
moments and shears, 327, 328–329
portal method for, 327
simplification for design, 135–136
structural use of, 6
tributary area, 50–52
Girts, 67
Global coordinate system, 391, 401
Gravity loads, 47–48
Greene, C. E., 4
Grubermann, U., 150

H
Hand-based techniques, 243. See also Approximate analysis;
Consistent distortions method; Influence lines
Highway bridges, loads on, 39–40
Hinges, 83, 84–85
History of structural analysis, 2–5
Hooke’s law, 196, 213–214
Howe truss, 152, 154
Hydraulic head, 24–25
Hydrostatic pressure, 41

I
Ice loads, 41
Imhotep, 3
Impact factors, live loads, 21–22
Importance factor
defined, 28
seismic (earthquake) loads, 35–36
snow loads, 28
In-plane wall, 66, 68
Inclined elements
axial force members, 401–405
coordinate systems, 401, 403–405
direct stiffness (matrix) method for, 401–405, 442–443
frames, 442–443
orientation angle of, 401–403
SAP2000 computer applications, 450–452
stiffness matrix for, 401–405
transformation matrix for, 403–405, 442–443
unit displacements, 401–402
Inclined structures, reactions for, 94–96
Inclined supports
degree of freedom (DOF), 481–482
direct stiffness (matrix) method for, 481–485
SAP2000 computer applications, 487–488
transformation matrix modification for, 482
Indeterminacy, 86–89

Influence areas, 56–57
Influence lines (IL)
beams, 337–352, 365–375
bending moments, 338–339, 349–350
concentrated loads from, 346–347
continuous systems, 374–375
defined, 336–337
frames, 370–375
internal moments, 344–346
internal shear, 343–344
live load placement from, 374–375
maximum loading effects determined by, 348–352, 357–360
Maxwell’s law of reciprocal deflections for, 366, 368
Müller-Breslau’s principle for, 342, 370–371
point of interest (POI), 339
procedures for, 339, 343, 344, 351, 354, 366, 371
qualitative, 341–346, 370–374
quantitative approach for, 339–341
reactions, 337, 342–343, 354–355
response quantity of interest, 339
shear forces, 337–338, 343–344
sketching, 341–346, 370–374
statically determinate structures, 335–364
statically indeterminate structures, 365–377
trusses, 352–360
uniform loads from, 347–348
uses of, 336
Instability, 89–90
Integral relationships for load, shear, and moments,
120–121
Integration methods
complementary, 212–220
conventional, 212–220
piecewise, 218
virtual work using, 212–227
visual, 221–224
Interagency Committee on Seismic Safety in Construction, 23
Internal forces
axial, 114, 117–120
bending moments, 115, 117–120
member sections, 114–117
procedures for finding, 115, 117–118
equations of, 117–120
redundant, 264–266
shear, 114–115, 117–120, 344–346
sign conventions for, 115
Internal moments, 344–346
Internal releases
beams, 85–86
degree of freedom (DOF), 479
direct stiffness (matrix) method for, 478–481
SAP2000 computer applications, 486–487
types of, 478–479
International Building Code (IBC), 13–14
Interpolation function, 431
Inverse matrix, 395, 526
Inverse of matrices, 395, 526–528

J
Joints
conditions for stability, 157
degree of freedom (DOF) types and positions, 390, 394
degree of translation, 298–299, 308–309
Joints (continued)
frames with sloping members, 308–311
sketching displacements, 190–191
spreadsheets for displacements and reactions, 450
statical equivalency, 434–438
sway frames with point loads at, 298–303
truss connections, 151

K
K-trusses, 356–357
Kinematic determinacy
degree of freedom (DOF), 392, 394
direct stiffness (matrix) method and, 392–394
procedure for, 392

Kinney, J. S., 4

L
Lane load, 39–40
Lateral load paths, 47, 65–67
Lateral load resisting system, 66
Lateral system loading, 65–81
approximate analysis of, 325–329
building frames, 325–329
diaphragms, 65–66, 70–72, 75–79
frames, 64–65, 69–70
load paths, 65–67
sources of, 65
tributary approach, 72–79
vertical lateral force resisting system (VLFRS), 64–66, 67–70
walls, 65–66, 68–69, 72–75

Law of conservation of energy, 211–212

Line diagrams, 46–47
Linear response history analysis, 34

Link supports, 84
Live load element factor, 57
Live loads
ASCE identification of, 14
beams, 374–375
defined, 21
concentrated, 21
floors, 57–59
frames, 374–375
highway bridges, 39–40
impact factors, 21–22
influence lines (IL) for, 374–375
railway bridges, 40
reductions, 57–59
roofs, 22–23
sources of, 20–21
uniformly distributed, 21
Load combinations, 15, 17
Load factors, 16–17
Load paths
critical components, 49–50
customized, 49–50, 67
gravity loads, 47–48
hierarchy of, 48–49, 65–66
lateral, 47, 65–67
point of application, 47, 65
structural identification of, 45, 47–50
system response and, 45
vertical, 45, 47–50

Loads between nodes, see Statical equivalency
Loads. See also Structural loads
ASCE identification of, 14
blast, 41
concentrated, 346–347
dead, 14, 18–20
distributed, 134–136
environmental, 14, 24–38
highway bridges, 39–40
ice, 41
impact factor for, 21–22
influence lines (IL) for, 346–352, 357–360, 374–375
lane, 39–40
lateral, 47, 65–81, 325–329
live, 14, 20–23, 29–40, 374–375
longitudinal, 42
maximum loading effects, 348–352, 357–360
miscellaneous, 41–42
moving, 350–352
railroad bridges, 40
rain, 14, 24–26
relationships between shear, moments, and, 120–121
roof, 22–29
seismic (earthquake) loads, 14, 33–38
snow, 14, 26–29
statically determinate structures, 346–352, 357–360
statically equivalent, 434–436
statically indeterminate structures, 374–375
structural reactions and, 7–8
truck, 39–40
trusses, 357–360
types of, 14–15
uniform, 347–348
vertical, 45–63, 320–323
wind, 14, 29–33

Local coordinate system, 391, 401
Long term deflections, 189
Longitudinal loads, 42

M
Main wind force resisting system (MWFRS), 21
Maney, G. A., 4
Matrices
addition and subtraction of, 524
adjoint, 523
axial force members, 400–405
bar forces, 162–164
beam elements, 421–441
coefficient, 101–103
columns, 520
coordinate systems, 391, 403–405
defined, 520
definition of, 347–348
frame elements, 441–448
uniformly distributed, 21
inverse, 395, 526
multiplication of, 524–525
partitions, 528
reactions, 101–103, 162–164
singular, 395
square, 398, 521, 522–523
stiffness, 395–396
symmetric, 521
symmetric stiffness, 398
transformation, 403–405, 442–443, 482
transposed, 404, 521–522
truss reactions, 162–164
unit, 521

Matrix algebra
arithmetic operations, 524–528
definitions and properties, 520
determinant of a square matrix, 522–523
inverse of, 395, 526–528
matrix types, 521–522
partitioning, 395–396, 528–530
transpose of a product, 526
use of, 381, 520
Matrix methods
comparison of flexibility and stiffness approaches, 389
comparison between force and displacement methods, 382
direct stiffness (displacement) method, 389–493
displacement method of, 382
Excel commands for, 412–413
flexibility (force) method, 382–388
structural analysis using, 242–243, 380–381
Matrix stiffness method, 243. See also Direct stiffness method
Maxwell, J. C., 4, 242, 252
Maxwell-Mohr method, 242. See also Consistent distortions method
Maxwell’s law of reciprocal deflections, 252–253, 366, 368
Member bending (EI) properties, 256
Member deflections, sketching, 190–191
Member end forces
beam elements, 428–431
coordinate system for, 408–409
degree of freedom (DOF) for, 409
direct stiffness (matrix) method for, 408–411, 428–431
enforced displacements, 462
Excel spreadsheet operations, 416, 450
process for finding, 408–409
sign convention for, 429
trusses, 408–411
Method of joints, 158–162
Method of sections, 158, 166–171
Misaligned supports, 459–461
Misfit members
fixed-end forces (FEF) due to, 468–469
SAP2000 computer applications, 486
stiffness formulation for structures with, 468–470
Model building code, 13
Mohr, O., 4, 242
Moment diagrams. See also Shear and moment diagrams
building frames, 327
portal method using, 327
procedure for, 123
SAP2000 display of, 139–140
superposition for, 133–134
Moment-distribution method
assumptions for, 279
beams, 278–294
carryover moments (CM), 281–282
distributed moments (DM), 281
distribution factor (DF), 281, 282–284
fixed-end moments (FEM), 280, 288–289, 298–299
frames, 295–315
modification of stiffness and FEM for simple ends, 288–289
multistory frames, 311
procedures for, 284, 298–299, 304
shear and moment diagrams for, 289–291
sidesway and, 295–308
sign convention for, 279
simple ends, 288–289
spreadsheet computer applications, 291–292
stiffness factor (k), 280–281, 288–289
structural analysis using, 242–243, 278–279
tables for, 284–288, 296–298
unbalanced moments, 281
Moment release, 342, 478–479
Moment resisting connections, 85
Moment resisting frames, 68, 69
Moment–rotation relationship, 474
Moments
ACI coefficients, 318–320
building frame analysis of, 327, 328–329
carryover (CM), 281–282
columns, 327, 329
distributed (DM), 281
diagrams, 289–291
envelopes, 320
fixed-end (FEM), 280, 288–289
girders, 327, 328–329
influence lines for, 338–339, 344–346
internal, 344–346
maximum, 239–240, 349–352
moving loads, 350–352
sidesway, 303
unbalanced, 281
Morgan, N. D., 373
Morris, C. T., 311
Motion, Newton’s laws of, 5
Moving loads
highway bridges, 39–40
maximum values for, 350–352
railroad bridges, 40–41
Müller-Breslau, H., 342, 370
Müller-Breslau’s principle, 342, 370–371
Multiple connected rigid-body system reactions, 96–101
Multistory buildings, column support in, 59–60
Multistory frames, 311
N
Navier, C. L. M. H., 3
Newton, Sir Isaac, 83
Newton’s laws of motion, 5
Nodes, 400. See also Joints
Nonlinear response history analysis, 34
Norris, C. H., 3
O
One-way slab, 52, 54
Orientation angle, 401–403
Out-of-plane wall, 66, 68
P
Palladio, A., 3, 150
Panel points, 152
Panelized diaphragms, 70–71
Panels, 152
Parallel-chord trusses, 153, 355–356
Parker truss, 154
Partially restrained (PR) connections
direct stiffness (matrix) method for, 474–478
moment–rotation relationship, 474
rotational spring stiffness, 474
Partially restrained (PR) connections (continued)
 SAP2000 computer applications, 486–487
 spring–beam–spring (SBS) element, 474–475
Partitioning matrices, 395–396, 528–530
Partitions, 528
Period calculation and variables, seismic loads and, 35
Pin-connected trusses, 150–151
Pitch of roofs, 22
Planar trusses, 405–408
 procedure for, 406
 stiffness matrix for, 405–408
 subscript notation for, 406–407
Plane trusses, see Trusses
Plate movement, seismic activity from, 33
Plotting deflections, 431–434
Point of application, 47, 65
Point of inflection (PI)
 approximate analysis, 320–321
 building frames, 320–321, 329–330
 elastic curve for, 196–197
 SAP2000 analysis, 329–330
Point of interest (POI), 339
Ponding, 24
Portal frames
 approximate analysis of, 323–325
 assumptions for, 234
 stiffness matrix for, 342–343
 unit displacement at supports, 342–343
Portal method, 326–327
Pratt truss, 152, 154
Pressure
 forces from wind loads, 30
 hydrostatic, 41
 soil, 41, 65
Primary forces, 151
Primary structure, 244–245, 382–383
Purlins, 151
Pythagoras, 3

Q
Qualitative influence lines
 internal moments, 344–346
 internal shear, 343–344
 Müller-Breslau principle for, 342, 370–371
 procedures for, 343, 344, 371
 reactions, 342–343
 sketching deflected shapes, 342
 statically determinate beams, 341–346
 statically indeterminate beams and frames, 370–374
Qualitative sketches, 189–194. See also Sketching
Quantitative influence lines, 339–341

R
Railroad bridges, loads on, 40
Rain loads, 14, 24–26
Reactions, 82–113
 arrow notation for, 83, 93
 beams, 83–88, 91–92, 96–99, 103–105
 calculation of unknowns, 83
 deflections and, 189, 194–195
 direct stiffness (matrix) method for, 398–400
 displacement and, 398–407
 equilibrium, 82–83, 89–90
 frames, 88–90, 93–96, 100–101, 105
 free-body diagrams (FBD), 90–91, 93–95, 97
 geometric instability, 89–90
 influence lines (IL) for, 337, 342–343, 354–355
 internal releases, 85–86
 matrix formulation for, 101–103, 162–164
 multiple connected rigid–body systems, 96–101
 rotation at supports, 342–343
 SAP2000 computer applications, 103–105
 sketches and sense of direction of, 189, 194–195
 sign conventions for, 92
 simple beams, 337
 single rigid–body systems, 91–96
 spreadsheets, 415–416
 springs, 85, 95–96
 stability and, 86–89
 statically determinate and, 86–89, 103–105
 support types, 83–85
 trusses, 162–164, 354–355
 unit displacement at supports, 342–343
Reduction factors, 22–23
Redundant forces
 consistent distortions method using, 244–254
 defined, 245
 external, 262–264
 internal, 264–266
 selection of, 248
 single in beams and frames, 244–252
 statically indeterminate structures with, 242
 trusses, 262–266
 two or more in beams and frames, 253–254
Redundant structure, 244–245
Releases
 axial, 478–479
 direct stiffness (matrix) method for, 478–481
 implementation of, 478–479
 internal, 85–86, 478–481
 moment, 342, 478–479
 SAP2000 computer applications, 486–487
 shear, 85, 342, 478–479
 sketching, 342
 torsion, 478
Response modification factor, 35
Response quantity of interest, 339
Restrained DOF, 396
Return period, snow loads, 28
Rigid-body system reactions
 beams, 91–92, 96–99
 calculation strategies, 97–99
 cantilevered structures, 96–99
 frames, 93–96, 100–101
 free-body diagrams (FBD) for, 93–95, 97
 inclined structures, 94–96
 multiple connected, 96–101
 proportions for, 91
 results of distributed loads, 93
 single, 91–96
 static equilibrium equations for, 91–96
 three-hinged arches, 100–101
Rigidity, smaller deflections with, 240
Risk category
 snow loads, 28
 wind loads, 30
Rocker supports, 83–84
Roller supports, 83–84
Roofs
 drainage systems, 24–26
 fully exposed, 27
 gravity loads, 47
 live loads, 22–23
 partially exposed, 27
 pitch, 22
ponding, 24
purlins, 151
rain loads, 24–26
reduction factors, 22–23
scuppers, 24–25
sheltered, 27
snow loads, 26–29
tributary area, 22
trusses, 151, 152
vertical system loading, 47, 49–50
Rotation
location at beam or frame, 218
support reactions, 342–343
Rotational spring, 86, 95
Rotational spring stiffness, 474
S
Safety, structural loads and, 12–13
Safety factors, 240
SAP2000
beam analysis, 104–105, 202–204, 229, 256–258
consistent distortions method by, 256–258, 271–273
deflection applications, 202–204, 228–229
direct stiffness (matrix) applications, 450–452, 485–488
enforced displacements, 485
exact and approximate method analysis comparison, 329–330
frame analysis, 105
graphical display, 137–138
inclined members, 450–452
inclined supports, 487–488
introduction to, 499–519
member bending (EI) properties for, 256
misfit members, 486
partially restrained connections, 486–487
reactions, 103–105
releases, 486–487
shear and axial deformation, 228–229
shear and moment diagram display, 138–140
spring definition and stiffness, 139–140
spring modeling, 228
stations of, 450–452
structural analysis using, 10
structural stability application, 103–105
support settlement application, 257–258
tabular output, 451
temperature changes/thermal loads, 271–273, 485–486
textual output, 138
truss analysis, 175–177, 228–229, 271–273
Scissors truss, 152
Scuppers, 24–25
Second-order effects, 400
Secondary forces, 151
Seismic (earthquake) loads, 14, 33–38
analysis of, 34–35
ductility and, 36
effective seismic weight of building, 36
equivalent lateral force (ELF) procedure, 34–38
fundamental natural period of a building, 35
importance factor, 35–36
linear response history analysis, 34
nonlinear response history analysis, 34
period calculation variables, 35
plate movement for, 33
response modification factor, 35
spectral accelerations, 34, 35
Serviceability, 188
Shape factors, 227
Shape functions, 431–434
Shear and moment diagrams
beam elements, 438–441
beams, 289–291
direct stiffness (matrix) method using, 438–441
frame applications, 129–132
moment diagram procedure, 123
moment distribution method using, 289–291
SAP2000 display of, 138–140
shear diagram procedure, 122–123
solution strategies using, 124–128
superposition for, 438–441
Shear deformation, deflection and, 227–228
Shear diagrams, 122–123
Shear force (V)
ACI coefficients, 318–319
beams, 337–338, 343–344
building frame analysis of, 327, 328–329
columns, 327, 329
defined, 115–116
design simplification and, 135–136
equations of, 117–120
girders, 135–136, 327, 328–329
influence lines for, 337–338, 343–344
intrinsic, 343–344
relationships between load, moments, and, 120–121
sign convention for, 338
Shear release, 85, 342, 478–479
Shear wall systems, 68–69
Shrinkage, effects on trusses, 270
Sidesway
defined, 295
frames with, 303–308
frames with point loads at joints, 298–303
moment-distribution method and, 295–308
prevention of (frames without), 295–298
procedures for analysis of, 298–299, 304
Sidesway moments, 303
Sign conventions
beams, 115, 279, 338–339
bending moments, 338–339
free-body diagrams (FBD), 159
internal forces, 115
moment-distribution method, 279
reactions, 92
shear forces, 338
trusses, 159, 167
unknown forces, 159
Similar triangles, 343
Simple beams, influence lines for, 337–339
Simple trusses, 172
Single rigid-body system reactions, 91–96
Singular matrix, 395
Sketching, 189–195
deflected shapes, 342
deformed shapes of structures, 189–194
joint displacement, 190–191
members, 190–191
Sketching (continued)
 moment and shear releases, 342
 procedures for, 190, 343, 344, 371
 qualitative influence lines, 341–346, 370–374
 reaction direction from, 189, 194–195
 support motion, 342
Skip loading, 375
Slab aspect ratio, 55
Slab behavior, 52–55
 one-way, 52, 54
 tributary areas and, 52–55
 two-way, 52–53
Slope
equation for deflection by double integration,
 197–202
 rules for joints and, 190
 shear release, on either side of, 190, 372–373
Sloping members (legs) of frames, 308–311
Snow loads, 14, 26–29
 ASCE conditions, 28
 building risk category, 28
 exposure coefficient, 27
 flat roof, 28
 ground roof, 28
 importance factor, 28
 return period, 28
 roofs, 26–29
 thermal factor, 27–28
Soil pressure, 41, 65
Specifications
 bridge design, 39
 structural design, 13
Spectral accelerations, 34, 35
Spreadsheets
direct stiffness (matrix) method, 412–416, 448–450
 displacement and reaction vector operations, 415–416
 Excel commands, 412–413
 fixed-end forces (FEF), 449
 joint displacements and reactions, 450
 member end force operations, 416, 450
 moment-distribution method using, 291–292
 stiffness matrix assembly, 413–415, 449
 truss analysis using, 263
 Visual Basic for Applications (VBA) script,
 413–415
Spring–beam–spring (SBS) element, 474–475
Spring stiffness, 139–140, 269–270
Springs
 beam connections, 85–86
 behavior, 85
 reactions and, 85–86, 95–96
 rotational, 86, 95
 SAP2000 definition and stiffness, 139–140
 static equations of equilibrium for, 95–96
 translational, 86
 virtual work of, 225–227
Square matrix, 398, 521, 522–523
Stability
 geometric instability, 89–90
 joint conditions for, 157
 non-triangular shapes, 157–158
 SAP2000 computer applications, 103–105
 statical determinacy and, 86–89, 154–156
 structural analysis for, 156–157
 supports and, 158
 trusses, 154–158
 Standards for structural design, 13–14
 Static condensation, 470–474
 Static equilibrium, 5, 82
 Static equilibrium equations, 82–83, 91–96
 Static head, 24
 Statical determinacy
 beams, 86–88
 conditions, 86
 degree of statical indeterminacy, 87
 determination of, 86, 154–156
 frames, 88–89
 non-triangular shaped trusses, 157–158
 SAP2000 computer applications, 103–105
 stability and, 86–89, 156–158
 structures and, 238–239
 trusses, 154–158
 Statical equivalency, 434–438
 Statically determine structures
 beams, 337–352
 concentrated loads on, 346–347
 influence lines (IL) for, 335–364
 maximum loading effects on, 348–352, 357–360
 procedures for, 339, 343, 344, 351, 354
 qualitative influence lines, 341–346
 quantitative approach for, 339–341
 simple beams, 337–339
 sketching deflected shapes, 342
 trusses, 352–360
 uniform loads on, 347–348
 Statically equivalent loads, 434–436
 Statically indeterminate structures
 advantages of, 240–241
 approximate analysis approaches, 243, 316–334
 beams, 244–251, 253–258, 278–294, 365–375
 computer-based matrix versus hand-based techniques, 243
 consistent distortions (force) method, 242, 244–277
 continuous beams and structures, 239–240
 defined, 86
 direct stiffness method, 243, 389–493
 disadvantages of, 241–242
 displacement methods, 243, 382
 flexibility (force) method, 382–388
 force methods, 242–243, 382
 frames, 244–246, 251–254, 295–315, 370–375
 hand-based techniques, 243, 244–334
 influence lines (IL) for, 365–377
 introduction to, 237–243
 matrix methods, 242–243, 379–493
 moment-distribution method, 243, 278–315
 qualitative influence lines, 370–374
 redundant forces in, 242
 statical determinacy and, 238–239
 trusses, 262–277, 317–318, 330
 Stations in SAP2000, 450–452
 Stevenson, R. L., 2
 Stiffness
 approximate analysis and, 317–318
 moment-distribution method, 288–289
 SAP2000 computer applications, 139–140
 simple beam ends, 288–289
 springs, 139–140, 269–270
 truss diagonals, 317–318
 Stiffness factor (k)
 defined, 391
 direct stiffness (displacement) method, 391–392
 fixed-end moments (FEF), 280, 288–289
 moment-distribution method, 280–281, 288–289
Stiffness formulation for structures, 459–470
enforced displacements and, 459–462
misfit members and, 468–470
temperature changes and, 462–468

Stiffness matrix
axial force members, 400–405
beam elements, 421–425
characteristics of, 412
defined, 395
degree of freedom (DOF) for, 396–398, 400–402, 405, 409, 423–425
frame elements, 441–442
inclined axial force members, 401–405
orientation angle for, 401–403
planar trusses, 405–408
procedure for development of, 396–398, 422–423
spreadsheet assembly of, 413–415, 449
structure-level, 405–408, 423–425
subscript notation for, 398, 406–407
superscript notation for, 405
trusses, 396–398, 400–408, 411

Visual Basic for Applications (VBA) script, 413–415

Stiffness method, 243. See also
Displacement methods

Strain due to temperature changes, 465

Strain energy, 212, 213–214

Strength design
load combinations, 17
load factors, 16–17
structural loading conditions, 16–18

Stress development, 241

Stress reversals, 242

Structural analysis
accuracy of calculations, 7–8
basic principles of, 5
check on problems for, 8–9
components of, 5–6
computers used for, 9–10
defined, 1
design and, 1–10
good engineering judgment for, 10
history of, 2–5
load reactions for, 7–8
Newton’s laws of motion for, 5
matrix method requirements, 392
stiffness formulations for, 459–470
system forces for, 7–8

Structural design
allowable stress design (ASD) conditions, 15–16
building codes, 13
defined, 2
specifications, 13
standards, 13–14
strength design conditions, 16–18
uncertainties in, 12–13

Structural idealization, 46–47

Structural loads, 11–44. See also Loads
allowable stress design (ASD) conditions, 15–16
building codes, 13
dead loads, 14, 18–20
environmental loads, 14, 24–38
estimation and use of, 11–12
highway bridges, 39–40
live loads, 14, 20–23
railroad bridges, 40
rain loads, 14, 24–26
seismic (earthquake) loads, 14, 33–38
snow loads, 14, 26–29
specifications, 13
standards, 13–14
strength design conditions, 16–18
structural safety, 12–13
types of, 14–15
wind loads, 14, 29–33

Structural response, 5

Structure-level stiffness matrix
beam elements, 423–425
direct method assemblage, 406, 424–425
element-based assemblage, 425
planar trusses, 405–408

subscript notation for, 405

trusses, 396–398, 400–408, 411

Visual Basic for Applications (VBA) script, 413–415

Superscript notation, 405

Support settlements
consistent distortions method and, 241, 254–258
continuous beams, 241, 254–256
multiple, 256
SAP2000 computer applications, 257–258

Supports
beams, 83–85
cantilevered structures, 96–99
connections and, 84–85
enforced displacement of, 459–461
expansion connections, 84
fixed-end, 84
hinges, 83, 84–85
inclined structures, 94–96
links, 84
misaligned, 459–461
motion and, 342
reactions and, 83–85, 94–101
rockers, 83–84
rollers, 83–84
sketching deflected shapes with, 342
three-hinged arches, 100–101
truss stability and, 158
types of, 83–85

Surface roughness categories, 30–31

Sylvester II, Pope, 3

Symmetric matrix, 521

Symmetric stiffness matrix, 398

System response, 45

Systems
distributed loads, 134–136
girder simplification for design, 135–136
floor, 134–136
lateral loading and behavior, 65–81
loading, 45–46
Systems (continued)
 rigid-body, reactions for, 91–101
 roof drainage, 24–26
 structural, 7–8, 173–174
 truss analysis considerations, 173–174
 truss design considerations, 6
 vertical loading and behavior, 45–63

Temperature changes
 effect on beams, 241, 465–468
 effect on trusses, 270–273, 462–465
 fixed-end forces (FEF) and, 462–465
 SAP2000 computer applications, 271–273, 485–486
 stiffness formulation for structures with, 462–468
 strain due to, 465
 thermal load applications, 485–486

Tension, truss members in, 358–359

Thermal factor, 27–28

Thermal forces, 42

Thermal load applications, 485–486. See also Temperature changes

Three-hinged arches/frames, 100–103

Through bridge, 153

Ties, structural use of, 5

Timoshenko, S. P., 4, 173

Torsion release, 478

Traffic loads, 39–40

Transformation matrix
 inclined axial force members, 401–405
 inclined frame elements, 442–443
 inclined supports, 482

Translation, degree of, 298–299, 308–309

Translational spring, 86

Transpose of a product, 526

Transposed matrix, 404, 521–522

Tributary area
 approach, 50, 42
 beams and girders, 50–52
 columns, 50, 55–56
 defined, 22
 diaphragms, 75–79
 lateral system loading, 72–79
 load to diaphragms, 75–79
 slab behavior, 52–55
 vertical system loading, 50–56
 walls, 72–75

Tributary height, 75–76

Tributary width, 50–52

Truss-like elements, 173–174

Trusses
 abutment, 6
 approximate analysis of, 317–318, 330
 assumptions for analysis, 151–152
 axial deformation in, 213–214
 axial force members, 400–405
 Baltimore, 154
 bowstring, 152
 braced diaphragms using, 70–71
 bridge, 6, 153–154, 352–354
 chords, 6, 151
 collapse mechanism, 157
 complex, 172–173
 compound, 172
 compression, members in, 358–360
 consistent distortion method for, 262–277
 curved-chord (nonparallel), 153, 357
 defined, 150
 deflections, 213–217, 228–229, 262–263
 diagonals, 6, 152, 317–318
 direct stiffness (displacement) method for, 389–420
 displacement, 151
 end posts, 152
 fabrication errors in, 27
 Fink, 172, 174
 fixed-end forces (FEF) for, 462–465
 flexibility structure, 262–263
 floor systems, 352–354
 free-body diagrams (FBD) for, 158–159
 Howe, 152, 154
 inclined axial force members, 401–405
 influence lines (IL) for, 352–360
 joints, 151, 157
 K, 356–357
 line diagrams for, 47
 matrix formulation for reactions, 162–164
 matrix stiffness method for, 389–420
 maximum loading effects on, 357–360
 member arrangement, 154
 member end forces, 408–411
 member forces, 355–356
 method of joints, 158–162
 method of sections, 158, 166–171
 non-triangular shapes of, 157–158
 panel points, 152
 panels, 152
 parallel-chord, 153, 355–356
 Parker, 154
 pin-connected, 150–151
 planar, 405–408
 plane, 150–186
 Pratt, 152, 154
 procedures for analysis of, 214, 264–265, 354
 reactions, 354–355
 redundant forces in, 262–266
 roof, 151, 152
 SAP2000 computer applications, 175–177, 228–229, 271–273
 scissors, 152
 shrinkage effects, 270
 sign conventions, 159, 167
 simple, 172
 spreadsheet computer applications, 411–416
 spreadsheets used for, 263
 spring stiffness for, 269–270
 stability of, 154–158
 statical determinacy of, 154–158
 statically determinate structures, 352–360
 stiffness matrix for, 396–398, 400–408, 411
 stiffness of diagonals, 317–318
 strain energy and, 213–214
 structural system consideration, 6, 173–174
 temperature change effects on, 270–273, 462–465
 tension, members in, 358–359
 unknown forces, 159, 162–164
 verticals, 151
 Vierendeel, 330
 virtual work method for finding deflections, 213–217, 262–263, 270–271
 Warren, 152, 154
 web members, 152
 zero-force members, 164–166

Two-way slab, 52–53
Uniform loads, influence lines for, 347–348
Uniformly distributed live loads, 21
Unit “dummy” load method, 214. See also Virtual work
Unit displacement
 inclined axial force members, 401–402
 support reactions, 342–343
Unit load, 245, 338
Unit matrix, 521
Unknown forces
 coefficient matrix for, 101–103
 truss reactions and, 162–164
 sign convention for, 159
Unknowns, calculation of, 83
Unrestrained DOF, 394, 396
Unstable equilibrium, 86, 88–90

Vertical lateral force resisting system (VLFRS)
 braced frames, 69–70
 classes of, 68
 lateral system loading and, 64–66, 67–70
 load path hierarchy of, 65–66
 moment resisting frames, 69
 shear wall systems, 68–69
 structural systems and, 64–65
Vertical load paths, 45, 47–50
Vertical system loading, 45–63
 approximate analysis of, 320–323
 building frames, 320–323
 columns, 48–50, 59–60
 floors, 46–47, 57–59
 influence areas, 56–57
 line diagrams for, 46–47
 live load reductions, 57–59
 load paths for, 45, 47–50
 multistory buildings, 59–60
 placement on structures, 45–46
 roofs, 47, 49–50
 structural idealization, 46–47
 system response, 45
 tributary areas, 50–56
 trusses, 47
Verticals, 151
Vierendeel, A., 330
Vierendeel “truss,” 330
Virtual work
 angle changes and, 217–220
 beam deflections, 217–220
 bending moment diagrams, 221–222
 conventional method, 212–220
 deflection analysis using, 188, 211–236
 energy method of, 211
 force–displacement relationship, 212–213
 frame deflections, 217–220
 piecewise integration, 218
 procedures for, 214, 218, 221
 springs, 225–227
 strain energy and, 212, 213–214
 superposition method for, 221, 223
 temperature change deflections and, 270–271
 truss deflections, 213–217, 262–263, 270–271
 unit “dummy” load method, 214, 252
 visual integration, 221–224
Visual Basic for Applications (VBA) script, 413–415
Visual integration, see Virtual work

Walls
 cladding, 67
 girts, 67
 in-plane, 66, 68
 lateral load path, 65–66
 lateral system loading, 65–66, 68–69, 72–75
 out-of-plane, 66, 68
 shear systems, 68–69
 soil pressure on, 65
 tributary approach to, 72–75
 vertical lateral force resisting system (VLFRS), 68–69
Warren truss, 152, 154
Web members, 152
Weight
 building materials, 19
 effective seismic, buildings, 36
Westergaard, H. M., 4
Whipple, S., 3
Wilson, A. C., 328
Wind columns, 67
Wind loads, 14, 29–33
 ASCE envelope procedure for, 31–33
 building risk category, 30
 design wind speed, 30
 estimation of, 31–33
 pressure forces from, 30
 surface roughness categories, 30–31
Winkler, E., 336
Work
 conservation of energy and, 211–212
 complementary, 213
 force–displacement regions of, 213
 virtual external, 213
 virtual, 212–213
Young, D. H., 173
Zero-force members, 164–166