Index

Acknowledgement (ACK), see Carrier Sense Multiple Access (CSMA)

Additive White Gaussian Noise (AWGN), see noise

Amplitude Shift Keying (ASK), see linear modulation

analog-to-digital converter
complex-valued ADC bandwidth, 56–57
definition, 49
real-valued ADC bandwidth, 51–52
analog front-end, 49–50

angular modulation
bandwidth determination with Carson’s rule, 110

Binary Frequency-Shift Keying (BFSK), 76, 116
Continuous-Phase Frequency-Shift Keying (CPFSK), 76–77, 108, 111–113
frequency modulation, 96, 107–109, 116, 133
Gaussian Frequency-Shift Keying (GFSK), 26–27, 31, 111

Gaussian Minimum-Shift Keying (GMSK), 27
Minimum-Shift Keying (MSK), 37, 94, 105, 110, 112–113, 116
modulation index, 27, 31, 108–112, 117

antennas
isotropic radiator, 69
omnidirectional, 69–70
sectorization, 69
antenna directivity, 69
antenna gain, 68–69
anti-alias filter, see sampling theory

amplifiers
linear, 98, 104, 107
Low-Noise Amplifier (LNA), 50–51, 55, 60–61
non-linear, 104, 107, 115
application profile, 176
arctan demodulator, see demodulation
Automatic Repeat Request (ARQ), see Backward Error Correction
backoff, see Carrier Sense Multiple Access

Backward Error Correction

Automatic Repeat Request (ARQ), 156
checksum, 31–33, 160–162
Cyclic Redundancy Check (CRC), 23, 26–27, 31–32, 38, 140, 158–160

Index

battery
 life, 10, 32, 42, 98, 168, 174
duty cycle, 168–169
ergy efficiency, 167–168, 174–175
 sleep mode, 168–170
baseband controller, 49, 62, 66
baseband signal, 49, 53, 58–59, 61, 63, 65–66
Barker code, 121–122
Beacon, 152–153, 168–169
Binary Frequency-Shift Keying (BFSK),
 see angular modulation
Binary Phase Shift Keying (BPSK), see
 linear modulation
differential, see linear modulation
Bit Error Rate (BER), 70, 72–77
Bluetooth
 (3,1) repetition code, see Forward Error Correction
basic rate (BR), 24, 27–28, 109
Enhanced Data Rate (EDR), 24, 26–27, 105–106
frame synchronization, 120
Gaussian pulse shaping, 26, 94, 111
OSI layer mapping, 22–23
piconet, 28–29
power classes, 25
relation to IEEE, 802.15.1 22–24
scatternet, 28
Carrier Sense Multiple Access (CSMA)
 Acknowledgement (ACK), 150–152
 backoff, 152
 Clear-To-Send (CTS), 150–152
 Collision Avoidance (CSMA/CA), 150
 Collision Detection (CSMA/CD), 150
 compared to spectrum sensing, 144
 exposed node problem, 150–152
 hidden node problem, 150–152
 in IEEE 802.15.4, 40
 in ITU G.9959, 31
 Request-To-Send (RTS), 150–152
 slotted, 147, 152
 unslotted, 152
 virtual channel sensing, 152
carrier synchronization
 Costas Loop, 127
data whitening, 128
 frequency offset, 90, 115, 125–128
 Phase Error Detector (PED), 127
 Phase-Lock Loop (PLL), 120, 127
 phase offset, 90, 115, 125–128
 Carson’s Rule, see angular modulation
channels
 frequency, 62, 67–68, 132–133, 141, 144–147, 149, 153–154
 large-scale fading, see fading, large-scale
 logical, 67–68
 multipath, see fading, small-scale
 physical, 67–68
channelization
 complex-valued mixing, 56
digital, 49, 59, 61–63, 66
 one-sided spectrum, 53–54, 85
 real-valued mixing, 51–54
 two-sided spectrum, 51, 53–54, 56, 85–86
 checksum, see Backward Error Correction
chip rate, 114, 135–136
Clear-To-Send (CTS), see Carrier Sense Multiple Access
cloud, 2–5, 7, 15–16
cloud computing, 2
Code Division Multiple Access (CDMA), 62, 154
complex-valued mixing, see
 channelization
complex-valued signal, 56, 84–88
conjugate ambiguity, 102–103
conjugate symmetry, 54–56, 85
Continuous-Phase Frequency-Shift Keying (CPFSK), see angular modulation
Costas Loop, see carrier synchronization
constant envelope, 106–107, 115–116, 133
contention free period, see IEEE 802.15.4
correlation demodulator, see demodulation
Cyclic Redundancy Check (CRC), see Backward Error Correction
data whitening, see carrier synchronization
DC offset, see direct-conversion demodulation
arctan, 116–119
cohere, 99, 101–102, 110–111
correlation, 115–116
non-coherent, 110, 112
differential coding, 99–100, 102, 105–106
decoder, 99–100
encoder, 99–100, 105
quadrature, 102, 105–106
digital-to-analog converter, 58
Digital-Down Converter (DDC), 62–63
Digital-Up Converter (DUC), 62, 65
digital channelization, see channelization
direct-conversion architecture, 50, 61
DC offset, 57–59, 63
IQ imbalance, 57–60, 63
LO leakage, 57, 59, 63
off-tuning, 59, 63
receiver (DCR), 55–60
transceiver, 54
transmitter, 58–59, 66
Direct-Sequence Spread Spectrum (DSSS), 36–37, 43, 135–136, 154
spreading gain, 136
duty cycle, see battery life
error detection and correction
(3,1) repetition code, see Forward Error Correction
backward, see Backward Error Correction
checksum, see Backward Error Correction
Cyclic Redundancy Check (CRC), see Backward Error Correction
forward, see Forward Error Correction
energy efficiency, see battery life
exposed node problem, see Carrier Sense Multiple Access
fading
large-scale, 68–73, 76
shadowing, 70, 76–78
small-scale, 77–78
finite fields, 157
Forward Error Correction (FEC)
(3,1) repetition code, 164–165, 166–167
in Bluetooth, 166–167
frame synchronization
as channel estimation, 121–122
as coarse carrier/timing estimation, 121, 132
preamble, 33, 120
synchronization word (sync word), 120–122, 132
Frequency Division Multiple Access (FDMA), 36, 62, 145–146
Frequency Hopping Spread Spectrum (FHSS)
Adaptive Frequency Hopping (AFH), 154
concept, 133–134
as multiple access/channelization, 153–154
spreading gain, 134
Galois fields, 157
Gaussian distribution
central limit theorem, 73
Gaussian Frequency-Shift Keying (GFSK), see angular modulation
Gaussian Minimum-Shift Keying (GMSK), see angular modulation
Gaussian pulse, see pulse shaping
Gateway, 3, 7–9, 15, 29, 42–43
guaranteed time slots, see IEEE 802.15.4
half-sine pulse, see pulse shaping
Hamming distance, 164–165
hidden node problem, see Carrier Sense Multiple Access
IEEE 802 reference model, see protocol stack
IEEE 802.11, see Wi-Fi
IEEE 802.15.1, see Bluetooth
IEEE 802.15.4
bands, 35–37, 141–145
beacon-enabled frame, 152–153, 168–169
channel plan, 34–35, 141–143
contention free period, 153
data rates, 37
guaranteed time slots, 153
OQPSK with half sine pulse shaping, 94, 105, 110, 112–114
sensitivity, 35
synchronizing duty cycles, 168–169
Industrial Scientific Medical (ISM) bands
2.4 GHz, 141–143
congestion, 143–144
sub-GHz, 143
Intermediate Frequency (IF), 50–51, 54–55, 58
Inter-Symbol Interference (ISI), 81, 91–94
IPv6 over Low-Power Wireless Personal Area Networks (6LoWPAN), 29
isotropic radiator, see antennas
ITU-T G.9959
checksum, see Backward Error Correction
data rates, 31
Gaussian pulse shaping, 31, 111
OSI layer mapping, 29
sensitivity, 30
synchronizing duty cycles, 169–170
IQ imbalance, see direct conversion
linear modulation
8-Level Differential Phase Shift Keying (8DPSK), 105–106
8-Level Phase Shift Keying (8PSK), 106
π/4-Differential Quadrature Phase Shift Keying (π/4-DQPSK), 105
π/4-Quadrature Phase Shift Keying (π/4-QPSK), 104–105
Amplitude Shift Keying (ASK), 35, 37, 98, 136
Binary Phase Shift Keying (BPSK), 34–35, 37, 98–99
Differential Binary Phase Shift Keying (BPSK), 100–101
Differential Quadrature Phase Shift Keying (DQPSK), 102, 105
Offset Quadrature Phase-Shift Keying (OQPSK), 34–35, 37, 104–105, 110, 112–114, 136
Quadrature Phase Shift Keying (QPSK), 88–89, 101–102, 104
Line of Sight (LOS), 68, 70, 79–80
link budget analysis, 68–70, 76–78
Local Oscillator (LO), 50, 55, 59
LO leakage, see direct-conversion
Low-Noise Amplifier (LNA), see amplifiers
matched filter, 92, 130
Minimum-Shift Keying (MSK), see angular modulation
modulation, see angular modulation, linear modulation
multipath channel, see fading, small-scale

networks
device network, 7–10, 16, 42, 43
Local Area Network (LAN), 7
Wireless Local Area Network (WLAN), 7, 9, 22, 41–43
Wireless Personal Area Network (WPAN), 7, 15, 21–22, 29, 33, 38
network coordinator, 5–9, 15, 38–39, 139, 152–153
network topology
star, 7–9
mesh, 9
noise
Additive White Gaussian Noise (AWGN), 72–73, 114
complex-valued noise, 87
Non-Line-Of-Sight (NLOS), 68, 71
Numerically Controlled Oscillator (NCO), 108, 111–112, 127, 133–134
Nyquist frequency, see sampling theory
Nyquist ISI Criterion, see pulse shaping
omnidirectional antenna, see antennas
one-sided spectrum, see channelization
Orthogonal Frequency Division Multiplexing (OFDM)
symbol, see Wi-Fi
Open Systems Interconnection (OSI)
reference model, see protocol stack
Parallel-Sequence Spread Spectrum (PSSS), 101, 136–137, 145
path loss, 68–71, 77–78
phase ambiguity, 99, 102, 128
Phase Error Detector (PED), see carrier synchronization
Phase-Lock Loop (PLL), see carrier synchronization
Phase Shift Keying (PSK), see linear modulation
Power Delay Profile (PDP), 80
preamble, see frame synchronization
protocol stack
IEEE 802 reference model, 14
IEEE 802 to OSI mapping, 14
Open Systems Interconnection (OSI)
reference model, 11–12
TCP/IP to OSI mapping, 14
TCP/IP reference model, 12–13
three-layer model, 15–16
physical layer (PHY), 12
radio layer, 17, 47
relationship between IEEE 802 standards, 15
Media Access Control (MAC) layer, 14
modem layer, 17, 83
pulse shaping
half-sine, 91, 94, 112
Gaussian, 91, 94–95, 110–111, 114
Nyquist ISI criterion, 91–92, 94, 111
raised cosine, 91–94
root-raised cosine, 91–94
Index

Quadrature Phase Shift Keying (QPSK), see linear modulation
\(\pi/4\), see linear modulation
differential, see linear modulation
offset, see linear modulation
quasi-constant envelope, see linear modulation, offset quadrature
phase-shift keying

radio frequency, 50
Radio Frequency Identifier (RFID), 1
Radio Frequency Integrated Circuits (RFIC), 54
raised cosine, see pulse shaping
Rayleigh distribution, 77–78, 87–88
real-valued mixing, see channelization
Request-To-Send (RTS), see Carrier Sense Multiple Access
Rician distribution, 88–89
root raised cosine, see pulse shaping

sampling theory
ADC Bandwidth, see
analog-to-digital converter
aliasing, 50–51, 53–54, 85–86
anti-alias filter, 50–51, 55, 61
Nyquist bandwidth, 49–50, 63, 65
Nyquist frequency, 49–50, 53, 56, 85–86
sectorization, see antennas
shadowing, see fading
Short Range Device Band (SRD), 30, 34, 143
sleep mode, see battery
spectral efficiency, 145, 155, 163, 165–166
spectrum sensing, see Carrier Sense Multiple Access (CSMA)
spreading gain, 134, 136

Spurious-Free Dynamic Range (SFDR), 57, 59, 61
superheterodyne (superhet)
channel selection filter, 51
compared to direct-conversion, 56, 58–59, 61
digital down-converter
considerations, 63
image rejection filter, 51
real-valued mixing, see channelization
receiver, 50
sampling at intermediate frequency, 54
Symbol Error Rate (SER), 58, 74–76
symbol timing synchronization
maximizing instantaneous power, 129
symbol recovery loop, 130–131
Timing Error Detector (TED), 130–131
synchronization
carrier synchronization, see carrier synchronization
frame synchronization, see frame synchronization
order of operations, 132
symbol timing synchronization, see symbol timing synchronization
synchronization word (sync word), see frame synchronization

TCP/IP reference model, see protocol stack

thread
history, 40
protocol stack, 41
relation to IEEE 802.15.4, 41
Time Division Duplexing (TDD), 26, 147–149
Time Division Multiple Access (TDMA), 40, 62, 146–147, 152
Index

- time slots, 37, 144, 146, 148–149, 152–153
- Timing Error Detector (TED), see symbol timing synchronization
- two-sided spectrum, see channelization
- virtual channel sensing, see Carrier Sense Multiple Access
- Voltage-Controlled Oscillator (VCO), 108

- Wi-Fi as gateway for device networks, 7–9

- relation to IEEE 802.11, 14–16, 22, 41–43
- OFDM, 43
- OFDM symbol in DCRs, 59–60

- Z-Wave
 - history, 32
 - protocol stack, 32–33
 - relation to ITU-T G.9959, 32–33

- ZigBee
 - history, 38
 - protocol stack, 39–40
 - relation to IEEE 802.15.4, 38–40