Contents

About the Author xv
Preface xvii
Companion Website xix

1. **Inorganic Chemistry and the Environment** 1
 1.1 Introduction 1
 1.1.1 Energetics of Processes 1
 1.2 Neutron–Proton Conversion 3
 1.3 Element Burning Reactions – Buildup of Larger Elements 4
 1.4 Nuclear Stability and Binding Energy 5
 1.4.1 The “r” and “s” Processes 6
 1.5 Nuclear Stability (Radioactive Decay) 8
 1.6 Atmospheric Synthesis of Elements 8
 1.7 Abundance of the Elements 8
 1.7.1 The Cosmos and the Earth’s Lithosphere 8
 1.7.2 Elemental Abundance (Atmosphere, Oceans, and Human Body) 10
 1.8 Scope of Inorganic Chemistry in Geochemistry and the Environment 17
 1.8.1 Elemental Distribution Based on Photosynthesis and Chemosynthesis 17
 1.8.2 Stratified Waters and Sediments – the Degradation of Organic Matter by Alternate Electron Acceptors 19
 1.9 Summary 21
 1.9.1 Environmental Inorganic Chemistry 22
 References 22

2. **Oxidation–Reduction Reactions (Redox)** 24
 2.1 Introduction 24
 2.1.1 Energetics of Half Reactions 24
 2.1.2 Standard Potential and the Stability of a Chemical Species of an Element 26
 2.2 Variation of Standard Potential with pH (the Nernst Equation) 29
 2.3 Thermodynamic Calculations and pH Dependence 29
 2.4 Stability Field of Aqueous Chemical Species 31
 2.5 Natural Environments 32
 2.6 Calculations to Predict Favorable Chemical Reactions 32
 2.6.1 Coupling Half-Reactions 34
 2.6.2 One-Electron Oxygen Transformations with Fe$^{2+}$ and Mn$^{2+}$ to Form O$_2^-$ 35
Contents

2.7 Highly Oxidizing Conditions 38
2.7.1 Ozonolysis Reactions 38
2.7.2 Atmospheric Redox Reactions 39
Appendix 2.1 Gibbs Free Energies of Formation 43
References 43

3. Atomic Structure 45
3.1 History 45
3.2 The Bohr Atom 46
3.3 The Schrodinger Wave Equation 47
3.4 Components of the Wave Function 50
3.4.1 Radial Part of the Wave Function, $R(r)$ 50
3.4.2 Angular Part of the Wavefunction $Y_{lm}(\theta, \phi)$ and Atomic Orbitals 54
3.5 The Four Quantum Numbers 56
3.6 The Polyelectronic Atoms and the Filling of Orbitals for the Atoms of the Elements 58
3.7 Aufbau Principle 61
3.8 Atomic Properties 62
3.8.1 Orbitals Energies and Shielding 62
3.8.2 Term Symbols: Coupling of Spin and Orbital Angular Momentum 63
3.8.3 Periodic Properties – Atomic Radius 67
3.8.4 Periodic Properties – Ionization Potential (IP) 67
3.8.5 Periodic Properties – Electron Affinity (EA) 71
3.8.6 Periodic Properties – Electronegativity (χ) 74
3.8.7 Periodic Properties – Hardness (η) 75
References 77

4. Symmetry 79
4.1 Introduction 79
4.2 Symmetry Concepts 79
4.2.1 Symmetry Operation 79
4.2.2 Symmetry Element 79
4.2.3 Symmetry Elements and Operations 80
4.3 Point Groups 84
4.3.1 Special Groups and Platonic Solids/Polyhedra 85
4.3.2 Examples of the Use of the Scheme for Determining Point Groups 88
4.4 Optical Isomerism and Symmetry 92
4.4.1 Dichloro-Allene Derivatives ($C_3H_2Cl_2$) 92
4.4.2 Tartaric Acid 93
4.4.3 Cylindrical Helix Molecules 93
4.5 Fundamentals of Group Theory 93
4.5.1 C_{2v} Point Group 95
4.5.2 Explanation of the Character Table 96
4.5.3 Generation of the Irreducible Representations (C_{2v} Case) 97
4.5.4 Notation for Irreducible Representations 97
4.5.5 Some Important Properties of the Characters and their Irreducible Representations 98
4.5.6 Nonindependence of x and y Transformations (Higher Order Rotations) 98
4.6 Selected Applications of Group Theory 101
4.6.1 Generation of a Reducible Representation to Describe a Molecule 101
4.6.2 Determining the IR and Raman Activity of Vibrations in Molecules 104
4.6.3 Determining the Vibrational Modes of Methane, CH₄ 105
4.6.4 Determining the Irreducible Representations and Symmetry of the Central Atom’s Atomic Orbitals that Form Bonds 107
4.7 Symmetry Adapted Linear Combination (SALC) of Orbitals 111
4.7.1 Sigma Bonding with Hydrogen as Terminal Atom 111
4.7.2 Sigma and Pi Bonding with Atoms Other than Hydrogen as Terminal Atom 114

Appendix 4.1 Some Additional useful Character Tables 120
References 122

5. Covalent Bonding 123
5.1 Introduction 123
5.1.1 Lewis Structures and the Octet Rule 123
5.1.2 Valence Shell Electron Pair Repulsion Theory (VSEPR) 126
5.2 Valence Bond Theory (VBT) 127
5.2.1 H₂ and Valence Bond Theory 129
5.2.2 Ionic Contributions to Covalent Bonding 130
5.2.3 Polyatomic Molecules and Valence Bond Theory 131
5.3 Molecular Orbital Theory (MOT) 132
5.3.1 H₂ 132
5.3.2 Types of Orbital Overlap 137
5.3.3 Writing Generalized Wave Functions 138
5.3.4 Brief Comments on Computational Methods and Computer Modeling 139
5.3.5 Homonuclear Diatomic Molecules (A₂) 140
5.3.6 Heteronuclear Diatomic Molecules and Ions (AB; HX) – Sigma Bonds Only 144
5.3.7 Heteronuclear Diatomic Molecules and Ions (AB) – Sigma and Pi Bonds 147
5.4 Understanding Reactions and Electron Transfer (Frontier Molecular Orbital Theory) 150
5.4.1 Angular Overlap 151
5.4.2 H⁺ + OH⁻ 151
5.4.3 H₂ + D₂ 152
5.4.4 H₂ + F₂ 153
5.4.5 H₂ + C₂ 154
5.4.6 H₂ + N₂ (also CO + H₂) 154
5.4.7 Dihalogens as Oxidants 156
5.4.8 O₂ as an Oxidant and its Reaction with H₂S and HS⁻ 157
5.5 Polyatomic Molecules and Ions 161
5.5.1 H₃⁺ Molecular Cation 161
5.5.2 BeH₂ – Linear Molecule with Sigma Bonds Only 163
5.5.3 H₂O – Angular Molecule with Sigma Bonds Only 165
Contents

5.6 Tetrahedral and Pyramidal Species with Sigma Bonds only (CH₄, NH₄⁺, SO₄²⁻) 168
 5.6.1 CH₄ 168
 5.6.2 NH₃ (C₃ᵥ) 170
 5.6.3 BH₃ and the Methyl Cation, CH₃⁺ (D₃h) 172
5.7 Triatomic Compounds and Ions Involving π Bonds (A₃, AB₂, and ABC) 175
 5.7.1 A₃ Linear Species 175
 5.7.2 AB₂ Linear Species CO₂ (COS and N₂O) 178
 5.7.3 O₃, NO₂⁻, and SO₂ (Angular Molecules) 180
5.8 Planar Species (BF₃, NO₃⁻, CO₃²⁻, SO₃) 182
Appendix 5.1 Bond Energies for Selected Bonds 184
Appendix 5.2 Energies of LUMOs and HOMOs 185
References 186

 6.1 Introduction 189
 6.2 Covalent Bonding in Metals: Band Theory 189
 6.2.1 Atomic Orbital Combinations for Metals 189
 6.2.2 Metal Conductors 191
 6.2.3 Semiconductors and Insulators 191
 6.2.4 Fermi Level 193
 6.2.5 Density of States (DOS) 194
 6.2.6 Doping of Semiconductors 195
 6.2.7 Structures of Solids 196
 6.3 Ionic Solids 200
 6.3.1 Solids AX Stoichiometry 200
 6.3.2 Solids with Stoichiometry of AX₂, AO₂, A₂O₃, ABO₃ (Perovskite), AB₂O₄ (Spinel) 203
 6.3.3 Crystal Radii 205
 6.3.4 Radius Ratio Rule 205
 6.3.5 Lattice Energy 207
 6.3.6 Born–Haber Cycle 209
 6.3.7 Thermal Stability of Ionic Solids 210
 6.3.8 Defect Crystal Structures 212
 6.4 Nanoparticles and Molecular Clusters 214
References 217

7. Acids and Bases 219
 7.1 Introduction 219
 7.2 Arrhenius and Bronsted–Lowry Definitions 219
 7.3 Hydrolysis of Metal–Water Complexes 222
 7.4 Hydration of Anhydrous Acidic and Basic Oxides 223
 7.4.1 Acidic Oxides 223
 7.4.2 Basic Oxides 224
 7.4.3 Amphoteric Oxides 224
 7.5 Solvent System Definition 224
 7.5.1 Leveling Effect 225
7.6 Gas Phase Acid–Base Strength
 7.6.1 H_3^+ as a Reactant
7.7 Lewis Definition
 7.7.1 MOT
 7.7.2 Molecular Iodine Adducts or Complexes as Examples
 7.7.3 Thermodynamics of Lewis Acid–Base Reactions
 7.7.4 Lewis Acid–Base Reactions of CO_2 and I_2 with Water and Hydroxide Ion
 7.7.5 Lewis Acid–Base Competitive Reactions
7.8 Classification of Acids and Bases
 7.8.1 Irving–Williams Stability Relationship for the First Transition Metal Series
 7.8.2 Class “a” and “b” Acids and Bases
 7.8.3 Hard Soft Acid Base (HSAB) Theory
7.9 Acid–Base Properties of Solids
References

8. Introduction to Transition Metals
 8.1 Introduction
 8.2 Coordination Geometries
 8.3 Nomenclature
 8.3.1 Complex Ion is Positive
 8.3.2 Complex Ion is Negative
 8.3.3 Complex Ion with Multiple Ligands
 8.3.4 Complex Ion with Ligand that can Bind with More Than One Atom (Ambidentate)
 8.3.5 Complex Ion with Multidentate Ligands
 8.3.6 Two Complex Ions with a Bridging Ligand
 8.4 Bonding and Isomers for Octahedral Geometry
 8.4.1 Ionization Isomerism
 8.4.2 Hydrate (Solvate) Isomers
 8.4.3 Coordination Isomerism
 8.4.4 Linkage Isomerism
 8.4.5 Geometrical Isomerism – Four Coordination
 8.4.6 Optical Isomerism in Octahedral Geometry
 8.5 Bonding Theories for Transition Metal Complexes
 8.5.1 Valence Bond Theory
 8.5.2 Crystal Field Theory
 8.6 Molecular Orbital Theory
 8.6.1 Case 1 – Octahedral Geometry (Sigma Bonding Only)
 8.6.2 Case 2 – Octahedral Geometry (Sigma Bonding Plus Ligand π Donor)
 8.6.3 Case 3 – Octahedral Geometry (Sigma Bonding Plus Ligand π Acceptor)
 8.7 Angular Overlap Model
 8.7.1 AOM and π Ligand Donor Bonding
 8.7.2 AOM and π Ligand Acceptor Bonding
 8.7.3 MOT, Electrochemistry, and the Occupancy of Electrons in d Orbitals in O_h
 8.7.4 AOM and Other Geometries
Contents

8.8 More on Spectroscopy of Metal–Ligand Complexes 281
8.8.1 Charge Transfer Electronic Transitions 282
8.8.2 Electronic Spectra, Spectroscopic Terms, and the Energies of the Terms for $d \rightarrow d$ Transitions 283
8.8.3 Energy and Spatial Description of the Electron Transitions Between t_{2g} and e_g^* Orbitals 296
8.8.4 More Details on Correlation Diagrams 297
8.8.5 Luminescence 299
8.8.6 Magnetism and Spin Crossover in Octahedral Complexes and Natural Minerals 301
8.8.7 Note about f Orbitals in Cubic Symmetry (O_h) 303

References 303

9. Reactivity of Transition Metal Complexes: Thermodynamics, Kinetics and Catalysis 305

9.1 Thermodynamics Introduction 305
9.1.1 Successive Stability Constants on Water Substitution 305
9.1.2 The Chelate Effect 307

9.2 Kinetics of Ligand Substitution Reactions 308
9.2.1 Kinetics of Water Exchange for Aqua Complexes 310
9.2.2 Intimate Mechanisms for Ligand Substitution Reactions 310
9.2.3 Kinetic Model and Activation Parameters 311
9.2.4 Dissociative Versus Associative Preference for Octahedral Ligand Substitution Reactions 314
9.2.5 Stoichiometric Mechanisms 315
9.2.6 Tests for Reaction Mechanisms 320

9.3 Substitution in Octahedral Complexes 321
9.3.1 Examples of Dissociative Activated Mechanisms 321
9.3.2 Associative Activated Mechanisms 322

9.4 Intimate Mechanisms Affected by Steric Factors (Dissociative Preference) 324
9.4.1 Intimate Mechanisms Affected by Ligands in Cis versus Trans Positions (Dissociative Preference) 324
9.4.2 Base Hydrolysis 325

9.5 Intimate Versus Stoichiometric Mechanisms 327

9.6 Substitution in Square Planar Complexes (Associative Activation Predominates) 328
9.6.1 Effect of Leaving Group 330
9.6.2 Effect of Charge 330
9.6.4 Nature of the Intermediate – Steric Factors 331

9.7 Metal Electron Transfer Reactions 332
9.7.1 Outer Sphere Electron Transfer 333
9.7.2 Cross Reactions 337
9.7.3 Inner Sphere Electron Transfer 339

9.8 Photochemistry 341
9.8.1 Redox 341
9.8.2 Photosubstitution Reactions $d \rightarrow d$ 341
9.8.3 LMCT and Photoreduction 342
9.8.4 MLCT Simultaneous Substitution and Photo-Oxidation Redox 342
9.9 Effective Atomic Number (EAN) Rule or the Rule of 18
9.10 Thermodynamics and Kinetics of Organometallic Compounds
9.11 Electron Transfer to Molecules during Transition Metal Catalysis
9.12 Oxidation Addition (OXAD) and Reductive Elimination (Redel) Reactions
9.13 Metal Catalysis
 9.13.1 OXO or Hydroformylation Process
 9.13.2 Heck Reaction
 9.13.3 Methyl Transferases
 9.13.4 Examples of Abiotic Organic Synthesis (Laboratory and Nature)
 9.13.5 The Haber Process Revisited
References

10. Transition Metals in Natural Systems
 10.1 Introduction
 10.2 Factors Governing Metal Speciation in the Environment and in Organisms
 10.3 Transition Metals Essential for Life
 10.4 Important Environmental Iron and Manganese Reactions
 10.4.1 Oxidation of Fe$^{2+}$ and Mn$^{2+}$ by O$_2$ – Environmentally Important Metal Electron Transfer Reactions
 10.4.2 Redox Properties of Iron–Ligand Complexes
 10.4.3 Metal Ions Exhibiting Outer Sphere Electron Transfer
 10.5 Oxygen (O$_2$) Storage and Transport
 10.5.1 Hemoglobin
 10.5.2 Hemocyanin and Hemerythrin
 10.6 Oxidation of CH$_4$, Hydrocarbons, NH$_4^+$
 10.6.1 Cytochrome P450: An Example of Cytochrome (Heme – O$_2$) Redox Chemistry
 10.6.2 Conversion of NH$_4^+$ to NO$_3^-$ (Nitrification or Aerobic Ammonium Oxidation)
 10.7 Oxygen Production in Photosynthesis
References

11. Solid PhaseIron and Manganese Oxidants and Reductants
 11.1 Introduction
 11.2 Reduction of Solid MnO$_2$ and Fe(OH)$_3$ by Sulfide
 11.2.1 Fe(III) and Mn(IV) Electron Configurations
 11.2.2 MnO$_2$ Reaction with Sulfide
 11.2.3 Fe(OH)$_3$ Reaction with Sulfide
 11.3 Pyrite, FeS$_2$, Oxidation
 11.3.1 Pyrite Reacting with O$_2$
 11.3.2 Pyrite Reacting with Soluble Fe(III)
 11.3.3 Pyrite Reacting with Dihalogens and Cr$^{2+}$
 References

12. Metal Sulfides in the Environment and in Bioinorganic Chemistry
 12.1 Introduction
 12.2 Idealized Molecular Reaction Schemes from Soluble Complexes to ZnS and CuS Solids
 12.3 Nanoparticle Size and Filtration
 12.4 Ostwald Ripening versus Oriented Attachment
Contents

12.5 Metal Availability and Detoxification for MS Species 396
12.6 Iron Sulfide Chemistry 396
 12.6.1 FeS\textsubscript{mack} (Mackinawite) 396
 12.6.2 FeS\textsubscript{mack} Conversion to Pyrite, FeS\textsubscript{2} 397
 12.6.3 FeS as a Catalyst in Organic Compound Formation 400
 12.6.4 FeS as an Electron Transfer Agent in Biochemistry 400
12.7 More on the Nitrogen Cycle (Nitrate Reduction, Denitrification, and Anammox) 402
Appendix 12.1 PbS Nanoparticle Model and Size Ranges of Natural Materials 404
References 404

13. Kinetics and Thermodynamics of Metal Uptake by Organisms 406
 13.1 Introduction 406
 13.1.1 Conditional Metal–Ligand Stability Constants 407
 13.1.2 Thermodynamic Metal–Ligand Stability Constants 409
 13.2 Metal Uptake Pathways 410
 13.2.1 Ion Channels for Potassium 411
 13.2.2 Metal Uptake by Cells via Ligands on Membranes 413
 13.2.3 Evaluation of k_f, k_d, and $K_{\text{cond}M'\text{L}'}$ from Laboratory and Natural Samples 418
References 420

Index 421