Contents

List of contributors, xiii
Preface, xv
Acknowledgment, xvii

Part I – Ageing of cells and organisms

1 Human ageing, a biological view, 3
 Henrique Almeida and Liliana Matos
 1.1 Introduction, 3
 1.2 Human ageing and frailty, 4
 1.2.1 Mortality curves, 4
 1.2.2 Susceptibility to disease and mortality, 5
 1.2.3 Age-related and age-dependent diseases, 6
 1.3 Fundamental causes, 7
 1.4 Experimental approach to human ageing, 8
 1.4.1 Ageing models in dividing cells: Replicative senescence and telomere involvement, 8
 1.4.2 Stress-induced premature senescence, 10
 1.4.3 Ageing in organs and tissues, 11
 1.4.4 Lipofuscin deposition following organelle dysfunction and damage accumulation, 12
 1.4.5 Damage consequences: Dysfunctional organelles and cell functional decline. Cell loss, 13
 1.5 Involving genes in organism ageing and longevity, 14
 1.5.1 Longevous humans, 14
 1.5.2 Experimental approaches, 15
 1.5.2.1 The insulin/IGF-1 axis, 17
 1.5.2.2 IGF-1 signaling into FOXO proteins, 18
 1.5.2.3 Other pathways, 20
 1.6 Conclusions and prospects, 21
 Acknowledgment, 23
 References, 23

2 To eat or not to eat – Anti-ageing effects of energy restriction, 33
 Delminda Neves, Maria João Martins, Emanuel dos Passos and Inês Tomada
 Part 1, 33
 2.1 Energy restriction as more than a weight-loss strategy, 33
 2.2 Restriction of energy vs restriction of nutrients, 34
 2.2.1 Experimental models of energy restriction, 35
 2.2.2 Observational studies and the first human trial of energy restriction: CALERIE study, 40
2.3 Effects of energy restriction on organisms, 42
 2.3.1 Increased longevity and health of energy-restricted organisms, 43
 2.3.2 Body composition, temperature and resting metabolic rate, 46
 2.3.3 Metabolism and insulin sensitivity, 48
 2.3.4 Immune system and inflammatory modulation, 49
 2.3.5 Neuroendocrine axes and adipokines, 50
 2.3.6 Growth factors and cytoprotective effects, 57
2.4 Cellular and molecular effects of energy restriction, 57
 2.4.1 Modulation of gene expression, 58
 2.4.2 Molecular mechanisms of sirtuins, 60
 2.4.2.1 Sirtuin 1, 60
 2.4.2.2 Sirtuin 6, 63
 2.4.2.3 Sirtuin 7, 63
 2.4.2.4 Sirtuin 3, 63
 2.4.2.5 Sirtuins 4 and 5, 64
 2.4.2.6 Sirtuin 2, 64
 2.4.3 AMPK, 65
 2.4.4 Oxidative stress and metabolic reprogramming, 65
 2.4.5 Autophagy and mTOR signaling, 67
2.5 Energy restriction mimetics, 71
 2.5.1 Sirtuin activity stimulators, 72
 2.5.2 Antidiabetic drugs, 73
 2.5.3 Rapamycine, 74
 2.5.4 Polyamines, 74
 2.5.5 Antilipolytic drugs, 75
Part 2, 76
2.6 Obesity and ageing, 76
 2.6.1 Obesity as a premature death inducer, 76
 2.6.2 Adipose tissue and metabolic dysregulation, 79
 2.6.2.1 Adipose tissue and disruption of endocrine secretion of adipokines, 80
 2.6.3 Mitochondrial dysfunction, 80
 2.6.4 Endoplasmic reticulum stress, 81
 2.6.4.1 Endoplasmic reticulum stress-induced unfolded protein response, 82
 2.6.4.2 Ageing-induced modification in unfolded protein response, 83
 2.6.4.3 Obesity-induced endoplasmic reticulum stress, 85
 2.6.5 Anti-obesity effects of natural compounds extracted from plants, 88
 2.6.5.1 Polyphenols, 88
 2.6.5.1.1 Cathechins, 88
 2.6.5.1.2 Curcumin, 91
 2.6.5.1.3 Resveratrol, 92
 2.6.5.1.4 Quercetin, 94
 2.6.5.1.5 Isoflavones, 95
 2.6.6 Anti-obesity effects of minerals (magnesium), 96
2.7 Conclusion, 98
Acknowledgment, 98
References, 98

3 Nutrition, epigenetics and ageing, 133
Jill Ann McKay and Luisa Anne Wakeling

3.1 Introduction, 133
3.2 Epigenetics, 133
 3.2.1 DNA methylation, 134
 3.2.2 Histone modifications, 135
 3.2.3 Noncoding RNAs, 135
 3.2.4 The function of epigenetic mechanisms, 136
3.3 Epigenetics and ageing, 137
 3.3.1 DNA methylation profiles and ageing, 137
 3.3.2 Histone modifications and ageing, 137
 3.3.3 MicroRNAs and ageing, 138
3.4 Influence of nutrition on epigenetic modifications, 138
 3.4.1 Nutritional modulation of epigenetic enzyme activity, 139
 3.4.2 Influence of nutrition on substrate availability for epigenetic modifications, 141
 3.4.3 Critical windows and the developmental origins hypothesis, 142
3.5 Nutrition, epigenetics and ageing, 144
 3.5.1 Overview, 144
 3.5.2 Specific dietary regimens and nutrients that influence epigenetics and ageing, 145
 3.5.2.1 Dietary restriction, 145
 3.5.2.2 Dietary polyphenols, 145
 3.5.2.3 One-Carbon metabolism, 146
3.6 Conclusions and future perspective, 147
References, 147

Part II – Nutritional modulation of age-related organ functional decline

4 Nutritional interventions in age-related genetic and epigenetic instability and cancer, 157
Thomas Prates Ong and Ana Paula de Melo Loureiro

4.1 Cancer as an age-associated disease, 157
4.2 Genetic and epigenetic alterations as molecular mechanisms underlying carcinogenesis, 159
4.3 Diet, nutrition and cancer, 165
4.4 Targeting age-related genomic and epigenomic alterations with nutritional interventions for cancer prevention, 167
 4.4.1 Folate, 168
 4.4.2 Energy restriction, 170
 4.4.3 Bioactive food components, 172
4.5 Conclusions and perspectives, 173
Acknowledgment, 174
References, 174
Contents

5 Nutraceuticals in immunosenescence, 183
 Thea Magrone and Emilio Jirillo
 5.1 Introduction, 183
 5.2 The immune response in ageing, 184
 5.2.1 Phagocytes, 184
 5.2.2 Natural killer cells, 184
 5.2.3 T cells, 185
 5.2.4 B cells, 185
 5.3 Micronutrients that modulate immunosenescence, 186
 5.3.1 Zinc, 186
 5.3.2 Copper, 187
 5.3.3 Iron, 188
 5.3.4 Selenium, 188
 5.4 Probiotics and prebiotics, 189
 5.4.1 Probiotics, 189
 5.4.2 Prebiotics, 190
 5.5 Dietary lipids, 191
 5.6 Polyphenols, 192
 5.7 Conclusion and future directions, 195
 Acknowledgments, 195
 References, 195

6 Cardiovascular ageing, 203
 Carmen Brás Silva and Delminda Neves
 6.1 Age-related cardiac changes, 203
 6.1.1 Heart changes, 203
 6.1.1.1 Structural changes, 203
 6.1.1.1.1 Changes in heart valves, 204
 6.1.1.2 Functional changes, 204
 6.1.1.2.1 Cardiac systolic function, 204
 6.1.1.2.2 Cardiac diastolic function, 204
 6.1.1.2.3 Changes in cardiac conduction system and in heart rate, 205
 6.1.1.2.4 Cardiac adrenergic responsiveness, 206
 6.1.1.3 Changes in cardioprotective and repair processes, 207
 6.2 Age-related vascular changes, 207
 6.2.1 Central arterial changes, 207
 6.2.1.1 Arterial structural changes, 208
 6.2.1.1.1 Luminal dilatation, 208
 6.2.1.1.2 Arterial stiffening and thickening, 208
 6.2.1.1.3 Vascular calcification, 209
 6.2.1.1.4 Dimensional variation, 209
 6.2.2 Peripheral arterial changes, 210
 6.2.3 Arterial functional changes, 210
 6.2.3.1 Blood pressure, 210
 6.3 Changes in the interaction between heart and arterial system, 211
Contents

6.4 Endothelial dysfunction, 211
6.5 Erectile dysfunction as an early signal of cardiovascular disease, 213
 6.5.1 The erection mechanism, 214
 6.5.2 Contribution of ageing to erectile dysfunction onset, 214
 6.5.2.1 Age-related structural and molecular modifications of erectile tissue, 215
6.6 Diet, nutrition and cardiovascular ageing, 218
 6.6.1 Obesity, energy restriction and cardiovascular ageing, 218
 6.6.2 Diet patterns and cardiovascular ageing, 220
 6.6.2.1 Contribution of dietary pattern to erectile dysfunction onset, 221
6.7 Nutritional intervention for cardiovascular disease prevention or amelioration, 222
 6.7.1 Nutritional pattern modulation, 223
 6.7.2 Intervention of specific nutrients in cardiovascular disease protection, 225
 6.7.2.1 Polyphenolic compounds, 225
 6.7.2.2 l-Carnitine and l-arginine, 227
 6.7.2.3 Fatty acids, 228
 6.7.2.4 Vitamins, 228
 6.7.2.5 Minerals, 230
 6.7.2.6 Caffeine, 230
6.8 Conclusions, 230

References, 231

7 Bone and muscle ageing, 247
 Joana Carvalho, Elisa Marques and Pedro Moreira

7.1 Introduction, 247
 7.1.1 Determinants of bone loss in ageing, 248
 7.1.2 Regulation of muscle atrophy in ageing, 249
7.2 Osteoporosis and fragility fractures in the elderly, 251
7.3 Nutritional mechanisms of age-related bone loss, 252
7.4 Calcium and vitamin D and the ageing skeleton: Efficacy in the treatment of osteoporosis, 254
7.5 Skeletal muscle age-related contributory mechanisms, 256
7.6 The role of nutrition in preventing ageing skeletal muscle atrophy, 259
 7.6.1 Protein, 259
 7.6.2 PUFA and inflammation, 260
 7.6.3 Anti-oxidants and oxidative stress, 261
 7.6.4 Vitamin D, 262
 7.6.5 Food and dietary patterns, 262
7.7 Resistance exercise and nutrition: Effective treatment strategy to counteract age-related muscle wasting and bone loss, 263
 7.7.1 Protein and resistance exercise, 264
7.8 Concluding remarks, 266

References, 266
Contents

8 Nutrition and the ageing eye, 277
 Ângela Carneiro
 8.1 The ageing eye, 277
 8.1.1 The lens, 277
 8.1.2 The retina, 278
 8.2 Nutrients in the structure and physiology of the healthy human eye, 279
 8.2.1 Vitamins, 279
 8.2.2 Polyunsaturated fatty acids, 280
 8.2.3 Zinc, 280
 8.3 The human eye and the oxidative stress, 280
 8.4 The anti-oxidant systems in the eye, 281
 8.5 How can diet interfere with the ocular anti-oxidant system?, 282
 8.6 Nutritional intervention in age-associated eye diseases, 283
 8.6.1 Cataract, 283
 8.6.1.1 The blue mountains eye study, 284
 8.6.1.2 The beaver dam eye study, 284
 8.6.1.3 The India age-related eye disease study, 284
 8.6.1.4 The Spanish segment of European eye study (EUREYE), 285
 8.6.1.5 The physicians’ health study, 285
 8.6.1.6 The women’s health study, 285
 8.6.1.7 The age-related eye disease study (AREDS), 285
 8.6.1.8 The age-related eye disease study 2 (AREDS2), 286
 8.6.2 Age-related macular degeneration, 286
 8.6.2.1 AREDS, 289
 8.6.2.2 AREDS2, 290
 8.7 Nutrigenomics, 291
 8.8 Conclusions, 291
 References, 292

9 Beauty from the inside: Nutrition and skin ageing, 299
 Alessandra Marini and Jean Krutmann
 9.1 Introduction, 299
 9.2 Vitamins, 302
 9.2.1 Vitamin C (l-ascorbic acid), 302
 9.2.2 Vitamin E (tocopherol), 303
 9.2.3 Vitamin B₆, 304
 9.2.4 Carotenoids, 304
 9.2.5 Vitamin D, 306
 9.3 Polyphenols and flavonoids, 306
 9.4 Polyunsaturated fatty acids, 308
 9.5 Pre- and probiotics, 308
 9.6 Conclusions, 310
 References, 310

10 Retarding brain ageing and cognitive decline, 315
 José Paulo Andrade
 10.1 Ageing and brain, 315
 10.2 From “healthy ageing” to dementia, 316
10.3 Green tea as a functional food and source of nutraceuticals, 318
 10.3.1 Bioavailability of the catechins of green tea, 319
 10.3.2 Direct and indirect actions of catechins, 320
 10.3.3 Action of catechins in brain, 321
 10.3.4 Catechins and neurodegenerative diseases, 321
 10.3.5 Other polyphenols, 323
10.4 Modulatory effect of diet pattern on age-associated cognitive decline, 323
10.5 Multidomain interventions, 326
10.6 Conclusions, 327
 Acknowledgment, 327
 References, 327

Part III – Evidence-based retardation of ageing

11 Science-based anti-ageing nutritional recommendations, 335
 Inês Tomada and José Paulo Andrade
 11.1 Introduction, 335
 11.2 The relevance of nutraceuticals and functional nutrients in anti-ageing medicine, 336
 11.3 Nutrition from food vs from supplements, 340
 11.3.1 Food enrichment and fortification, 341
 11.3.2 Nutritional supplements, 342
 11.3.2.1 Nutritional compounds as drugs delivered via food, 343
 11.3.2.1.1 Multivitamin–mineral supplements, 343
 11.3.2.1.2 Anti-oxidant supplements, 345
 11.3.2.1.3 Omega-3 polyunsaturated fatty acids supplements, 347
 11.3.2.1.4 Amino acids and amino acid mixture supplements, 348
 11.3.3 Pills, capsules, powders and syrups, 351
 11.3.4 Factors that affect the bioavailability of nutrients, 352
 11.3.4.1 Food processing and cooking methods, 353
 11.3.4.2 Competitive interactions between nutrients, 355
 11.3.4.3 Drug–food and drug–nutrients interactions, 357
 11.4 Favorable combinations of nutrients in food, 360
 11.5 Lifestyle strategies for successful ageing, 363
 11.5.1 The mediterranean and Asian diets, 368
 11.5.2 The French paradox, 375
 Acknowledgment, 378
 References, 378

Index, 391