INDEX

Note: Page numbers in **bold** indicate main entries; Greek letters appear at the end of the index.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>A vs. D substitution mechanisms</td>
<td>115–122</td>
</tr>
<tr>
<td>Abbreviations</td>
<td>xiii</td>
</tr>
<tr>
<td>Acetic acid process, Monsanto</td>
<td>333–334, 458</td>
</tr>
<tr>
<td>Acetylides</td>
<td>73</td>
</tr>
<tr>
<td>Acid with noncoordinating anion, use of</td>
<td>173</td>
</tr>
<tr>
<td>Actinide complexes</td>
<td>158, 426</td>
</tr>
<tr>
<td>Activation of ligands</td>
<td>61–63, 332–342, see also Ligand</td>
</tr>
<tr>
<td>Actor ligands</td>
<td>33</td>
</tr>
<tr>
<td>Acyl complexes</td>
<td>78, 84</td>
</tr>
<tr>
<td>Adamantyl complexes</td>
<td>73</td>
</tr>
<tr>
<td>ADMET (acyclic diene metathesis)</td>
<td>319</td>
</tr>
<tr>
<td>Agostic species</td>
<td>74–75, 89, 91, 167, 278, 298–300</td>
</tr>
<tr>
<td>Alcohol activation catalysis</td>
<td>344</td>
</tr>
<tr>
<td>Alcohols, as reducing agents</td>
<td>85, 138, 250</td>
</tr>
<tr>
<td>Alkane activation</td>
<td>336</td>
</tr>
<tr>
<td>C–C bond cleavage in dehydrogenation</td>
<td>342</td>
</tr>
<tr>
<td>homogeneous catalysis</td>
<td></td>
</tr>
<tr>
<td>metathesis, homogeneous catalysis</td>
<td>339</td>
</tr>
<tr>
<td>of</td>
<td>340</td>
</tr>
<tr>
<td>Alkene</td>
<td></td>
</tr>
<tr>
<td>coupling</td>
<td>82</td>
</tr>
<tr>
<td>hydroboration catalysis</td>
<td>246</td>
</tr>
<tr>
<td>homogeneous catalysis</td>
<td>242</td>
</tr>
<tr>
<td>hydroformylation</td>
<td></td>
</tr>
<tr>
<td>homogeneous catalysis</td>
<td>233, 394–396</td>
</tr>
<tr>
<td>hydrosilation, homogeneous</td>
<td></td>
</tr>
<tr>
<td>catalysis of</td>
<td>246</td>
</tr>
<tr>
<td>isomerization, homogeneous</td>
<td></td>
</tr>
<tr>
<td>catalysis of</td>
<td>231</td>
</tr>
</tbody>
</table>
Alkene (cont’d)
metathesis, homogeneous catalysis
of 317, 391–392
polymerization, homogeneous
catalysis of 319, 323, 324–329

Alkene complexes 134–138
bonding models 135–136
masked carbonium ion character 138
nucleophilic addition to 205, 209
strain in 136–137
synthesis, reactions 137

Alkylidene complexes 293, 300,
see also Carbenes

Alkyls and aryls, organometallic 69–79
agostic 74–75
bond strengths 92–93
bridging 81
bulky, special stability of 73, 76
d0 72, 76, 81, 84, 91
decomposition pathways of 72–73, 76–77
electrophilic abstraction of 219
fluoro-, 76, 80
homolytic abstraction of 446
main group 69–71, 81
metalacycles 82, 298, 301
polarity of M–C bond in 70–71
preparation of 77–79
stability of 72–74
as stabilized carbonium ions 70–71

Alkynes 302
complexes, and bonding in 139
coupling of 180
hydration of 215
hydrosilylation 388
two vs. four electron ligands 139

Allenyl complexes 143

Allyl complexes 140–143
bonding in 140
fluxionality 141
NMR of 141
syn and anti groups in 140–141

Alpha elimination 103, 198, 298, 304, 421, 429

Ambidentate ligands 31–33

Ambiguity
in catalysis, homogeneous vs.
heterogeneous 225
in oxidation states 47, 292, 302–303

Amido (–NR2) complexes 85

Amino acids 437

Ammines (NH3 complexes) 6–8

Anion, noncoordinating 128, 395, 424, 430

Antimalarial drug 3

Antitumor drug 10

Apoenzyme 455

Aqua ions 4, 48

Aquacobalamin 443

Archaea (microorganisms) 458

Aromaticity 143, 155–158

Aryl complexes 71, 77, 79, 83–84, 94

Associative substitution 120–122

Asymmetric catalysis 226, 230, 231, 236–239, 240, 242
alkene hydrogenation 236, 395
in organic synthesis 383–384, 392–393, 395, 400–401

Atom economy 333, 343, 400

Back bonding 23–26, 81, 89–91, 144, 146, 149–50, 158, 204, 216, 291–293, 296, 303, 313, 414
in CO complexes 98–102
evidence for 25
in PR3 complexes 109–110
in sigma complexes 30–31, 90
“Barf” anion 83, 128, 395, 399

Benzyl complexes 143

Beta-elimination 72–75, 77, 85, 87, 198
of alkyl 137, 198, 429

Bioalkylation and dealkylation 448
INDEX

Biofuels 345
Bioinorganic chemistry 3, 436–462
Biomedical applications 463
Biomethylation reactions 444
Bioorganometallic chemistry 436–464
Biosynthesis, of methane 459
Bismuth donor ligands 33
Bite angle of chelate ligands 112, 173, 244, 396
Bond strengths, organometallic 92–94, 167, see also specific ligands
Bonding models
 for alkene complexes 134–136
 for alkyne complexes 139
 for allyl complexes 140
 for carbene complexes 291, 300
 for CO and its complexes 98–102
 for complexation in general 19–20
 for cyclopentadienyl complexes 147–150
 for diene complexes 144–145
 for metallocenes 149–150
 for paramagnetic organometallics 414
 for phosphine complexes 109–110
 reactivity rules based on 70, 88
Borane clusters 358
Boryl ligand 302
Bridging ligands 5, 42–43
 electron counting in 43, 46–47
 μ-symbol for 5
Buchwald–Hartwig reaction 249, 386, 390
Bulky groups, stabilization from 73, 76, 167
CF₃ group 78–79
C₆F₅ group 76
Carbene complexes 207, 296–310, 432
 agostic 298, 308
 in alkene metathesis 317–324
 bonding in 291, 300
 bridging in 305–306
 fluxionality in 301
 Fischer vs. Schrock type 290
 insertion into C–H bonds 393
 IR spectra 300
 NMR of 293–295, 300
Carbide clusters 82
Carbon dioxide, activation of 332
Carbon-hydrogen bond cleavage 336–342
Carbon monoxide, see also Carbonyls
 activation of 332
 double insertion of, apparent 192
 electronic structure of 98–102
 polarization on binding 99
Carbon monoxide dehydrogenase 458
Carbonate complex 8
Carbonyls, metal 16, 25, 64–65, 98–105, 125–127, 459, 461
 bond strengths (M–CO) 93
 bonding in 98–102
 bridging 104
 containing hydrides 86–87
 d⁰ 101
 first row, structures 41, 65
 migratory insertion involving 187–192
 infrared spectra of 64–65, 99, 101, 166, 276–9
 nucleophilic attack on 208
 photochemical substitution of 124–127
 preparation 102
 removal of CO from 103
 substitution in 119–124
Carbyne ligand 302–306, 423
Catalysis, homogeneous 1–3, 224–251
 acetic acid process 333
 acid, hidden, 253
 alkene metathesis 317, 320, 391
 asymmetric 236–241, 393–395
Catalysis, homogeneous (cont’d)
 carbonylation 396
 C–C coupling 248, 384
 C–H activation and functionalization 230, 251, 336, 393, 401
 CO₂ reduction 334
 cooperative 253
 enzymatic Ch. 16
 hydration of alkynes 215
 hydrocyanation 245
 hydroformylation 242
 hydrogen borrowing 343
 hydrogenation 233–242, 394
 hydrosilylation 246, 388
 isomerization 231–233, 235, 239, 244, 330
 isotope exchange 90
 kinetic competence 229
 living 319, 375
 organic applications 383–404
 oxidative 225, 250–251, 399
 polymerization of alkenes 324
 supported 372
 tests for homogeneity of 242
 thermodynamics 226
 Wacker process 212
 water gas shift 332
 water splitting 251
 yield, conversion and selectivity in 228
Catalytic cycles, general features of 224–229
Chain theory of complexation 6–7
Chatt cycle of N₂ reduction 453–454
Chauvin mechanism of alkene metathesis 320
C–H bond activation 167, 251, 336–342, 401–404, 460
Chelate definition 5
 trans-spanning 177
 wide bite angle 173
Chelate effect,
 Chemotherapy 463
Chromocene 150
CIDNP method 172
Click chemistry 405
Clusters, metal 82, 306, 354–364
 in biology 449–462
 descriptors (closo, nido, etc.) 360
 electron counting in 355–362
CO complexes, see Carbonyls
CO dehydrogenase 458
CO stretching frequencies 25, 65, 101–105
Cobaloximes 445
Coenzyme A 444
Coenzyme B 460
Coenzyme B₁₂ 442
Coenzyme M 460
Coenzymes 441
Complex and complexation chiral 8
definition 4
effects of complexation 61–63
changing metal 63
high spin and low spin 12–14
with lone pair donor ligands 29–31
net ionic charge, effect of 51, 65
optical activity 8
with π-bonding pair as donor 29–31
with σ-bonding pair as donor 29–31
Computational methods 110, 112, 156, 214, 229, 283–284
Cone angle 110, 116
 of Cp ligands 147
 of PR₃ 110–112
Coordination complexes 4–11
Coordination geometries, common 57
Coordination number 49, 57–58
Coordinatively inert and labile complexes 14, 120, 122
Corrin ring system 443
Cossee mechanism, for alkene polymerization 326
Counter ions, choice of 128
Dioxygen (O$_2$)
insertion of, into M–H 400
reactions involving 400
Directing effects, in alkene
hydrogenation 235
Disproportionation 127, 252, 335, 400
Dissociative substitution 115–120
Dodecahedral geometry 57, 58
Double insertion, of CO, apparent
192
Drugs, organometallic 464
Dynamic kinetic resolution (DKR) 395

Effective atomic number (EAN)
rule, in clusters 355
Eight coordination 57
Eighteen electron rule 40–50,
411–413, 425
ionic/covalent conventions for 40
limitations of 48
Electrochemical methods 88, 251,
281, 345, 371, 413, 426, 457
Electron counting 40–50, 355–362
different conventions for 40–50
of reagents 50
Electron paramagnetic resonance
(EPR) 420
Electronegativity 22, 27, 63, 428
Electroneutrality 27
Electrophilic addition and
abstraction 216–221
single electron transfer pathways
in 219–220
Eliminations, α, β, γ, and δ 72–75,
77, 198, 298, 304
Energy chemistry 344–346
Entropy of activation 167, 169
Enzymes 226, 237, 250, 439
Epoxidation, catalytic 401
Ethynyls, see Acetylides
EXAFS 442

Factor F$_{430}$ 460
fac- vs. mer-stereochemistry 34, 119
f-block metals 57, 195, 329, 411, 426
FeMo-co, in nitrogen fixation 450
Ferredoxin proteins 455
Ferrocene (FeCp$_2$) 54, 147–150, 464
Ferromagnetism 13
Fischer carbene 290–298, 365, 393
Five coordination 42, 57, 115–119,
121, 175–176, 234
Fluoro complexes (M–F) 85
Fluoroalkyls 76, 80
Fluxionality 59, 118, 148, 260, 265,
268, 270, 301, 424
Formation constants 6, 11
Formyl complexes 104
Four coordination 9, 17, 57, 93, 121,
312, 445
Free radicals, see Radicals
Frontier orbitals (HOMO and
LUMO) 26, 99, 144
Fullerene complexes 155–156
Geometries, typical for specific d^n
configurations 57
Green chemistry 3, 56, 128, 215,
224, 317–344
Green–Davies–Mingos rules
209–211
Green’s MLX nomenclature 43
Grubb’s catalyst, for alkene
metathesis 318, 323, 391
Halocarbons, as ligands 128
Hapticity changes in π complexes
140, 147, 155
Haptomers 155
Hard and soft ligands 10
Heck reaction 249, 384, 405
Heterolytic activation of H$_2$ 90
Hieber’s hydride (H$_2$Fe(CO)$_4$) 86
High field and low field ligands 16
High spin and low spin complexes
12
HOMO and LUMO 26, 99, 119
Homoleptic complexes 106–108,
139, 420
Hydrides, metal 86–89, 424, 463
acidity of 89–90
bond strengths of 92–93
INDEX

bridging in 46, 89, 356
characterization 86–87
crystallography 86, 279
H atom transfer in 88
IR spectra of 91
kinetic vs. thermodynamic protonation 90
NMR spectra of 86, 91
nonclassical structures in 90
photochemical substitution of 124–126
preparation and characterization 86–87
reactivity 63, 87–88
Hydroboration, catalysis 246
Hydrocyanation, catalysis of 245
Hydrogenases 461
Hydroformylation, catalysis of 242
Hydrogen bonding 21, 94
Hydrogenases 458, 461
Hydrogenation, catalysis of 233
Hydrosilylation, catalysis of 246
Hydrozirconation 193
Hypervalency 21

Indenyl complexes 122
Inert vs. labile complexes 14
Infrared spectroscopy 9, 64–65, 75, 276, see also specific ligands
of agostic alkyl complexes 75
of carbenes 300
of carbonyls 64–65, 99, 101, 166, 276–279
of hydrides and H₂ complexes 86, 91
of isonitriles 106
isotope labeling in 279
of metal oxos 312
of N₂ complexes 453
of NHCs 307
of nitrosyls 107
of thiocarbonyls 106

Insertion 78–80, 185–198
1,1 vs. 1,2 types 185–186
apparent 191
alternating, of ethylene/CO 197
in catalysis 224–248
of CO into M–H 190
comparison of M–H vs. M–R 195
coplanarity requirement in 1,2 case 193
double, of CO 192
enhanced rate with Lewis acid 190
enhanced rate by oxidation 190
involving alkenes 192–194, 249, 324–329
involving alkynes 194
involving dienes 196
involving carbon dioxide 197, 198, 333
involving carbonyls (migratory insertion) 185–192, 333, 459
involving fluoroalkenes 138
involving isonitriles 192
involving M–R 192–197
involving O₂ 196, 198, 250
involving radicals 196
involving SO₂ 186, 197
Lewis acid promoters for 190
mechanism of 187–189
of M–H vs. M–R 195
multiple 192, 325–330
oxidation as promoter for 190
in polymerization 324–329
regiochemistry of, M–H/alkene 193
syn vs. anti 194
Inter- vs. intramolecular reaction, test for 178
Interchange mechanism of substitution 122
Inversion of normal reactivity in ligands (umpolung) 209
Ion pairing 191
Ionic and covalent models, e counting and 40–50
Iron–sulfur proteins 455
Isolobal analogy 364
Isomerase reaction 444
Isomers, linkage and optical 7–8
Isonitriles (RNC) 105
Isotope labeling 166, 198, 200, 279, 285
Jahn–Teller distortion 15
Karplus relation 171
Kinetic isotope effect 285
Kinetic vs. thermodynamic products 90
Kinetic resolution 394
of CO insertion 187–188
of substitution 116, 120
Kumada coupling 388
L vs. X₂ binding 135, 292, 313
Lanthanide complexes 429–432
Lanthanide contraction 29
Ligand field theory 19, 41, 58–60
Ligands
bulky 73, 76, 85, 104, 110–111, 167
bridging 5
definition 4
effects of complexation 60
electron counting for 40–50
binding geometry like excited state 145
hard vs. soft 10–11
high and low field 16
polarization of on binding 61, 101
π-bonding, π-acid, π-donor 16, 23–26, 99–101
Linkage isomers 7
Living catalysts 319
Low and high spin forms 12
Magic numbers, in nanoclusters 369
Magnetic moment 428
Magnetic properties of complexes 17, 148, 150, 153
Main group compounds 21–23
Manganocene (MnCp₂) 150
Mass spectroscopy 285
Materials 371–378
bulk 372
electronic 375
MOFs 373
NLOs 376
OLEDs 377
organometallic polymers 374
POPs 373
porous 373
sensors 378
mer- vs. fac-stereochemistry 34, 119
Metal-to-ligand charge transfer 126
Metal–metal bonds 42, 354–370
homolysis 127, 426
multiple 363
Metal organic frameworks (MOFs) 373
Metalabenzenes 158
Metalaboranes 361
Metalacarboxylic acid (M-COOH) 333
Metalacycles, metal 82, 158, 180, 298, 301
Metalacyclopropane bonding model 135–136
Metalacenes (MCp₂) 150
bent 150
bonding in 149–150
in polymer synthesis 324
polymers containing 374
Metalloenzymes 439
Metalloles 158
Metals, Earth-abundant (cheap) 3
Metathesis, alkene 301, 309, 317–323
Chauvin mechanism for 320
Methane oxidation, catalytic 338
Methanogenesis 459
Microscopic reversibility 175, 473
Migratory insertion 185–192
Mizoroki–Heck reaction 249, 384, 405
MLX nomenclature 43
MO model for ligand binding, see Bonding model
Model studies, bioinorganic 445
Molecular electronics 375
Molecular recognition 440
Molecular wires 375
Mond, Ludwig, discovery of Ni(CO)₄ 98
Monsanto acetic acid process 333
Murai reaction 402
N₂, see Dinitrogen
N-Heterocyclic carbene (NHC) 113–115, 306–310
abnormal (mesoionic) NHC 115
detachment from metal by RE 307
Nanoparticles 368–371
Neutron diffraction 87, 91, 280
Nickel enzymes 457
Nickelocene (NiCp₂) 150
Nine coordination 59
Nineteen electron configuration 122–4, 127, 220, 375
Nitride complexes 452
Nitrogen fixation 449
Nitrogenase 449
NO complexes (linear and bent) 106–108, 122
IR stretching frequencies of 107
Noble gas configuration 40–42
Nonclassical hydrides (H₂ complex) 90
Noncoordinating anions 128, 395, 424, 430
Nonlinear optical materials (NLOs) 376
Noyori catalyst 395
Nuclear magnetic resonance spectroscopy 260–276
of alkene complexes 136
CIDNP effects in 172
coupling in 86, 91, 424
of dihydrogen complexes 91
of hydride complexes 86, 91
NOE effects in 272
of paramagnetic compounds 282, 413, 419
stereochemical information from 171
Nucleophilic abstraction 207–216
on alkynes 215
on CO by Et₃NO 208
effect of metal on tendency for 57, 60
on isonitriles 208
ligand hapticity changes caused by 205
rules for predicting products in 209–211
O₂, see Dioxygen
Octahedral geometry 4–5, 59
Odd-electron organometallics 17
Odd vs. even dⁿ configurations 17
OLED 2, 377
Oligomerization, catalysis of 324
Open shell systems 411
Orbitals
\[d, \text{ role in } M-L \text{ bonding} \] 11–21
\[f, \text{ role in } f \text{ block} \] 411
\[\pi^*, \text{ role in } M-L \text{ bonding} \] 23–25
\[\sigma^*, \text{ role in } M-L \text{ bonding} \] 30
\[\sigma^*, \text{ role in oxidative addition} \] 166
Organic light emitting diodes (OLEDs) 2, 377
Organoaluminum species 70
Organosilicon reagents 246
Organozinc reagents 69, 388
Outer sphere reactions 197, 240
Oxidase reactions, organometallic 250
Oxidation, accelerating substitution by 122
Oxidation state 45–48, 51, 64
ambiguities in assigning 47, 54, 292, 302, 303, 424
complexes of unusually high 420–426
and dⁿ configurations 49
limitation on maximum and minimum 56, 179, 412, 421
variation of ligand type with 32–33
Oxidative addition 77–79, 163–173
of alkane C–H bonds 340
binuclear 164, 172
concerted mechanism 166–168
ionic mechanism 172–173
radical mechanism 170–172
S_N2 mechanism 168–170
Oxidative coupling 180–181
Oxo complexes (M=O) 251, 300, 310–312, 425, 429
IR spectra 312
Oxo wall 311
Oxophilic character 84, 431
Oxygen donor ligands, see Alkoxides; Dioxygen; Oxo complexes

Palladium (II)
promotion of nucleophilic attack by 212–216
substitution 121
Para hydrogen induced polarization (PHIP) 275
Paramagnetic organometallics, bonding model 414
Paramagnetism 11, 411–424, 426–432
Pauson–Khand reaction 398
Pentadienyl complexes 153
Pentamethylcyclopentadienyl (Cp*), special features of 150, 152
Perfluoro ligands 79
Periodic table xvi
Periodic trends 28, 427
Phosphide (PR2) ligand 85
Phosphine ligands (PR3) 109–112
Photochemistry 124–127
Piano stools 147
Pincer ligands 56, 79, 113, 253, 312, 339–340
Platinum (II), substitution 121
Platinum drugs 464
Polar organometallics 70
Polarity of M–C bonds 71
Polarization of ligands 61, 99, 453
Polyene complexes 158, 159
stability to dissociation 159
Polyhydrides 424
Polymerization, alkene, catalysis of 324
Polymers
organic 324–326
organometallic 374
Pressure, effect on reaction rates 126
Problem solving, hints for 38, 473
Propargyl complexes 143
Proteins 437
Proton-coupled electron transfer (PCET) 251
Protonation 46, 61
kinetic vs. thermodynamic 90

Radicals
chain vs. nonchain reactions of organic 170–172
clock reactions of 172, 251
mechanistic pathways involving organic 170–172, 194, 196, 219
metal-centered 123, 170–172
ligand-centered 35, 283
solvents appropriate for reactions involving organic 172
Radioactivity 426, 432
Raman spectroscopy, resonance 442
RCM (ring-closing metathesis) 319
Reactivity of alkyls, factors governing 70–71
Real charge on atoms 64
Reduction, accelerating substitution by 123
Reductive elimination 76, 127, 163, 173–178, 239, 246, 249, 307
binuclear 179
C–O, C–N bond formation in 179, 249, 386
kinetics and mechanism 175–178
Reductive fragmentation 180–181
Regiochemistry in hydroformylation 242–244
of nucleophilic attack of π ligand 209–211
Relaxation in NMR work on metal complexes 264–265, 272–276
Rh(I), substitution 120
ROM (ring-opening metathesis) 319
ROMP (ring-opening metathesis of polymerization) 319, 323
Rubber, synthetic 331

Saturation, coordinative 72
Schrock carbene 290–293, 298–301, see also Carbene complexes
Schrock catalyst (for alkene metathesis) 318
sd
t model 21–23
Sensors 378
Seven coordination 57, 415
Seventeen electron configuration 41–42, 49, 122, 419, 426, 446
Shell Higher Olefins Process (SHOP) 324
Shilov chemistry (alkane reactions) 337
Sigma bond metathesis 179–180
Sigma complexes 89–92, see also \(\sigma\)-Complexes
Silyl complexes (SiR\(_3\)) 77, 84
Single electron transfer 219
Single molecule imaging 286
Single site catalyst 325
Six coordination 4–9, 57
Sixteen electron species, \(d^8\) metals preferring 49, 120
intermediates 107, 115
Skeletal electron pair theory (Wade’s rules) 358–363
Slip, of \(\pi\) ligands 122, 167
Soft vs. hard ligands 10
Solar cell 346
Solvents (and other weakly bound ligands) 121, 127–128
Spectator vs. actor ligands 33
Spin saturation transfer 271
Spin state changes 413
effect on reaction rates 418
Splitting, crystal field and ligand field 11–16
Square planar geometry 5, 9, 17–18, 49–50, 58–60, 76, 120, 166, 176–177, 416, 459
distorted 167
typical metals that adopt 49
Square pyramidal 17–18, 59, 117, 169, 268
Stability, of alkyls 70–75
of polyene and polyenyls 159
Stereochemistry of 1,2-insertion 194
determining 260–268, 276–279
electrophilic attack on an alkyl 219
fac vs. mer 34–35
of hydrogenation 233–234
at metal 101, 117, 121
of migratory insertion 189
of nucleophilic attack on a ligand 209–211
of substitution 117, 121
Stereochemical representation, of molecules 156
Steric effects 73, 76, 85, 104,
110–111, 167, 299–300, 307, 342,
421, 424
Steric saturation 427–430
Strained hydrocarbons, enhanced binding and reactivity of 136–137
Substitution 115–129
associative 120
dissociative 115
effect of pressure 126
kinetics of 116, 120–122
ligand rearrangement in 122
mechanism 116, 120–122
photochemical 124
radical mediated 124
redox catalysis of 122–124
stereochemistry of 5, 117, 121
Subunits (of enzymes) 437
Supramolecular effects 94
Sulfur dioxide, insertion reactions involving 197
Supported organometallic chemistry, on polymer 251–252
Surface organometallic chemistry 252–253
Suzuki–Miyaura coupling 386, 388
Symbiotic and antisymbiotic effects 63
T- vs. Y-geometry 117–118
Technetium imaging agents 464
Tetrahedral enforcer ligand, Tp as 154
Thiocarbonyl complexes (CS) 106
Thiolate (SR) 85, 448, 458, 460–461
Three coordination 57, 175–177, 234, 248, 429
Titanocene dichloride (Cp₂TiCl₂) 45, 59, 150–151
Tolman electronic and steric parameters
 for NHCs 307
 for PR₃ 110–112
Trace elements in biology 439
 trans effect 9
 rationale 117–121
 use in synthesis 10
 trans influence 10
Transfer hydrogenation 241, 286, 465
Transition state analogue 440
Transmetalation 78
Tricapped trigonal prism 58
Trigonal bipyramidal geometry 58, 117–121, 167, 176, 268, 356
Trigonal prismatic geometry 55, 58, 74
Trimethylenemethane as ligand 146
Trimethylsilylmethyl complexes 77
Tris(pyrazolyl)borates 154
Tungsten hexamethyl 73, 91
Turnover limiting step 228
Twenty electron species 122
Two coordination 57
2-electron, 3-center bond 30
Unsaturation, coordinative 75
Uranocene 433
UV-visible spectroscopy 285, 429, 432
Vacant site, definition 72, 75
Vanadium, alternative nitrogenase containing 450
Vanadocene (Cp₂V) 150
Vinyl complexes 81, 84
 isomerization 84
 synthesis 81
 π²-form 84
Vinylidene 139, 295
Wacker Process 212–215
Wade’s rules (for clusters) 358–363
Water, as ligand 4
Water gas shift reaction 332
Water oxidation catalysis 251
Werner complexes 4–9
X-ray crystallography 86–87, 279
 of diene complexes 144
 of fullerene complexes 156
 of hydrides and H₂ complexes 86–87
 of PR₃ complexes 118
Y- vs. T-geometry 117–118
Zeise’s salt 134
Zeolites 373
Zero electron ligands and reagents 21, 47, 50, 138, 216–217
Ziegler–Natta polymerization catalysis 326
Δ, in crystal field and ligand field models 12–20
 effect of metal on 16
 π-Acid (π-acceptor) ligand 19–25
 CO as 98–105
 PR₃ as 109–112
 π-Donor ligand 26–27
 alkoxide as 85
 amide as 85
 halide as 94
 σ-CAM 336
 σ-Complexes 30–31, 75, 89–92
 as reaction intermediates 166