Contents

Contributors, vii
Preface to the Second Edition, ix
Reviews of the First Edition, x
Acknowledgments and Dedication, xi
About the Companion Website, xii

Introduction, 1

1 Overview of Cancer Biology, 3
 Michael Khan and Stella Pelengaris
 - Introduction, 5
 - Cancer incidence and epidemiology, 8
 - Towards a definition of cancer, 8
 - Causes of cancer, 16
 - Cancer is a genetic disease, 21
 - Cancers (and Darwin’s finches) evolve by mutation and natural selection, 21
 - Blame the parents – inherited single gene defects and susceptibility to cancer, 21
 - The cancer “roadmap” – What kinds of genes are epimutated in cancer?, 23
 - Viruses and the beginnings of cancer biology, 25
 - Hens and teeth or bears and woods? The hens have it – cancer is rare, 25
 - The barriers to cancer, 25
 - What is the secret of cancer development… “timing”, 28
 - Location, location, location – the cancer environment: nanny or spartan state, 28
 - Cancer goes agricultural, 29
 - Cancer superhighways – blood vessels and lymphatics, 31
 - On your bike and turn the lights off before you go, 31
 - Catching cancer, 31
 - Hammering the hallmarks, 32
 - Painting a portrait of cancer, 33
 - The drugs don’t work, 34
 - Mechanism of origin rather than cell of origin – towards a new functional taxonomy of cancer, 35
 - Is it worth it?, 36
 - Conclusions and future directions, 36
 - Bibliography, 37
 - Appendix 1.1 History of cancer, 40

2 The Burden of Cancer, 43
 William P. Steward and Anne L. Thomas
 - Introduction, 43
 - Lung cancer, 45
 - Breast cancer, 49
 - Colorectal cancer, 53
 - Carcinoma of the prostate, 56
 - Renal carcinoma, 57
 - Skin cancer, 58
 - Carcinoma of the cervix, 60
 - Hematological malignancies, 60
 - Conclusions and future directions, 63
 - Outstanding questions, 63
 - Bibliography, 64
 - Questions for student review, 66

3 Nature and Nurture in Oncogenesis, 67
 Michael Khan and Stella Pelengaris
 - Introduction, 69
 - Risk factors, 73
 - Preventing cancers, 76
 - Cancer genetics – in depth, 78
 - Cancer genomics, 87
 - Gene–environment interactions, 89
 - Mutations and treatment, 89
 - Chemoprevention of cancer, 90
 - Risk factors act in combination, 90
 - Environmental causes of cancer, 93
 - The clinical staging and histological examination of cancer, 101
 - Screening and biomarkers, 102
 - Somatic gene mutations, epigenetic alterations and multistage tumorigenesis, 105
 - Conclusions and future directions, 107
 - Outstanding questions, 107
 - Bibliography, 107
 - Questions for student review, 109

4 DNA Replication and the Cell Cycle, 111
 Stella Pelengaris and Michael Khan
 - Introduction, 112
 - The cell cycle – overview, 114
 - Phases of the cell cycle, 120
 - The cell-cycle engine: cyclins and kinases, 123
 - Regulation by degradation, 126
 - Regulation by transcription, 129
 - MicroRNAs and the cell cycle, 131
 - Chromatin, 131
 - DNA replication and mitosis, 131
 - Checkpoints – putting breaks on the cell-cycle engine, 135
 - The DNA damage response (DDR), 136
10 Genetic Instability, Chromosomes, and Repair, 314
 Michael Khan

 Introduction, 316
 Telomere attrition and genomic instability, 321
 Sensing DNA damage, 323
 Repairing DNA damage, 325
 Checkpoints, 336
 Microsatellites and minisatellites, 343
 Chaperones and genomic instability, 344
 Cancer susceptibility syndromes involving genetic instability, 345
 Genomic instability and colon cancer, 346
 Conclusions and future directions, 346
 Outstanding questions, 347
 Bibliography, 347
 Questions for student review, 349

11 There Is More to Cancer than Genetics: Regulation of Gene and Protein Expression by Epigenetic Factors, Small Regulatory RNAs, and Protein Stability, 350
 Stella Pelengaris and Michael Khan

 Introduction, 351
 The language of epigenetics, 353
 Epigenetics, 353
 Methylation of DNA, 359
 Acetylation of histones and other posttranslational modifications, 360
 Epigenetics and cancer, 362
 CIMP and MIN and the “mutator phenotype”, 365
 Imprinting and loss of imprinting, 366
 Clinical use of epigenetics, 367
 Regulation of translation, 368
 Noncoding RNA and RNA interference, 369
 Therapeutic and research potential of RNAi, 371
 Treatments based on miRNA, 373
 Regulating the proteins, 373
 Therapeutic inhibition of the proteasome, 376
 Receptor degradation, 377
 Wrestling with protein transit – the role of SUMO and the promyelocytic leukemia (PML) body, 377
 Conclusions and future directions, 380
 Outstanding questions, 380
 Bibliography, 381
 Questions for student review, 382

12 Cell Adhesion in Cancer, 383
 Charles H. Streuli

 Introduction, 383
 Adhesive interactions with the extracellular matrix, 384
 Cell–cell interactions, 393
 Critical steps in the dissemination of metastases, 395
 E-cadherin downregulation in cancer leads to migration, 399
 Epithelial–mesenchymal transitions, 401
 Integrins, metalloproteinases, and cell invasion, 402
 Survival in an inappropriate environment, 404
 Conclusions, 406
 Outstanding questions, 406
 Bibliography, 407
 Questions for student review, 409

13 Tumor Immunity and Immunotherapy, 410
 Cassian Yee

 Introduction, 410
 Endogenous immune response, 411
 Effector cells in tumor immunity, 413
 Tumor antigens, 417
 Antigen-specific therapy of cancer, 420
 Clinical trials in vaccine therapy, 422
 Cytokine therapy of cancer, 423
 Tumor immune evasion, 424
 Clinical trials in immunomodulatory therapy, 425
 Conclusions, 425
 Bibliography, 426
 Questions for student review, 427

14 Tumor Angiogenesis, 429
 Christiana Ruhrberg

 Introduction, 429
 General principles of new vessel growth, 430
 Pathological neovascularization: tumor vessels, 430
 Basic concepts in tumor angiogenesis: the angiogenic switch, 432
 Vascular growth and differentiation factors: stimulators of the angiogenic switch, 432
 Role of inhibitors in angiogenesis, 436
 Clinical outcomes and future directions, 436
 Acknowledgments, 437
 Bibliography, 437
 Questions for student review, 437

15 Cancer Chemistry: Designing New Drugs for Cancer Treatment, 438
 Ana M. Pizarro and Peter J. Sadler

 Introduction, 439
 Historical perspective, 439
 The drug discovery process and preclinical development of a drug, 442
 Questions remaining, 457
 Conclusions and future directions, 457
 Bibliography, 458
 Questions for student review, 459

16 Biologically Targeted Agents from Bench to Bedside, 461
 Michael Khan, Peter Sadler, Ana M. Pizarro, and Stella Pelengaris

 Introduction, 463
 Targeted therapies, 465
 Cancer cell heterogeneity, 466
 Finding the molecular targets, 468
 Tumor regression in mice by inactivating single oncogenes, 468
 Targeted cancer therapies, 473
 Targeting oncogenes to treat cancer?, 473
 Questions for student review, 475
The concept of synthetic lethality and collateral vulnerability, 475
Clinical progress in biological and molecular targeted therapies, 476
Molecular targeted drugs – an inventory, 479
DNA damage responses, 490
Transcription factors, 491
Targeting epigenetic regulation of gene expression, 492
Hitting the extrinsic support network and preventing spread, 493
Gene therapy, antisense, and siRNA, 495
Resistance to targeted therapies – intrinsic resistance and emergence of secondary pathways and tumor escape, 497
Negative feedback loops and failure of targeted therapies, 500
Biomarkers to identify optimal treatments and tailored therapies, 501
Pharmacogenetics and pharmacogenomics, 505
Clinical trials in cancer, 506
Conclusions and future directions, 506
Bibliography, 507
Questions for student review, 508

17 The Diagnosis of Cancer, 509
Anne L. Thomas, Bruno Morgan, and William P. Steward
Introduction, 509
Clinical manifestations, 510
Investigations in oncological practice, 511
Non-invasive imaging techniques, 516
Future novel uses of imaging, 521
Proteomics and microarrays, 523
Circulating tumor cells, 523
Disease staging, 523
Conclusions and future directions, 524
Bibliography, 524
Questions for student review, 525

18 Treatment of Cancer: Chemotherapy and Radiotherapy, 526
Anne L. Thomas, J.P. Sage, and William P. Steward
Introduction, 526
Radiotherapy physics, 526
Radiobiology, 527
Treatment planning, 528
Recent advances, 529
Chemoradiation, 530
Conclusion, 540
Bibliography, 542
Questions for student review, 543

19 Caring for the Cancer Patient, 544
Nicky Rudd and Esther Waterhouse
Introduction, 544
Key concepts, 544
Communication with the cancer patient, 544
When is palliative care appropriate for cancer patients?, 545
Palliative care assessment, 545
Symptom control, 545
Respiratory symptoms, 547
Nausea and vomiting, 547
Bowel obstruction, 548
Constipation, 549
Fatigue, 549
Cachexia and anorexia, 549
Psychological problems, 549
The dying patient, 550
Supportive care, 550
An example of the care of a cancer patient, 551
Questions remaining, 551
Conclusions and future directions, 551
Bibliography, 552
Questions for student review, 553

20 Systems Biology of Cancer, 554
Walter Schubert, Norbert C.J. de Wit, and Peter Walden
Introduction, 556
Information flow in cells, 556
Model organisms and cancer models, 557
Array-based technologies: genomics, epigenomics, and transcriptomics, 559
SNPs, the HapMap, and the identification of cancer genes, 559
Cancer mRNA expression analysis, 562
CGH arrays, CpG island microarrays, and ChIP-on-Chip, 564
Next-generation sequencing, 564
Proteomics, 566
Posttranslational modifications, 567
Protein complexes and cellular networks, 569
Clinical applications of proteomics, 570
Toponomics: investigating the protein network code of cells and tissues, 571
Processing the images from the cyclical imaging procedures, 571
Structure, code, and semantics of the toponome: a high-dimensional combinatorial problem, 573
Detecting a cell surface protein network code: lessons from a tumor cell, 575
The molecular face of cells in diseases, 576
Individualized medicine and tailored therapies, 576
Discussion and conclusion, 579
Bibliography, 579
Internet resources, 581
Questions for student review, 582
Appendix 20.1 Techniques for the generation of genetically altered mouse models of cancer, 582

Glossary, 585
Answers to Questions, 597
Index, 603