INTRODUCTION

Michael J. Barratt and Donald E. Frail

References

PART I DRUG REPOSITIONING: BUSINESS CASE, STRATEGIES, AND OPERATIONAL CONSIDERATIONS

1. Drug Repositioning: The Business Case and Current Strategies to Repurpose Shelved Candidates and Marketed Drugs

John Arrowsmith and Richard Harrison

1.1. Introduction
1.2. Is Pharmaceutical R&D Failing?
1.3. Why Are Drugs Failing?
1.4. Overcoming Failures
1.5. Drug Repurposing
1.5.1. The Case for Repurposing
1.6. Examples of Successful Repurposing
1.6.1. Drug Candidates That Lacked Efficacy in their Primary Indications
1.6.2. Drugs That Failed for Safety Reasons in the Primary Patient Populations
1.6.3. Drug Candidates That Were Discontinued for Strategic Reasons
1.7. Repurposing Existing Drugs
1.7.1. Line Extensions
1.7.2. New Indications for Existing Drugs
CONTENTS

1.8. Orphan Drugs 28
1.9. Conclusions 29
References 30

2. Opportunities and Challenges Associated with Developing Additional Indications for Clinical Development Candidates and Marketed Drugs 33
Donald E. Frail and Michael J. Barratt

2.1. Introduction 33
2.2. The Value Proposition 34
2.3. Managing the Risk: Organizational Challenges 36
2.4. Practical Considerations, Real Risks, and Mitigation Strategies When Developing Additional Indications for a Candidate or Marketed Drug 38
2.4.1. Safety 38
2.4.2. Preclinical Efficacy Testing 39
2.4.3. Pharmaceutical Sciences Activities: Formulation, Drug Supply, and Packaging 40
2.4.4. Regulatory 41
2.4.5. Exclusivity Protection 42
2.4.6. Parallel Development Programs 46
2.4.7. Pricing, Reimbursement, and Prescribing Practices 47
2.5. Conclusion 49
References 50

3. Clinical and Operational Considerations in Repositioning Marketed Drugs and Drug Candidates 53
Damian O’Connell, David J. Sequeira, and Maria L. Miller

3.1. Introduction 53
3.2. Challenges and Opportunities in Establishing a Drug Repositioning Portfolio: Marketed Drug, Lead Candidate, or Backup? 54
3.2.1. Proof-of-Concept (PoC) Trial Design 54
3.3. Proof-of-Mechanism (PoM) for Repositioned Compounds and the Use of Clinical Probes 57
3.4. Implications of Drug Repositioning for Clinical Planning and Operations 58
3.4.1. NCE/NBE 59
3.4.2. Approved Drugs 61
3.5. Conclusion 63
Acknowledgments 64
References 64
4. Regulatory Considerations and Strategies for Drug Repositioning

Ken Phelps

4.1. Introduction 65
4.2. History/Birth of the 505(b)(2) 67
  4.2.1. An Era of Increased Scrutiny 67
  4.2.2. The Birth of 505(b)(2) 68
  4.2.3. Defining 505(b)(2) 68
  4.2.4. ANDA Suitability Petition Versus 505(b)(2) 69
  4.2.5. The Pediatric Rule 70
4.3. Sources of Information Cited in 505(b)(2) Submissions 71
  4.3.1. Standards of Acceptability for Referenced Information 71
  4.3.2. Defining “Substantial Evidence” of Efficacy 71
  4.3.3. The Quantity of Evidence Required 72
  4.3.4. Documenting the Quality of Evidence Supporting an Effectiveness Claim 73
  4.3.5. Reliance on Published Reports of Studies 74
  4.3.6. Submission of Published Literature Reports Alone 74
  4.3.7. Reliance on Studies with Limited Monitoring 75
  4.3.8. FDA Labeling and Summary Basis of Approval (SBA) 75
4.4. Where to Find the Public Information Needed for 505(b)(2) Submissions 76
  4.4.1. Publications 76
  4.4.2. Databases 77
4.5. Intellectual Property and Data Exclusivity 78
4.6. 505(b)(2) Case Studies 79
  4.6.1. NovoLog®—Approval for a New Route for Insulin Administration, Based on a Single Clinical Study 80
  4.6.2. Makena®—Use of a Publicly Funded Study 80
  4.6.3. TRIESENCE®—An NDA with Minimal New Studies 82
  4.6.4. COLCrys®—A Drug Marketed for Centuries without Proper Use and Understanding, Finally Approved Under 505(b)(2) 83
  4.6.5. Ulesfa™—A Common Cosmetic Excipient Given New Molecular Entity Status Under 505(b)(2) 83
  4.6.6. CAFcit®—An Example of a Common Commodity Approved Under 505(b)(2) as a New Molecular Entity and Given Orphan Status 84
4.7. Prodrugs

4.7.1. Case Study: Valacyclovir—An Example of a Type IB Prodrug

4.8. Summary

References

PART II APPLICATION OF TECHNOLOGY PLATFORMS TO UNCOVER NEW INDICATIONS AND REPURPOSE EXISTING DRUGS

5. Computational and Bioinformatic Strategies for Drug Repositioning

Richard Mazzarella and Craig Webb

5.1. Introduction

5.2. Knowledge Mining and Integration Strategies

5.2.1. Genetic Analysis Methods

5.2.2. Connectivity Map Strategy

5.2.3. Network Analysis Methods

5.3. Case Study: Application of Computational Drug Repositioning Approaches in the Van Andel Research Institute Personalized Medicine Initiative

5.4. Summary and Future Directions

References

6. Mining Scientific and Clinical Databases to Identify Novel Uses for Existing Drugs

Christos Andronis, Anuj Sharma, Spyros Deftereos, Vassilis Virvilis, Ourania Konstanti, Andreas Persidis, and Aris Persidis

6.1. Introduction

6.2. Data Sources

6.2.1. Bioinformatics-Related Resources

6.2.2. Microarray Repositories

6.2.3. Pathway Databases

6.2.4. Cheminformatics-Related Resources

6.2.5. Drug Target Space

6.2.6. Drug and Disease Data Sources

6.3. Ontologies

6.3.1. The Medical Subject Headings (MeSH) Thesaurus

6.3.2. UMLS

6.4. Literature Corpora and Mining

6.4.1. Information Extraction

6.4.2. Publicly Available Literature Mining Corpora
6.5. Strategies to Infer Novel Associations between Drugs, Drug Targets, and Human Diseases: Case Studies 148
   6.5.1. Graph and Machine Learning Approaches Integrating Chemical Data 148
   6.5.2. Gene Expression Profiling and Machine Learning 152
   6.5.3. Structural Data and Machine Learning 152
   6.5.4. Text Mining 153
   6.5.5. Ontology-Based Approaches 155

6.6. Further Reading 156
6.7. Closing Remarks 156
References 157

7. Predicting the Polypharmacology of Drugs: Identifying New Uses through Chemoinformatics, Structural Informatics, and Molecular Modeling-Based Approaches 163
   Li Xie, Sarah L. Kinnings, Lei Xie, and Philip E. Bourne
   7.1. Introduction 163
   7.2. The Concept of Polypharmacology and Its Relationship to Drug Resistance, Side Effects, and Drug Repositioning 164
   7.3. The Importance of Drug Repositioning in the Pharmaceutical Industry 168
   7.4. Chemical and Protein Structure-Based Approaches 170
      7.4.1. Ligand Similarity-Based Approaches 170
      7.4.2. Ligand Binding Site Similarity-Based Approaches 177
      7.4.3. Structure-Based Virtual Ligand Screening 185
   7.5. Molecular Activity Similarity-Based Methods 188
   7.6. Other Approaches through Data and Text Mining 192
   7.7. Conclusion 193
   References 194

8. Systematic Phenotypic Screening for Novel Synergistic Combinations: A New Paradigm for Repositioning Existing Drugs 207
   Margaret S. Lee
   8.1. Introduction 207
   8.2. Fundamental Approaches 208
   8.3. Keys to Success 211
      8.3.1. What’s in a Model? 211
      8.3.2. Complex Biology 216
      8.3.3. Screening Operations 220
      8.3.4. Data Collection and Analysis 224
8.4. Opportunities and Challenges in Combination Drug Development
  8.4.1. Intellectual Property
  8.4.2. Reverse Pharmacology
  8.4.3. Preclinical Translation
  8.4.4. Embodiment of the Drug Product
  8.4.5. Clinical Development

8.5. Case Studies
  8.5.1. Synavive™—The Fixed Dose Combination of Prednisolone and Dipyridamole
  8.5.2. Adenosine A2A Receptor Agonist Synergies

8.6. Concluding Remarks

Acknowledgments
References

9. Phenotypic In Vivo Screening to Identify New, Unpredicted Indications for Existing Drugs and Drug Candidates

Michael S. Saporito, Christopher A. Lipinski, and Andrew G. Reaume

9.1. Introduction

9.2. Settings for In Vivo Drug Repositioning
  9.2.1. Post-Approval Clinical Studies
  9.2.2. Preapproval Clinical Studies
  9.2.3. Predevelopment In Vivo Studies

9.3. In Vivo Models
  9.3.1. Target-Based In Vivo Models
  9.3.2. Pathology-Based In Vivo Models

9.4. Advantages of Compound Screening in Phenotypic In Vivo Models
  9.4.1. Broad Target Screening
  9.4.2. CNS Diseases
  9.4.3. Network Modulation and Polypharmacology

9.5. Design of an Optimal Drug Repositioning Platform
  9.5.1. Evolution of High-Throughput Focused Phenotypic Strategies
  9.5.2. Low-Throughput, Broad Spectrum Strategies
  9.5.3. therataRECE®: A High-Throughput, Broad Therapeutic Area Approach
  9.5.4. Design of the therataRECE® Platform

9.6. Results from Phenotypic Screening Studies
  9.6.1. On-Target Activities
  9.6.2. Off-Target Activities

9.7. Compound Selection for Drug Repositioning
9.8. Exclusivity Strategies for Repositioned Drugs Identified by Phenotypic Screening 281

9.9. Summary 282

References 283

10. Old Drugs Yield New Discoveries: Examples from the Prodrug, Chiral Switch, and Site-Selective Deuteration Strategies 291

Adam J. Morgan, Bhaumik A. Pandya, Craig E. Masse, and Scott L. Harbeson

10.1. Introduction 291

10.2. Prodrug Approach 292

10.2.1. Introduction 292

10.2.2. Fosamprenavir (Lexiva®) 294

10.2.3. Lisdexamfetamine (Vyvanse®) 296

10.2.4. Fospropofol (Lusedra®) 297

10.2.5. Paliperidone Palmitate (Invega® Sustenna®) 299

10.2.6. Gabapentin Enacarbil (Horizant®) 301

10.2.7. Conclusions 303

10.3. Chiral Switch Approach 303

10.3.1. Introduction 303

10.3.2. Omeprazole (Prilosec®) to Esomeprazole (Nexium®) 306

10.3.3. d,l-threo-Methylphenidate HCl (Ritalin®) to d-threo-Methylphenidate HCl (Focalin®) 309

10.3.4. Citalopram (Celexa®) to Escitalopram (Lexapro®) 310

10.3.5. Cetirizine (Zyrtec®) to Levocetrizine (Xyzal®) 312

10.3.6. Atracurium (Tracrium®) to Cisatracurium (Nimbex®) 315

10.3.7. Bupivacaine (Marcaine®/Sensorcaine®) to Levobupivacaine (Chirocaine®) 317

10.3.8. Conclusion 318

10.4. Site-Selective Deuteration Approach 319

10.4.1. Introduction 319

10.4.2. Primary Deuterium Isotope Effect 319

10.4.3. Deuterium Effects upon Pharmacology, Metabolism, and Pharmacokinetics 321

10.4.4. CTP-518, Deuterated Atazanavir 325

10.4.5. BDD-10103, Deuterated Tolperisone 326

10.4.6. SD-254, Deuterated Venlafaxine 327

10.4.7. Fludalanine (MK-641) 328

10.4.8. CTP-347, Deuterated Paroxetine 329

10.5. Conclusion 331

References 332
PART III  ACADEMIC AND NONPROFIT INITIATIVES
AND THE ROLE OF ALLIANCES IN THE DRUG
REPOSITIONING INDUSTRY  345

11. Repurposing Drugs for Tropical Diseases: Case Studies and
Open-Source Screening Initiatives  347

Curtis R. Chong

11.1. Introduction  347
11.2. Drug Development for Neglected Diseases  348
11.3. Drug Repurposing in Malaria
   11.3.1. Dapsone  352
   11.3.2. Fosmidomycin  353
   11.3.3. Pafuramidine (DB289)  354
11.4. Drug Repurposing in Leishmania  355
   11.4.1. Miltefosine  355
   11.4.2. Amphotericin  356
   11.4.3. Paromomycin  357
11.5. Drug Repurposing in African Trypanosomiasis (Sleeping
   Sickness)
   11.5.1. Efornithine  358
11.6. Open-Source Screening Initiatives—A Systematic
   Approach to Identifying New Uses for Existing Drugs  361
11.7. High-Throughput Screening of Existing Drugs for
   Tropical Diseases: The Johns Hopkins Clinical Compound
   Screening Initiative  362
11.8. Identification of Astemizole as an Antimalarial Agent by
   Screening a Clinical Compound Library  363
11.9. Screening of Existing Drug Libraries for Other
   Tropical Diseases  368
11.10. Conclusions and Future Directions  372
     References  373

12. Drug Repositioning Efforts by Nonprofit Foundations  389

Donald E. Frail

12.1. Introduction  389

12.2. Repositioning of Drugs for Hematological Malignancies:
     Perspective from the Leukemia & Lymphoma Society
     Louis DeGennaro, Aaron Schimmer, James Kasper, and
     Richard Winneker
     12.2.1. Introduction  391
     12.2.2. The Hematological Malignancies  391
     12.2.3. The Leukemia & Lymphoma Society (LLS)  392
     12.2.4. The Therapy Acceleration Program (TAP)
     of the LLS  392
12.2.5. Biotechnology Accelerator (BA) Division 392
12.2.6. Clinical Trials (CT) Division 393
12.2.7. Academic Concierge (AC) Division 393
12.2.8. Partnering to Reposition a Drug to Treat Hematological Malignancies—A Case Study of Ciclopirox Olamine (CPX) 395
12.2.9. Summary and Lessons Learned 399

12.3. Repositioning Drugs for Parkinson’s Disease:
Perspective from the Michael J. Fox Foundation 399
Todd B. Sherer, Alison Urkowitz, and Kuldip D. Dave
12.3.1. Parkinson’s Disease: Research Challenges and Opportunities 399
12.3.2. The Michael J. Fox Foundation for Parkinson’s Research 401
12.3.3. MJFF’s Work in Drug Repositioning 403
12.3.4. Repositioning Drugs for PD: Disease-Modifying Therapy Case Studies 405
12.3.5. Repositioning Drugs for PD: Symptomatic Treatments for PD 409
12.3.6. An Open, Investigator-Initiated Solicitation: Repositioning Drugs for PD 2011 413
12.3.7. Conclusions from MJFF Drug Repositioning Efforts for PD 417

12.4. Repositioning Drugs for Polycystic Kidney Disease:
Perspectives from the Polycystic Kidney Disease Foundation 418
Jill Panetta and John McCall
12.4.1. Introduction: Accelerating Treatments for Patients (ATP) Program 418
12.4.2. PKD 418
12.4.3. Drug Repurposing: De-Risking and Expediting the Drug Discovery and Development Process 420
12.4.4. The PKD Foundation Methodology 421
12.4.5. Lessons Learned To Date 425
References 426

Aris Persidis and Elizabeth T. Stark

13.1. Introduction 433
13.2. Large Pharmaceutical Companies 434
13.2.1. Extracting Maximum Value from the R&D Portfolio 434
13.2.2. Sharing Financial Risk 435
13.2.3. Speed to Market 436
13.2.4. Loss of Exclusivity 436
13.3. Franchise Growth for Specialty Pharmaceutical Companies 437
13.4. Small Biotechnology Companies—Reducing the Risk of Company Failure 438
   13.4.1. Case Studies 438
13.5. Expanding the Value Proposition for Venture Capital 439
13.6. Speed and Safety for Patient Advocacy Groups 440
13.7. Academia—Access to Drugs for Research Use 441
13.8. Future Prospects for Business Deals in the Repositioning Industry 441
References 443

   Akinori Mochizuki and Makiko Aoyama
   14.1. Introduction 445
   14.2. Historical Perspective 446
   14.3. DRP® 447
      14.3.1. Knowledge-Base Versus Serendipitous Screening 449
      14.3.2. In-House Versus Collaboration 449
      14.3.3. High-Throughput Screening (In Vitro) Versus Animal Model 450
      14.3.4. Marketed Drug Versus Halted Drug 450
   14.4. Accessing Halted Compounds 451
   14.5. Establishing a Strong Screening Network 452
   14.6. Patenting 453
   14.7. Limitations 453
      14.7.1. Compound Material 453
      14.7.2. Dependence on Screening Partners 454
      14.7.3. Patent Ownership 454
      14.7.4. Value Capture of Findings Outside of Therapeutic Focus 454
   14.8. Long-Term Perspective—Future of Repositioning 454
   14.9. Conclusion 455

APPENDIX ADDITIONAL DRUG REPOSITIONING RESOURCES AND LINKS 457
   Mark A. Mitchell and Michael J. Barratt

INDEX 469