Index

2-dimensional consistent semi-martingale copula 213–14
2-dimensional semi-martingale copula 213–14
2-increasing requirement of copula functions 12–47, 77
absolutely continuous 43–5, 82–3, 111–13, 166, 229
ABSs see asset-backed securities
ABX credit indices 160
active fund managers 193–202
see also asset managers
actuarial science 23, 170
additive processes 121
aggregation functions
C-convolutions 187–9, 191–3, 194–202, 203–6
concepts 122–5, 179–80, 181, 185–206, 210–12
alpha 121
see also excess returns
alternative investments 153–4, 204–6
see also hedge funds; private equity funds
Altiplanos 124–5, 126, 130–2, 148–50
see also barrier . . . European . . .
with memory features 130–2
AND/OR long-short correlation rule 27–9, 124
appendices 215–43
arbitrage 2–3, 4, 15–16, 28, 88–9, 132–3, 137–8, 148–52, 153–4, 163
see also regulatory . . .
arbitrage-free approach to pricing 2–3, 4, 15–16, 88–9, 132–3, 148–52
Archiean copulas 31–4, 35–8, 78–9, 92–3, 103–7, 111–19, 123–52, 170–1, 179–80, 184–5, 189–93, 199, 210
see also Clayton . . .; copula functions;
Frank . . .; Gumbel . .
credit risk models 170–1, 179–80
definitions 32–3, 78–9, 170–1, 190, 210
Kendall function 33–4, 142–52, 184–5
ARMA model 5–6
Asian options 125–6
asset allocations 1–2, 4, 181–206
see also capital . .
asset classes, types 2–3
asset and liability management (ALM) 181–2
see also Value-at-Risk
asset managers 1–2, 121, 181–206
HM 195–202
market-neutral funds 201–2
performance attribution analysis 194–202
problems 1–2
real-world asset management 1–2, 121, 181–206
returns 193–202
risk management 193–202
semi-parametric models 200–2
VaR 194–5
asset prices
see also pricing
dynamics 49–89, 102–7, 121, 127–52
asset swaps 154–5
asset-backed securities (ABSs) 156–8
asymptotic analysis 62, 102–10, 163–4, 170–2, 211–12
asymptotic independence 62, 211–12
asymptotic normality 102–10
at-the-money options (ATM) 16
atoms 43
attachment of the tranche 157
attribution concepts 186–7
autocorrelations 49, 63, 113–16
see also autoregression models; correlation . .
definition 49
autoregression models 5–8, 93–9
see also ARMA . . .; GARCH . . .; VARMA . . .
linear QAR models 93
non-linear quantile autoregression 93–9
Bachelier model of stock price movements 49–50
Banach spaces 228–9, 236–7
see also convergence . . .
banks 1, 153–80, 182–3
see also credit . . .; debt . . .
capital adequacy requirements 182–3
global financial crisis from 2007 1, 153, 161–2
barrier Altiplanos 126, 148–50
barrier options 125–6, 142–4
base correlation see also correlation skew
definition 163
Basel I agreements 153–4
basket credit derivatives 29, 121, 156–7
see also first-to-default . . .; nth-to-default . . .
definition 156
basket equity derivatives 25–6, 29, 121, 123–5, 137–52
basket equity notes 123–5
basket options 151–2
Bayes’ theorem 27, 39–40
Bayesian Information Criterion (BIC) 173
Beare, 2009 theorem 111–13
BEKK (Baba, Engle, Kraft, and Kroner)
specification 7
benchmarks, asset managers 200–2
bespoke CDOs 160
see also collateralized debt obligations
best-of options, copula applications 28–9
between dependence, definition 36
Bielecki et al, 2008 approach 212–14
binary options see digital options
binomial distributions 219–20
see also distributions
Black–Cox approach 160, 161–3
Black–Scholes options pricing formula 30, 160–3
Bologna school 49
bonds 2, 123–32, 150–2, 154–5, 158–9, 160–3, 183–206
see also corporate . . .; debt . . .; government . . .
constrained level curves 193
level curves 190–3
risk capital management 183–206
seasoned/on-the-run bonds phenomenon 202–3
bootstrapping 128, 159–60, 179–80
Borel sets 55–8, 83–6, 215–16, 234–5
bottom-up models see also capital allocations; copula . . .; marginal distributions
definition 4, 186
Bouyè and Salmon, 2009 theorem 92–3
Brownian copulas 63–89, 133–4
Brownian covariance matrices 238–40
see also diffusion; Lévy processes; random walks; Wiener process
CEV clock 64–6
definition 239
FGM copula 67
geometric Brownian motion 140–1, 161–3
Markov processes 59, 133–52, 236–7
scaling properties 239
self-similar copulas 59–60, 67
semi-martingales 64, 133–5
stable processes 60, 76–7
time-changed Brownian copulas 63–6, 129–30, 133–7
VG clock 65–6, 140–1
buckets 2–3
see also risk management
aggregation functions 187–9, 191–3, 194–202, 203–6
asset managers 194–202
copula-based Markov processes 116
definition 67–9
densities 72–3
dynamic analysis of credit risk portfolios 177–80
examples 70–5, 78–9
likelihood function of Markov processes 116–19
Markov processes 116–19
private equity funds 206
propagation 73–5
simulations 72–3
square-root formula 203–6
temporal aggregation 203–6
c-quantile regression 91–3
cadlag trajectories 231–3
calibration 5, 122–52
call options

see also options
copula applications 23–4, 33–4, 36–8, 122–52, 161–80
put–call parity 23–4, 26, 28–9, 157
callability clauses, values 34
canonical decomposition 42–5, 212–14, 241–3
see also semi-martingales; special semi-martingales
definition 241
canonical representations 42–5, 82–3, 212–14
see also copula densities
capital adequacy requirements, banks 182–3
capital aggregation 181, 185–206, 210–12
see also top-down models
asset managers 194–202
C-convolutions 187–9, 191–3, 194–202, 203–6
concepts 181, 185–93, 194–202, 210–12
definition 181, 185–6, 191
temporal aggregation of risk measures 202–6
capital allocations 1–2, 4, 181, 185–206
see also asset . . . ; bottom-up models
bond portfolios 189
concepts 181, 185–93
constraints 191–5
definition 181, 185–6, 191
level curves 189–93

Cauchy distributions 224, 228–9
see also distributions
CDOs see collateralized debt obligations
CDX credit index
concepts 160, 163, 177–80
term structures 177–80
centered normal distribution with covariance
see also multivariate normal distributions
definition 226
central limit theorem 110–13, 181
CEV see constant elasticity of variance
CGMY (Carr, Geman, Madan, and Yor) processes 240
see also Lévy . . .
Chan and Tong, 2001 theorem 112

Chapman–Kolmogorov equation 51–66, 235
see also Markov processes; transition functions
definition 51–2, 55–8, 235
characteristic exponent 227–8, 238–40
characteristic function 76–7, 219, 222–6, 237–40
see also Fourier transform; multivariate distributions
definition 76–7, 219, 222–3
moments 219

Chen and Fan, 2006 93, 99–107
chi-plots 33–4
chi-square laws with n degrees of freedom
distributions 222–3
see also gamma . . .
chi-squared estimators 109–10
see also Archimedean . . . ; copula functions
definition 32–3, 78
risk capital management 184–5, 189–93, 199, 205–6
closed-end funds 202–6
closure property 79, 234
closure of the tensor product 214
cluster analysis 172–6
copulas 28–9
cop-integrated systems 6
collateralized debt obligations (CDOs) 156–60, 178–80
definition 156–8
pricing 157–8
synthetic CDOs 157–60
commodities markets 158–9
common stochastic trends 6
compatibility 2–9, 14–19, 35–8
see also marginal distributions; risk-neutral measures
definition 2
compensators, definition 242
complex-valued integrals 222–3
compound digital options 34
compound Poisson processes 239, 240
see also Poisson . . . ; subordinators
comprehensive copulas 33, 61–2
conditional copulas 45–6
see also dynamic . . .
conditional densities 44–5, 100–7, 108–10
conditional expectations 39–42, 187–206, 229–30
definition 229–30
properties 230
conditional independence 40–2, 51–89, 141, 147–52
conditional probabilities 39–42, 45–6, 51–89, 141–52, 162–4, 170–1, 188–206
see also factor copulas
definition 27, 39–40, 216
conditional pseudo-copulas 47
conditional sampling 62–3, 72–3, 93–9
confidence levels, VaR 182–4, 186–206
consistency concepts 102–10, 175–6, 213–14
constant elasticity of variance (CEV) 64–6
continuous time stochastic processes 50–89, 121–52, 207–14, 231
see also additive . . . ; Lévy . . . ; random walks definition 231
discrete time convergence issues 207
contour complex integration techniques 141, 223
convergence in distribution on in law, definition 228–9
convergence in probability, definition 228–9
convergences of sequences of random variables 100–7, 228–9
see also vague . . . ; weak . . .
convex functions 230
see also Jensen’s inequality
see also C-convolutions
cophenetic correlations 175
cophenetic distances 175
copula densities 42–5, 52–66, 72, 82–3, 108–10, 113
concepts 42–5, 52–3, 108–10, 113
definition 42–3
copula functions 1–2, 4–9, 11–47, 49–89, 93–119, 121–52, 177–80, 184–206, 207–14
see also Archimedean . . . ; bottom-up models; Clayton . . . ; elliptical . . . ; empirical . . . ; Frank . . . ; Fréchet family . . . ; Gaussian . . . ; Gumbel . . . ; joint distribution . . . ; marginal distributions; mixture . . . ; student’s t . . .
absolutely continuous copulas 43–5, 82–3, 111–13, 166, 229
asset managers 196–202
asset price dynamics 49–89, 102–7, 121, 127–52
basic concepts 11–47
Brownian copulas 63–89, 133–5
challengers 7
concepts 1–2, 4–9, 11–47, 207–14
correlation trading 121–52
critique 4–5, 8, 49
Cuadras–Augé copula 167–9
definition 1, 4–5, 7, 11–14
discrete time processes 50–89, 128–9, 207
dynamic copulas 45–7, 91–119
econometrics 49, 91–119
exchangeability properties 34–5
factor copulas 39–42
Farlie–Gumbel–Morgenstern copula 23
frontier issues 207–14
future prospects 207–14
hierarchical copulas 35–8
HM copula 196–202
Lévy copula 207–10, 213–14
limitations 8, 49
Markov chain simulations 62–3, 76
Markov processes 50–66, 67, 70, 75–89, 93–119, 121–52, 207–14
Marshall–Olkin copula 36, 43–5, 113, 165–9
martingales 50, 66–89, 127–30, 207–14
mixing properties 100–7, 110–13
multivariate credit products 4, 9, 29, 153–80
multivariate equity derivatives 89, 102–7, 121–52
non-linear quantile autoregression 93–9
non-parametric estimation 91, 108–10
Pareto copula 210–12
product operators 52–8, 127–30, 137
quantile regressions 91–3
requirements 12–14
risk capital management 184–206
risk-neutral pricing restrictions 132–3, 140–1
self-similar copulas 58–62, 67, 82–3
semi-martingale copula 207, 212–14
semi-parametric estimation 91, 93, 99–107, 136–7, 200–2
state of the art 11–47
time-changed Brownian copulas 63–6, 129–30, 133–7
types 13–14, 17–19, 29–33
vine copulas 44–5
volatility trading 121–52
volume between two points 24–6
core satellite strategies 201–2
corporate bonds 183–4
see also bonds
correlation 1–9, 15–16, 121–52, 162–3, 166–7, 181–206
see also implied . . . ; Pearson . . . ; Spearman’s . . .
products 1, 15–16
trading 1, 15–16, 121–52
correlation risks 1–9, 181–206
definition 1
leverage effects 2–3
pricing 1–3
correlation skew 163
see also base correlation
correlation smiles 163
correlation swaps 121, 144–6
see also swaps
corridors 18–19
coupons 123–52
covariance matrices 7, 207–10, 214, 225–6, 238–40
covariances 7, 20, 79, 109–10, 207–10, 214, 225–6, 238–40
see also Pearson correlation measure
definition 20
covenants in debt contracts 161–3
credit default swaps (CDSs) 154–5, 158–60
credit risk information sources 158–60
definition 154–5
credit derivatives 4, 9, 29, 153–80
see also basket . . . ; multivariate . . .
pricing 4, 9, 29
term structures 9
credit events 153–80
see also multivariate credit products
credit information 158–60
credit portfolio analysis 172–80
credit products 9
credit risk 153–80, 182–3, 202–6
see also default probabilities; recovery rates
Black–Cox approach 160, 161–3
bootstrapping uses 159–60, 179–80
C-convolutions 177–80
concepts 153–8, 202–6
correlation skew 163
credit portfolio analysis 172–80
Cuadras–Augé copula 167–9
definition 164
dynamic analysis of credit risk portfolios
176–80
frailty models 170–1, 172
Gaussian copula 161–3, 169
granularity adjustments 171–2
hedging 160
implied correlation 162–3
indices 160, 177–80
information sources 158–60
intensity-based models 164–9
Marshall–Olkin copula 165–70
Merton’s 1974 quasi-debt-to-firm-value ratio
161–2
model types 158–80
Moody’s KMV model 158–60, 161
multivariate models 155–8, 160–80
put options 160–3
regulations 153–4
scoring models 158–60
structural approach 158–60
structured credit risk models 160–4, 179–80
term structures 159, 165, 176–80
transfer finance concepts 153–8
univariate credit transfer products 154–5
univariate models 154–5, 160–1, 165
unsupervised clustering techniques 172–6
Vasicek formula 163–4, 171, 179–80
credit risk portfolios, dynamic analysis 176–80
CreditRisk 172
cross-derivatives of copulas, copula density
factors 42–5
cross-section dependence 5, 49, 94–9, 102–7, 122–52, 179–80
Cuadras–Augé copula 167–9
see also Marshall–Olkin copula
cumulative distribution functions 17–18, 36–8, 46–7, 67–8, 76–7, 82–3, 140–1, 216, 224–5
curse of dimensionality 4
curse of linearity 8
d-increasing property 207–8
data compression methods 7–8
see also factor analysis; principal components
analysis
data generating processes (DGPs) 93–9, 116–19
DCC model 7–8
DD see distance-to-default
De Morgan formula 215
debt finance 2, 123–32, 150–2, 153–80, 183–206
see also banks; bonds; credit . . .
decay rates 100–7, 111–13
default events 153–80, 189–93
see also credit risk
default probabilities 158–80, 182–206
see also credit risk
bootstrapping uses 159–60, 179–80
term structures 159, 178–80
definite integrals, definition 217
degrees of freedom 30, 81–3, 93–9, 222–3
Deheuvels’ empirical copula 14
delta hedging
multivariate digital products 16–19, 141–52
tranches 157–8
deltas 16–19, 141–52
dendrograms (cluster trees) 175–6
see also hierarchical correlation models
dependence functions see copula functions
dependent increments 49, 67, 78–83, 85–6, 132–5, 204–6
extraction processes 81–3
simulations 81, 85–6
derivatives 2–3, 4–5, 9, 14–19, 21–2, 23–4, 26–9, 33–5, 36–8, 121–52, 153–80, 181–2
see also credit . . .; forward . . .; futures;
multivariate equity . . .; options; swaps
characteristic function 219
complexities 2–3
definitions 121–2
pricing 4–5, 9, 14–19, 21–2, 23–4, 26–9, 33–5, 36–8, 121–52, 157
detachment of the tranche 157, 163
see also credit risk
Index

DGPs see data generating processes
difference stationary, definition 6
diffusion 50, 214
see also Brownian motion
digital best-of options, copula applications 28–9
digital options see also Altiplanos
copula applications 14–19, 21–2, 23–4, 26, 28–9, 33–4, 121–2, 124–5, 128, 130–2, 141–52
definition 124–5
Dirac delta function 242
directional trading see alpha
discount functions, memory features 130–2
discrete time stochastic processes 50–89, 128–9, 207, 231
continuous time convergence issues 207
definition 50, 73–4, 231
distance-to-default (DD) 158, 161
see also KMV model
distribution of losses, term structures 176–80
distributions 1, 30–2, 135, 153, 210–14, 216–18, 219–26, 237–40
see also binomial . . . ; exponential . . . ; gamma . . . ; Lévy . . . ; marginal . . . ; moments; multivariate . . . ; normal . . . ; Pareto . . . ; Poisson . . . ; stable . . . ; student . . .
Cauchy distributions 224, 228–9
infinitely divisible distributions 226–8, 237–40
inverse Gaussian distributions 224
marginal cumulative distributions 225
KME 30–2, 219–26
diversification 153–4, 181–206
definition 51–2, 55–8, 86–9
multivariate Markov processes 86–9, 127–30, 207, 214
dollar/euro exchange rates 3
dollar/yen exchange rates 3
Doob closure property 234
down barrier options 125–6, 142–4
drift 140–1, 238, 240, 242–3
dual of a copula 28–9
dynamic analysis, credit risk portfolios 176–80
dynamic copulas 45–7, 91–119
see also conditional . . . ; pseudo . . .
definition 45–6
quantile regressions 91–3
dynamic hedging 16–19, 28–9, 141–52
see also delta hedging
dynamic models, trends 1–9
dynamic processes 1–9, 16–19, 28–9, 45–7, 49–89, 91–119, 121–52, 176–80
dynamics of asset prices 49–89, 102–7, 121, 127–52
econometrics 5, 8–9, 49, 89, 91–119, 121–52
copula applications 49, 91–119
cross-section dependence 5, 49, 94–9, 102–7
dynamic processes 49, 91–119
quantile regressions 91–3
VAR models 5
economic capital 182
see also margins
economic time 133–4
efficient market hypothesis (EMH) 50–89, 127
see also Markov processes
efficient markets 1–2, 9, 50–89, 127
eigenvalues 7–8
elliptical copulas
see also copula functions; Gaussian . . . ; student’s t . . .
concepts 29–31, 79–81, 113–16, 153, 162–3, 204–6
definition 30–1
EMH see efficient market hypothesis
EMMs see equivalence martingale measures
empirical copula 14, 36–8, 97–107
see also copula functions
equal P almost surely, definition 216
equal u-almost everywhere functions, definition 215–16
equity notes 123–5
equity products 2, 9, 89, 102–7, 121–52, 158–60
see also derivatives; multivariate . . .
equity tranches 156–7, 163, 178–80
equity-linked notes 155–6
equivalence, definition 229
equivalence martingale measures (EMMs) 2–3, 15–16, 24
ergodic processes 99, 111–13
Erlang laws distributions 222–3
see also gamma . . .
estimation issues 43–5, 91, 93–119, 136–7,
200–2
MLE 43–5, 101–7
non-parametric estimation 91, 108–10
semi-parametric estimation 91, 93, 99–107, 136–7, 200–2
Euclidean distance 173, 174–6
see also Minkowski . . .
Euler attribution principle 186–7
euro/dollar exchange rates 36–9, 142–4
euro/pound exchange rates 17–18, 36–9
euro/yen exchange rates 3, 17–18, 36–9
neuro/yuan exchange rates 36–9, 142–4
European Altiplanos 148–50
European multivariate equity derivatives 122–52
see also multivariate equity derivatives
Eurostoxx 50 index 14–19, 23–4, 26, 28–9, 204–5
Eurostoxx 100 index 124–6, 204–5
Everest notes 124, 150
excess returns 121–52
see also alpha
exchangeability properties 34–5
exercise dates 14–19, 122–52
expected excess returns 121–52
expected shortfall (ES) 2–3
expected utility problems 1–2
expected values 217–18, 229–30
see also conditional expectations; moments
expiry dates 122–52
exponential distributions 135, 221, 222
see also distributions
extra reading 251–7
extreme events 27, 40–2
see also fat-tails
extreme value theory, domain of attraction 210–12
factor analysis 7–8
factor copulas 39–42, 162–3
see also conditional probabilities
fair games 230
fair strike 135–6
fair value 135–6
Fama, Eugene 50
Brownian copula 67
definition 23
self-similar copulas 60–3, 67, 82–3
fat-tails 27, 30–1, 91–119, 184–206, 218
see also extreme events; leptokurtosis;
student’s t distributions
definition 27, 218
FGM see Farlie–Gumbel–Morgenstern copula
filtered probability spaces, definition 232
see also information . . . ; natural . . . ; predictable . . . ; stochastic processes
concepts 47, 50, 87–9, 138, 212–14, 231–3
Cuadras–Augé copula 168–9
definition 50, 232
financial markets 1–9, 49, 91, 113–14, 181–206
correlation risks 1–9, 181–206
trends 1–2, 113, 121
finite measures 212–14, 215
first-to-default options/swaps 29, 155–7
see also swaps
Fisher transform 11, 23–4
see also probability integral transformation
FOREX markets 3, 9, 17–19, 36–9, 142–4
forward prices 132–3, 136
Fourier transform 50, 219
see also characteristic function
fractionally integrated processes, definition 6
frailty models 170–1, 172
Frank copula 32–3, 70–5, 78–9, 96–9, 102–7,
111–13, 115–16, 118–19, 171, 177–80,
184–5, 189, 191–3
see also Archimedean . . . ; copula functions;
Gaussian . . .
definition 32–3, 78–9
risk capital management 184–5, 189, 191–3
Fréchet bounds 16, 21–2, 93–4
Fréchet family of copulas 13–14, 16, 21–2, 52–5, 62
see also maximal . . . ; minimal . . . ; product . . .
applications 16, 21–2, 62
definition 13–14
self-similar copulas 62
Fréchet–Hoeffding bounds 93–4
frontier topics 1, 34–5, 207–14
FTSE 100 26, 102–7, 119
Fubini’s theorem 53
funded synthetic CDOs
see also synthetic CDOs
definition 158
future prospects, copula functions 207–14
futures 158–9, 181–2
Gagliardini and Gouriéroux, 2007 proposition
109–10
gamma distributions 32–3, 65–6, 136, 140–52,
222–3, 227–8, 239–40
see also chi-square laws . . . ; distributions;
Erlang laws . . .
definition 32, 222–3
gamma processes 65–6, 140–52, 239–40
see also variance . . .
definition 239–40
GARCH models 7–8
see also multivariate . . . ; orthogonal . . .
Gaussian copula 30–2, 41–2, 59–60, 79, 80–1,
92–3, 102–7, 111–13, 115–16, 118–19,
122–5, 142–4, 147–52, 161–3, 169
see also copula functions; elliptical . . .;
Frank . . .
credit risk models 161–3, 169
critique 161–2
definition 30–1, 41, 79, 80–1
implied correlation 162–3
self-similar copulas 59–60
Gaussian distributions see normal distributions
general integrals, definition 217
generalized inverse, definition 11–12, 182–3
geometric averages, copulas 35
geometric Brownian motion 140–1, 161–3
German banks 169
global financial crisis from 2007 1, 153, 161–2
government bonds 154–5, 183–94
see also bonds
Granger causality 89, 137–8
see also H-condition
Granger-independent increments 89, 137–8
grounding requirement of copula functions
12–47, 60–89
Gumbel copula 33, 36–8, 78, 113, 171, 179–80, 211–12
see also Archimedian . . . copula functions
definition 33, 78
H-condition 89, 137–8
see also Granger causality
Hadamard derivative 109–10
harmonic mean, definition 168–9
hazard rates 170–1
see also frailty models
hedging 153–4, 200–6
hedging 1, 16–19, 24, 28–9, 137–8, 141–52,
157–60
see also delta . . . dynamic . . . risk
management; static . .
credit risk 160
multivariate equity derivatives 141–52
portfolios 17–19, 137–8
tranches 157–8
Heisenberg paradox 192
Helinger measure of dependence 113–14
Henriksson–Merton model (HM) 195–202
hierarchical copulas 35–8
hierarchical correlation models 175–6
see also dendrograms (cluster trees)
histograms 70–2, 143–4
historical simulations 3, 21–2, 62–3
HM see Henriksson–Merton model
HM copula 196–202
homogenous portfolios 163–9, 172–6, 183–4,
186–206, 212
I-margen of F, definition 209–10
I-marginal tail integral, definition 209–10
IBOXIX index 183–4
Ibragimov DNO extension 86–8
Ibragimov and Lentzas, 2009 theorem 114–15
IFM (inference functions for margins) method 8,
43–4
implied correlation 3, 24, 162–3
credit risk 162–3
critique 162–3
definition 3, 162–3
estimates 4
FOREX markets 3
Gaussian copula 162–3
implied volatilities 3, 24, 30, 162
in-the-money options (ITM) 16, 24
inconsistency coefficients 175–6
independent increments, Markov processes 49,
67, 70–2, 75–7, 83–5, 88–9, 132–3, 137–52
index options 26
index of stable distributions 223–4
infinite measures 215
infinitely divisible distributions 226–8, 237–40
see also gamma . . . Lévy . . . Pareto . . .
Poisson . . . stable . .
information processes 50, 108–10, 121, 147–52,
158–60
see also filtrations
credit information 158–60
EMH 50
innovation 50, 66–89, 121, 133–4, 147–52
see also shock
definition 50
institutional investors 153–4, 202–6
see also insurance companies; mutual funds;
pension funds
insurance companies 153–4
integer-valued random measures 242
integration 216–26
intensity-based credit risk models 164–9
see also Cuadras–Augé copula;
Marshall–Olkin copula; Poisson processes
interest rate risk 157–8
interest rate swaps 154, 157–8
intrinsic value of options 16, 24
see also at-the-money . . . in-the-money . . ;
out-of-the-money . .
inverse functions 11–12, 182–3
inverse Gaussian distributions 224, 225
see also distributions; normal . .
Italian BTPs 154–5, 183–94
Italian default probability term structure 159
ITraxisx credit index 160
Jacobians 225
Jensen’s inequality 226
see also convex functions
joint default probabilities 160–80, 189–93
joint distribution function 1–9, 11–47, 91–119,
162–3, 197–202
see also copula . . . marginal . .
joint log-likelihoods 101–7
joint normal distributions 30–1
jumps 50, 63–4, 141, 208–14, 231, 238–40
see also Poisson processes
junior tranches 156
<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>K-means</td>
<td>172–3</td>
</tr>
<tr>
<td>Kallsen and Tankov, 2006 approach</td>
<td>207–12</td>
</tr>
<tr>
<td>Klüppelberg and Resnick approach</td>
<td>210–12</td>
</tr>
<tr>
<td>KMV model</td>
<td>158–60, 161</td>
</tr>
<tr>
<td>Kohonen self-organizing maps</td>
<td>174–5</td>
</tr>
<tr>
<td>kth-order Markov process</td>
<td>49, 86–9</td>
</tr>
<tr>
<td>kth-variate Markov process</td>
<td>49, 86–9</td>
</tr>
<tr>
<td>kurtosis</td>
<td>218</td>
</tr>
<tr>
<td>law (distribution) of X</td>
<td>216</td>
</tr>
<tr>
<td>learning rules, Kohonen self-organizing maps</td>
<td>174–5</td>
</tr>
<tr>
<td>Lebesque measures</td>
<td>42–3, 93–4, 108–10, 215</td>
</tr>
<tr>
<td>Levy copula</td>
<td>207–10, 213–14</td>
</tr>
<tr>
<td>Levy measure</td>
<td>209–14, 227–8</td>
</tr>
<tr>
<td>Levy processes</td>
<td>64, 121, 139, 207–10, 227–8, 237–40</td>
</tr>
<tr>
<td>Levy–Ito decomposition theorem</td>
<td>238–40</td>
</tr>
<tr>
<td>Levy–Khintchine theorem</td>
<td>50, 227–8, 237–40, 243</td>
</tr>
<tr>
<td>LGD see loss given default</td>
<td></td>
</tr>
<tr>
<td>likelihood function</td>
<td>43–5, 101–7, 116–19</td>
</tr>
<tr>
<td>C-convolution-based Markov processes</td>
<td>116–19</td>
</tr>
<tr>
<td>linear correlation</td>
<td>19–20</td>
</tr>
<tr>
<td>linear QAR models, non-linear quantile autoregression</td>
<td>93</td>
</tr>
<tr>
<td>linearity</td>
<td>21–2, 214, 217</td>
</tr>
<tr>
<td>liquidity risk</td>
<td>202–6</td>
</tr>
<tr>
<td>local martingales</td>
<td>234, 241–3</td>
</tr>
<tr>
<td>locally finite measures</td>
<td>215</td>
</tr>
<tr>
<td>long assets</td>
<td>2–3</td>
</tr>
<tr>
<td>long correlation</td>
<td>1, 2–3, 27–9, 150–2</td>
</tr>
<tr>
<td>long memory</td>
<td>6, 108–9, 113–16</td>
</tr>
<tr>
<td>long positions, CDSs</td>
<td>158</td>
</tr>
<tr>
<td>long volatilities</td>
<td>2–3</td>
</tr>
<tr>
<td>long-range dependence, concepts</td>
<td>5–6</td>
</tr>
<tr>
<td>lookback options</td>
<td>125</td>
</tr>
<tr>
<td>loss given default (LGD)</td>
<td>156–7, 164</td>
</tr>
<tr>
<td>lower tail index</td>
<td>27, 33</td>
</tr>
<tr>
<td>Luciano–Schoutens model</td>
<td>139–41</td>
</tr>
<tr>
<td>Macroeconomic analysis see market timing analysis</td>
<td></td>
</tr>
<tr>
<td>Mahalanobis distance</td>
<td>173</td>
</tr>
<tr>
<td>managers see asset managers</td>
<td></td>
</tr>
<tr>
<td>mapping processes</td>
<td>2–3</td>
</tr>
<tr>
<td>marginal cumulative distributions</td>
<td>225</td>
</tr>
<tr>
<td>marginal distributions</td>
<td>2–9, 11–47, 57–8, 66–89, 93–119, 122–52, 184, 198–202</td>
</tr>
<tr>
<td>HM copula</td>
<td>198–202</td>
</tr>
<tr>
<td>marginal risk</td>
<td>181</td>
</tr>
<tr>
<td>margins see also economic capital</td>
<td></td>
</tr>
<tr>
<td>mark-to-market prices</td>
<td>14–19, 182</td>
</tr>
<tr>
<td>market co-movements see copula applications, frontier issues</td>
<td></td>
</tr>
<tr>
<td>market risk</td>
<td>182–3, 202–6</td>
</tr>
<tr>
<td>market timing analysis, asset managers</td>
<td>195–6, 201–2</td>
</tr>
<tr>
<td>market-neutral funds, asset managers</td>
<td>201–2</td>
</tr>
<tr>
<td>Markov chains, copula simulations</td>
<td>62–3, 76, 93–8, 115–16</td>
</tr>
<tr>
<td>Markov copula</td>
<td>207–14</td>
</tr>
<tr>
<td>Markov processes</td>
<td>5, 49–89, 93–119, 121–52, 207–14, 234–7</td>
</tr>
<tr>
<td>Brownian motion</td>
<td>59, 133–52, 236–7</td>
</tr>
<tr>
<td>C-convolution-based Markov processes</td>
<td>116–19</td>
</tr>
</tbody>
</table>
Markov processes (Continued)
canonical representations 82–3, 212–14
copula functions 50–66, 67, 70, 75–89, 93–119, 121–52, 207–14
definitions 50, 51–2, 86–8, 93–113, 235–7
dependent increments 49, 67, 78–83, 85–6, 132–5
frontier issues 207–14
independent increments 49, 67, 70–2, 75–7, 83–6, 88–9, 132–3, 137–52
likelihood function generated by the C-convolution 116–19
martingales 66–89, 127–30, 207–14
mixing properties 100–7, 110–13
mutivariate Markov processes 86–9, 127–30, 207, 214
non-linear quantile autoregression 93–9
non-parametric estimation 91, 108–10
pricing 121–52
product operators 52, 55–8, 127–30, 137
semi-group of operators 236–7
semi-parametric estimation 91, 93, 99–107, 136–7
stationary copula-based Markov process 93–9, 102–7, 108–10, 116–19, 122–52
stationary increments 116–19
symmetry requirements 127–8
Markov property 51
Marshall–Olkin, 1988 algorithm 170–1
Marshall–Olkin copula 36, 43–5, 113, 165–70
see also Cuardas–Augé copula
see also local ; semi ; stochastic processes; submartingales; supermartingales
copula functions 50, 66–89, 127–30, 207–14
definitions 83–6, 233–4
Doob closure property 79, 234
forward prices 132–3
Granger causality 88–9, 137–8
H-condition 89, 137–8
mutivariate settings 88–9
pricing 4, 9, 15, 88–9, 127–30, 137–52
problems 83–6, 133–5
restrictions 88–9, 137
Matlab 25–6
matrices 7–8, 80–1, 225–6
see also covariance ; multivariate distributions; vectors
max function, definition 125–6
maximal copula 13, 53–5
see also copula functions; Fréchet family . . .
maximized expected utility 1–2
maximum likelihood estimation (MLE) 43–5, 101–7
see also estimation . . .
sieve MLE 101–7
maximum of prices in baskets
see also rainbow options
definition 124
Maximum Probable Loss (MPL)
see also Value-at-Risk
historical background 181–2
mean reversion 64–6, 206
mean squared errors (MSEs) 103–7
mean–variance 1–2, 6
means 1–2, 6, 64–6, 103–7, 118–19, 122–52, 172–3, 212
measurable sets, definition 215
measurable space, definition 215
measure theory 215–16, 241–2
memory features, definition 130–2
Merton’s 1974 quasi-debt-to-firm-value ratio 161–2
mezzanine tranche 156–8, 163
microeconomic analysis see stock picking
min function, definition 125–6
minimal copula 13, 53–5
see also copula functions; Fréchet family . . .
minimum chi-squared estimators 109–10
minimum of prices in baskets 124
see also rainbow options
Minkowski distance metrics 173
see also Euclidean . . .
mixing decay rates 100–7, 111–13
mixing properties 100–7, 110–13
mixture copula 13–14, 21–2, 58–62, 85–6
see also copula functions
asymptotic independence 62
definition 13–14, 62
MLE see maximum likelihood estimation
model risk 4, 180
modular mathematical models 1
see also copula functions
moment-generating function 218–26
see also Laplace transform
moments 1, 112–13, 121, 217–26
see also distributions; expected values;
kurtosis; skewness; variance; volatilities
characteristic function 219
definition 217–18
‘moneyness’ 16, 24
see also at-the-money . . .; in-the-money . . .;
out-of-the-money . . .
monotonicity 52–3, 93–4, 100–7, 150–2, 162–3, 188–9, 217
Index

Monroe’s time-change technique 63–4, 133–5
Monte Carlo simulations 102–7, 123–5, 147–52
Moody’s KMV model 158–60, 161
moving averages (MA) 5–6
see also ARMA...; VARMA...
MPL see Maximum Probable Loss
MSEs see mean squared errors
multivariate credit products 4, 9, 29, 155–8, 160–80
see also credit...
historical background 153–4
multivariate credit risk models, concepts 155–8, 160–80
multivariate credit transfer products 155–8, 176–80
multivariate digital products
see also Altiplanos
copula applications 14–19, 21–2, 23–4, 26, 28–9, 33–4, 121–2, 141–52
delta hedging 16–19, 141–52
FOREX 17–19, 36–8, 142–4
pricing 14–16, 21–2, 23–4, 26, 28–9, 33–5, 36–8, 128, 141–52
multivariate distributions 12–47, 219, 224–6
see also characteristic function; random vectors
definition 224–5
multivariate equity derivatives 14–16, 21–2, 23–4, 26, 28–9, 33–5, 36–8, 89, 102–7, 121–52
see also derivatives; options
correlation swaps 121, 144–6
definition 121–2
Granger causality 89, 137–8
Granger-independent increments 89, 137–8
H-condition 137–8
hedging 141–52
memory features 130–2
pricing 14–16, 21–2, 23–4, 26, 28–9, 33–5, 36–8, 121–52
recursions of running maxima/minima 126–32, 138–41
risk-neutral pricing restrictions 132–3, 140–1
SCODMY model 137, 139–41, 144–52
semi-parametric pricing of path-dependent derivatives 136–7
term structures 136, 146, 147–52
time-changed Brownian copulas 133–7
variance swaps 121, 134–6
volatility swaps 121, 134–6
multivariate GARCH models 7–8
see also GARCH...
270 Index

<table>
<thead>
<tr>
<th>off-balance sheet transactions</th>
<th>153–4</th>
</tr>
</thead>
<tbody>
<tr>
<td>index of</td>
<td></td>
</tr>
<tr>
<td>on-the-run bonds, seasoned bonds</td>
<td>202–3</td>
</tr>
<tr>
<td>open-end mutual funds</td>
<td>153–4, 202–6</td>
</tr>
<tr>
<td>operation risk</td>
<td>182–3, 202–6</td>
</tr>
<tr>
<td>see also basket . . . ; call . . . ; derivatives; digital . . . ; intrinsic value . . . ; multivariate equity derivatives; put . . .</td>
<td></td>
</tr>
<tr>
<td>Asian options</td>
<td>125–6</td>
</tr>
<tr>
<td>Black–Scholes options pricing formula</td>
<td>30, 160–3</td>
</tr>
<tr>
<td>delta hedging</td>
<td>16–19, 141–52</td>
</tr>
<tr>
<td>rainbow options</td>
<td>124–5, 147–52</td>
</tr>
<tr>
<td>spread options</td>
<td>122–4, 147, 150–2, 162–3, 164</td>
</tr>
<tr>
<td>originate-to-distribute products</td>
<td>153</td>
</tr>
<tr>
<td>Ornstein–Uhlenbeck process</td>
<td>64–5</td>
</tr>
<tr>
<td>orthogonal GARCH model</td>
<td>7–8</td>
</tr>
<tr>
<td>out-of-the-money options (OTM)</td>
<td>16, 33</td>
</tr>
<tr>
<td>overview of the book</td>
<td>8–9</td>
</tr>
<tr>
<td>panel data models</td>
<td>49</td>
</tr>
<tr>
<td>Pareto copula</td>
<td>210–12</td>
</tr>
<tr>
<td>Pareto distributions</td>
<td>210–12, 224</td>
</tr>
<tr>
<td>see also distributions</td>
<td></td>
</tr>
<tr>
<td>partial differential equations</td>
<td>40–2, 44–5, 51–2, 92–3, 187–8</td>
</tr>
<tr>
<td>path-by-path continuous part of the quadratic variation process, definition</td>
<td>241</td>
</tr>
<tr>
<td>path-dependent contracts, definition</td>
<td>122</td>
</tr>
<tr>
<td>path-dependent equity derivatives</td>
<td>122, 125–52</td>
</tr>
<tr>
<td>see also Asian . . . ; barrier . . . ; lookback . . . ; running maxima; running minima definition</td>
<td>122, 125–6</td>
</tr>
<tr>
<td>semi-parametric pricing models</td>
<td>136–7</td>
</tr>
<tr>
<td>types</td>
<td>125–6</td>
</tr>
<tr>
<td>payoff functions</td>
<td>121–52, 160–80</td>
</tr>
<tr>
<td>see also derivatives</td>
<td></td>
</tr>
<tr>
<td>Pearson correlation measure</td>
<td>20–2, 114, 166–7, 168</td>
</tr>
<tr>
<td>see also covariances; linear correlation</td>
<td></td>
</tr>
<tr>
<td>pension funds</td>
<td>153–4</td>
</tr>
<tr>
<td>performance attribution analysis</td>
<td>194–202</td>
</tr>
<tr>
<td>persistence shock property</td>
<td>6, 113–16</td>
</tr>
<tr>
<td>Poisson and Cox processes, credit risk models</td>
<td>165–6</td>
</tr>
<tr>
<td>Poisson distributions</td>
<td>4, 211–12, 213–14, 220, 227, 239</td>
</tr>
<tr>
<td>see also distributions definition</td>
<td>220</td>
</tr>
<tr>
<td>Poisson processes</td>
<td>164–9, 211–12, 213–14, 239, 240</td>
</tr>
<tr>
<td>see also compound . . . ; intensity-based credit risk models; jumps; subordinators definition</td>
<td>164, 239, 240</td>
</tr>
<tr>
<td>portfolios</td>
<td>1–2, 4, 121–52, 153–80, 181, 185–206</td>
</tr>
<tr>
<td>asset allocations</td>
<td>1–2, 4, 181–206</td>
</tr>
<tr>
<td>asset managers</td>
<td>193–202</td>
</tr>
<tr>
<td>capital aggregation</td>
<td>181, 185–206, 210–12</td>
</tr>
<tr>
<td>capital allocations</td>
<td>1–2, 4, 181, 185–206</td>
</tr>
<tr>
<td>credit portfolio analysis</td>
<td>172–80</td>
</tr>
<tr>
<td>dynamic analysis of credit risk portfolios</td>
<td>176–80</td>
</tr>
<tr>
<td>homogenous portfolios</td>
<td>163–9, 172–6, 183–4, 186–206, 212</td>
</tr>
<tr>
<td>risk capital management</td>
<td>2–3, 34, 181–206</td>
</tr>
<tr>
<td>unsupervised clustering techniques</td>
<td>172–6</td>
</tr>
<tr>
<td>VaR</td>
<td>2–3, 34, 181–5, 186–206</td>
</tr>
<tr>
<td>Vasicek formula</td>
<td>163–4, 171, 179–80</td>
</tr>
<tr>
<td>positive quadrant dependence (PQD), definition</td>
<td>15–16</td>
</tr>
<tr>
<td>PQD see positive quadrant dependence predictable filtrations</td>
<td>232</td>
</tr>
<tr>
<td>prices, multivariate equity derivatives</td>
<td>121–52</td>
</tr>
<tr>
<td>pricing</td>
<td>2–9, 14–47, 49, 57–8, 121–52, 156–80</td>
</tr>
<tr>
<td>arbitrage-free approach to pricing</td>
<td>2–3, 4, 15–16, 132–3</td>
</tr>
<tr>
<td>Black–Scholes options pricing formula</td>
<td>30, 160–3</td>
</tr>
<tr>
<td>CDOs</td>
<td>157–8</td>
</tr>
<tr>
<td>correlation risks</td>
<td>1–3</td>
</tr>
<tr>
<td>credit derivatives</td>
<td>4, 9, 29</td>
</tr>
<tr>
<td>definition</td>
<td>2–3</td>
</tr>
<tr>
<td>derivatives</td>
<td>4–5, 9, 14–19, 21–2, 23–4, 26–9, 33–5, 36–8, 121–52, 157</td>
</tr>
<tr>
<td>FOREX markets</td>
<td>17–19, 36–8, 142–4</td>
</tr>
<tr>
<td>index options</td>
<td>26</td>
</tr>
<tr>
<td>martingales</td>
<td>4, 9, 15, 88–9, 127–30, 137–52</td>
</tr>
<tr>
<td>Monte Carlo simulations</td>
<td>123–5, 147–52</td>
</tr>
<tr>
<td>multivariate credit products</td>
<td>156–80</td>
</tr>
<tr>
<td>multivariate digital products</td>
<td>14–16, 21–2, 23–4, 26, 28–9, 33–5, 36–8, 128, 141–52</td>
</tr>
<tr>
<td>multivariate equity derivatives</td>
<td>14–16, 21–2, 23–4, 26, 28–9, 33–5, 36–8, 121–52</td>
</tr>
<tr>
<td>multivariate/univariate product arbitrage issues</td>
<td>2–3, 15</td>
</tr>
<tr>
<td>path-dependent derivatives</td>
<td>136–52</td>
</tr>
<tr>
<td>problems</td>
<td>2–3, 122, 133–5</td>
</tr>
<tr>
<td>real-world asset management</td>
<td>2–3, 121</td>
</tr>
<tr>
<td>risk-neutral pricing restrictions</td>
<td>132–3, 140–1</td>
</tr>
<tr>
<td>semi-parametric pricing of path-dependent derivatives</td>
<td>136–7</td>
</tr>
<tr>
<td>principal components analysis</td>
<td>7–8</td>
</tr>
<tr>
<td>private equity funds</td>
<td>153–4, 204–6</td>
</tr>
</tbody>
</table>
see also distributions
default probabilities 158–80, 182–206
elements of probability 215–30
probability density functions 109–10, 164, 188–9, 198–202, 215–26
probability integral transformation 11–47, 51–89
see also copula functions
definition 11, 29–30
probability space, definition 215–16
product copula 13, 52–8, 61–2, 64, 150–2
see also copula functions; Fréchet family . . .
definition 13
product operators, DNO
copula/Markov-processes links 52–8, 67, 70, 127–30, 137
profits and losses, temporal aggregation 203–6
protective put options 196, 200
pseudo-copulas
see also dynamic . . .
deinition 46–7
pseudo-random numbers 70–2
pure jump Lévy processes 213–14
see also semi-martingales
see also options
copula applications 14–19, 21–2, 33–5, 122–52, 157
credit risk 160–3
put-call parity 23–4, 26, 28–9, 157
QAR see quantile autoregression
quadratic variation processes 65–6, 137, 241–3
quantile autoregression (QAR), non-linear
quantile autoregression 93–9
quantile of a distribution 182–3
quantile regressions, dynamic copulas 91–3
radial symmetry 24, 29, 60–3, 80–1, 84–6, 92–3, 128
Radon measures 211–12, 215–16, 227
see also Lebesgue . . .; locally finite . . .
Radon–Nikodym derivative 2–3, 229
rainbow options 124–5, 147–52
see also maximum . . .; minimum . . .
random measures 212, 241–3
random times 137, 232
random variables 8–9, 91–3, 216, 228–9
convergences of sequences 228–9
definition 216
random vectors 224–6
see also multivariate distributions
random walks 49–50, 128–30
see also Brownian motion; continuous time . . .
see also buckets; correlation risks; expected shortfall; hedging; historical simulations; mapping processes; stress testing; Value-at-Risk
asset managers 193–202
C-convolutions 187–9, 191–3, 194–202, 203–6
capital aggregation 181, 185–206, 210–12
capital allocations 181, 185–206
definition 2–3, 181–5
HM 195–202
level curves 189–93
non-linear dependence between risks 108–10
private equity funds 204–6
real-world asset management 1–3, 121, 181–206
realized correlation 3–4
recovery rates
see also credit risk
credit events 158–60, 164–9
recurrerions of running maxima/minima 126–32, 138–41
reduced-form models see intensity-based credit risk models
references 245–9
reflection principle 128–9
see also running . . .
regular vines, definition 44–5
regulatory arbitrage 153–4
relative entropy 114
returns 1–9, 50, 91–119, 121–52, 183–206
asset managers 193–202
excess returns 121–52
log-returns 1–2, 50, 91–119
normal distributions 1–2
see also credit . . .; liquidity . . .; market . . .; operation . . .
appetites 154
concepts 1–9
diversiﬁcation 153–4, 181–206
interest rate risk 157–8
real-world dimensions 2–3, 121, 153–4, 181–206
systemic risks 156
see also buckets; correlation risks; expected shortfall; hedging; historical simulations; mapping processes; stress testing; Value-at-Risk
asset managers 193–202
C-convolutions 187–9, 191–3, 194–202, 203–6
capital aggregation 181, 185–206, 210–12
capital allocations 181, 185–206
definition 2–3, 181–5
HM 195–202
level curves 189–93
non-linear dependence between risks 108–10
private equity funds 204–6
Index

risk management (Continued)
problems 2–3, 183–4, 186
real-world asset management 2–3, 121, 181–206
semi-parametric models 200–2
square-root process 202–6
temporal aggregation of risk measures 202–6
risk-free rates 1–2, 15–16, 23–4, 29, 34, 156–7, 161–3, 195–202
risk-neutral measures 2–3, 15–16, 131–3, 140–1, 156–7, 161–3
see also compatibility
definition 2, 15
pricing restrictions 132–3, 140–1
running maxima 125–32, 138–41
see also path-dependent equity derivatives
running minima 125–32, 138–41
see also path-dependent equity derivatives
S&P 500 index 14–19, 23–4, 28–9, 123–6
Samuelson, Paul 50
scaling properties, Brownian motion 239
scatter plots 95–6, 102–7, 184
Schönbucher formula, definition 171
SCODMY model 5–6, 137, 139–41, 144–52
see also semi-parametric models
scoring models, credit risk 158–60
seasoned Asian option 126
seasoned bonds, on-the-run bonds 202–3
securitization 156–8, 177–80
see also asset-backed securities; collateralized debt obligations
self-organizing maps (SOMs) 174–5
self-similar copulas 58–62, 67, 82–3
semi-group of operators 236–7
semi-martingale copula 207, 212–14
definition 207, 212–14
Lévy copula 213–14
semi-martingales 64, 133–7, 207, 212–14, 240–3
Brownian motion 64, 133–5
definitions 240–3
frontier issues 207, 212–14
pure jump Lévy processes 213–14
time-changed Brownian motion 64, 133–7
semi-parametric models 5–6, 66, 91, 93, 99–107, 136–7, 139–41, 144–52, 200–2
applications 102–7, 136–7, 200–2
asset managers 200–2
copula-based Markov processes 91, 93, 99–107, 136–7
definition 5–6, 91, 99–100, 136–7
path-dependent equity derivatives 136–7
risk capital management 200–2
SCODMY model 5–6, 137, 139–41, 144–52
semi-unsupervised cluster analysis 172–3
seniority of debt 154, 156–7, 178–80
shock 6, 50, 156–7, 181–206
see also innovation
short assets 2–3
short correlation 1, 2–3, 27–9, 152
short memory processes, long memory processes 113–16
short volatilities 2–3
siege MLE 101–7
simulations
C-convolutions 72–3
dependent increments 81, 85–6
historical simulations 3, 21–2, 62–3
Markov chain simulations 62–3, 76, 93–8, 115–16
Monte Carlo simulations 102–7, 123–5, 147–52
stationary copula-based Markov process 93–8, 102–7, 108–10, 122–52
singular copulas, definition 43, 166
skewness 24, 163, 184–5, 218, 223–4
see also correlation . . . ; moments; volatility . . .
Sklar, Abe 4–5
Sklar theorem 12–14, 23, 31, 35, 46–7, 141, 209
see also copula functions
definition 12–14
SOMs see self-organizing maps
spatial dependence 5, 49, 91, 121–2, 178, 181–206
Spearman’s rank correlation 16, 20–2, 31, 167, 169
Spearman’s rho 22–3
special purpose vehicles (SPVs) 156–8
see also securitization
special semi-martingales 241–3
see also canonical decomposition
speculation 1, 4, 49–50
spread options 122–4, 147, 150–2, 162–3, 164
SPVs see special purpose vehicles
square-root process 64–5, 102–3, 202–6
definition 64–5, 202–3
private equity funds 206
risk management capital 202–6
stable copula 60, 76–7
see also distributions
definition 76–7, 223–4, 239
index 223–4
stable processes 60, 76–7
see also Markov . . .
state of the art, copula functions 11–47
static hedging 24, 141
stationary copula-based Markov process 93–107, 108–10, 116–19, 122–52
definition 93, 99
simulations 93–8, 102–7, 108–10, 122–52
stationary increments Markov processes 116–19
stationary processes 6, 93–107, 108–10, 116–19, 122–52
statistics, spatial dependence 5, 49, 91, 121
Stieltjes integral 55–6
stochastic clocks 64, 133–4, 137–52
stochastic differential equations (SDEs) 65–6
stochastic processes 5–6, 49–89, 108–10, 121–52, 212–14, 231–3
see also filtrations; Lévy . . .; Markov . . .
martingales; stopping times
definition 5, 49, 113–14, 231
elements 231–43
reflection principle 128–9
time-change techniques 63–6, 129–30, 133–7
unit roots 108–10
stock picking, asset managers 195–6, 201–2
see also equity . . .
stopping times 232–4, 236–7
see also stochastic processes
strangles 135–6
see also call options; put options
stress testing, definition 3
strictly ordered, definition 209–10
strike prices 14–47, 122–52
strong law of large numbers, definition 163, 229
strong Markov processes 236–7
see also Markov . . .
strong mixing conditions 100–7
structural approach to credit risk 158–64
structured credit risk models 160–4, 179–80
see also Black–Cox approach; Gaussian
copula; put options; Vasicek formula
critique 164
structured finance 1
student’s t copula 30–1, 80–1, 93–9, 102–7, 122–5
see also copula functions; elliptical . . .
student’s t distributions 30–1, 80–1, 93–9, 102–7, 122–5, 162–3
see also fat-tails
style analysis 200
submartingales 233–4
see also martingales
subordinators
see also gamma . . .; Lévy processes;
Poisson . . .; stable . . .
definition 64, 240
super-senior tranche, definition 156–7
supermartingales 234
see also martingales
support of probability, definition 216
survival copulas 23–6, 29, 53–8, 127–30
see also upper tail index
copulation algorithm (pseudo code) 25–6
copula volume 24–6
definition 23, 25
survival probability, definition 23, 159–60, 161–3
swaps 29, 121, 134–5, 154–80
see also asset . . .; correlation . . .; credit
default . . .; first-to-default . . .; total
return . . .; variance . . .; volatility . . .
types 154–5
symmetric Bernoulli random walks, definition 128–30
synthetic CDOs 157–60, 177–80
see also collateralized debt obligations
systemic risks, definition 156
tail dependence indexes 11, 27–47, 93, 162–3, 184–5
see also lower . . .; upper . . .
definition 27
tail integral 208–10
Taylor series expansion 17
definition 5, 49, 66, 91
risk capital management 202–6
term structures
CDX contracts 177–80
correlation swaps 146
credit risk 159, 165, 176–80
default probabilities 159, 178–80
distribution of losses 176–80
multivariate equity derivatives 136, 146, 147–52
option prices 136–52
variance swaps 136
time homogenous transition functions 235
time horizons, VaR 182–4, 186–206
time series 4–7, 21–2, 93–119
time-change techniques 63–6, 129–30, 133–7
time-changed Brownian copulas 63–6, 129–30, 133–7
see also Brownian motion; semi-martingales
definition 64, 133–4
time-changed copulas 63–6, 129–30, 133–7
tools 11–47
top-down models 4, 186, 187–8
see also capital aggregation
total return swaps 154–5
trade-the-skew strategy 121
tranches 154, 156–8, 162–3, 178–80
see also base correlation; credit risk
definition 154, 156
hedging 157–8
Index

274

transition functions 55–8, 112–13, 116–19, 235–7
triangular arbitrage 3
trigger events, memory features 130–2
turbulence 181–206

underlying assets 5–26, 121–52, 160–80
see also derivatives
unfunded synthetic CDOs 158, 160, 177–80
see also CDX . . ; synthetic CDOs
uniform marginals requirement of copula functions 12–47
unit roots 6, 108–10
univariate credit risk models 154–5, 160–1, 165
univariate credit transfer products 154–5
univariate probability theory 2–3, 5, 12–13, 15, 49
univariate product pricing, multivariate product arbitrage 2–3, 5, 15–19, 23–4, 26
unsupervised clustering techniques, concepts 172–6
unwinding periods, VaR 182–4, 202
up barrier options 125–6
upper tail index 27, 33
see also survival copulas
utility function 1–2

vague convergence 229
Value-at-Risk (VaR) 2–3, 34, 181–5, 186–206
asset managers 194–5
critique 2–3, 181–5
definition 2, 181–4
historical background 181–2
homogeneity property 183–4, 186–206
insurance policies 188–9
Kendall function 34
level curves 190–3
multivariate VaR 186–206
square-root formula 203–6
unwinding periods 182–4, 202
VaR homogeneity property 183–4, 186–206
VaR see Value-at-Risk; vector autoregression variance 1–2, 6, 7–8, 64–6, 118–19, 121, 122–52, 218–26, 240, 242–3
see also moments; volatilities

CEV 64–6
definition 218
variance gamma processes (VG) 65–6, 140–1, 240

see also Brownian motion; gamma . . .
Brownian copulas 65–6, 140–1
definition 65–6, 140, 240
variance swaps 121, 134–6
see also swaps
VARMA model 6
Vasicek formula 163–4, 171, 179–80
evector autoregression (VAR) 5
vector independent increments 88–9, 138–41
vectors 24–6, 224–6
see also matrices; random . .
venture capital 204–6
versions of conditional expected values, definition 230
VG see variance gamma processes
Vidozzi A., 2009 approach 212–14
evine copulas, definition 44–5
volatilities 1, 2–9, 24, 121–52, 162, 163
see also implied . . ; variance . .
volatility skew 24, 121, 163
definition 24
trade-the-skew strategy 121
volatility smiles 21–2, 24, 147–52, 163
volatility swaps 121, 134–6
see also swaps
volatility trading 121–52
volume, definition 14, 207–8
volume between two points, copula functions 24–6

waterfalls 156–8
see also securitization
weak convergence 228–9
white-noise disturbances 163
Wiener process 64–6
see also Brownian motion
Williamson transform 32–3
within dependence, definition 36

zero-coupon bonds 160–3

Index compiled by Terry Halliday