INDEX

A
- Acrylonitrile Butadiene Styrene, 3
- Airbag housing, 7
- Alkaline electrolyte, 223
- Alloy designations, 42, 43
- Aluminate electrolyte, 223
- Aluminum, 2, 3, 5, 7, 30, 32, 40–43, 45, 63, 64, 76, 80, 90, 92, 95, 101, 115, 176, 186, 187, 191–197, 207, 209, 211–213, 222, 225, 226
- Aluminum hydroxide, 221
- Ammonium bifluoride, 221
- Anodic, 208, 209
- Anodizing, 217, 219, 220, 221, 223, 224
- Applications 5–11
 - aerospace, 7
 - automotive, 5
 - electronics, 10
 - medical, 8
 - optical, 10
 - sports, 9
- Archery bow, 9

B
- Beryllium, 40
- Bicycle frame, 10
- Biocompatible, 9
- Biodegradable, 9
- Blending, 21, 22, 118
- Bonding, 94
 - chemical, 94
 - mechanical, 94
- Borate solution, 224
- Boron carbide, 115

C
- Calcium, 40
- Camera housing, 10
- Carbon, 115
- Carbon nanotube (CNT), 91, 105, 114, 115, 118–121, 133, 134, 159, 170–176, 196, 197
- Carbon fiber, 3, 217
- Cathodic, 208, 209
- Cathodic epoxy electrocoating, 226
- Cathodic site, 213
- Ceramic matrix composite (CMC), 88
- Cerium, 40
- Chain saw housing, 11
- Chemical conversion coating, 217
- Chromate solution, 220
- Cleavage crack, 120
- Clustering tendency, 117, 118
- Coefficient of thermal expansion, 99, 100
- Kerner’s model, 100
- Rule of mixture (ROM), 99
- Turner’s model, 99
- Compaction, 22, 24–27
 - compaction, cold, 24, 26
 - compaction, hot, 24, 25
 - isostatic pressing, 24, 25
 - isostatic pressing, hot, 25
 - isostatic pressing, cold, 25
 - uniaxial pressing, 24
- Contact angle, 94
- Conversion coating, 219
- Copper, 40, 43, 90, 115, 176–180, 208, 213, 215
- Corrosion, 207–231
 - galvanic, 211
 - high temperature oxidation, 211, 214
 - intergranular, 211, 212
 - localized, 212
Corrosion (Continued)
- pitting, 211, 212, 217
- stress corrosion cracking, 211, 213, 214
Corrosion current density, 217, 220, 223, 226
Corrosion potential, 208, 209, 216, 217, 223–225
Corrosion rate, 213–216, 220, 222, 223
Corrosion resistance, 207, 209, 213, 214, 217, 218, 221, 224, 227
Cross slip, 120

D
- Damage tolerant design, 118
- Deaerated solution, 216
- Density, 97
 - rule of mixture (ROM), 97
- Dichromate sealing, 221
- Dichromate treatment, 220
- Die casting, 14, 15
- Disintegrated melt deposition, 32–35, 118
- Dow 17 coating, 221, 222

E
- Elastic modulus, 100–102
 - Halpin-Tsai model, 101
 - rule of mixture (ROM), 100
- Electrical conductivity, 97
 - Kerner’s model, 97
 - Rayleigh-Maxwell equation, 97
 - rule of mixture (ROM), 98
- Electrochemical attack, 213
- Electrochemical impedance spectroscopy, 217
- Electrochemical polarization test, 217
- Electrochemical test, 217, 222–226
- Electrode potential, 207, 208, 211
- Electromagnetic interference, 10
- Electromotive force series (emf), 208
- Emissions, 1, 7
- Engine, 8
- Eyewear frame, 10

F
- Forging, 16, 22, 42, 47, 54, 62
- Formability, 118
- Fuel efficiency, 7
- Fuel tank cover, 6
- Functionally gradient material, 32, 35

G
- Galvanic coupling, 215, 218
- Galvanic series, 209, 210
- Gearbox, 8
- Gearbox housing, 6, 222
- Golf club, 9
- Grain refinement, 115, 117, 121
- Graphite fiber, 3

H
- Handle, 11
- Helicopter transmission casing, 8
- Hexagonal close-packed (HCP) structure, 4, 78, 118
- Humidity environment, 215
- Hydride coating, 219, 220
- Hydrogen evolution test, 217
- Hydroxyapatite, 8, 220

I
- Immersion test, 223
- Implant material, 9
- Impurity, 211, 213, 219
- In situ synthesis, 14, 21
- Inhibiting pigment, 226
- Inhibitors, 14, 15
 - ammonium fluorosilicate, 15
 - boric acid, 15
 - potassium fluoroborate, 15
 - sulfur, 15
- In-line skate chasis, 10
- Interface, 88, 94–97
- Interface adhesion, 95
- Interface engineering, 96
- Interfacial failure, 96
- Interfacial reaction, 97
- Interparticle spacing, 117
- Ion implantation, 219
- Iron, 33, 36, 40–43, 63, 176, 188–190, 209, 210, 213, 227

L
- Lacquer sealing, 221
- Laptop housing, 10
- Laser annealing, 219
- Lightweight, 2, 8, 10, 11, 62, 90, 215
<table>
<thead>
<tr>
<th>INDEX</th>
<th>255</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liquid metallurgy, 92, 118, 120</td>
<td></td>
</tr>
<tr>
<td>Liquid phase process, 13</td>
<td></td>
</tr>
<tr>
<td>Lithium, 40</td>
<td></td>
</tr>
<tr>
<td>Lock body, 7</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Magnesium, Alloy, 39, 45</td>
<td></td>
</tr>
<tr>
<td>casting, 44, 47</td>
<td></td>
</tr>
<tr>
<td>die casting, 45, 51</td>
<td></td>
</tr>
<tr>
<td>investment casting, 51</td>
<td></td>
</tr>
<tr>
<td>permanent mold casting, 45, 53</td>
<td></td>
</tr>
<tr>
<td>sand casting, 45, 51–53</td>
<td></td>
</tr>
<tr>
<td>wrought, 47, 48–50</td>
<td></td>
</tr>
<tr>
<td>elevated temperature applications, 62</td>
<td></td>
</tr>
<tr>
<td>Mg-Al-Ca, 65</td>
<td></td>
</tr>
<tr>
<td>Mg-Al-Ca-RE, 66</td>
<td></td>
</tr>
<tr>
<td>Mg-Al-RE, 63, 64</td>
<td></td>
</tr>
<tr>
<td>Mg-Al-Si, 76</td>
<td></td>
</tr>
<tr>
<td>Mg-Al-Sr, 72</td>
<td></td>
</tr>
<tr>
<td>Mg-RE-Zn, 76</td>
<td></td>
</tr>
<tr>
<td>Mg-Zn-Al-Ca, 72</td>
<td></td>
</tr>
<tr>
<td>extruded bars, 53, 54</td>
<td></td>
</tr>
<tr>
<td>extruded shapes, 53, 54</td>
<td></td>
</tr>
<tr>
<td>forged products, 54, 55</td>
<td></td>
</tr>
<tr>
<td>plates, 54</td>
<td></td>
</tr>
<tr>
<td>sheets, 54</td>
<td></td>
</tr>
<tr>
<td>Magnesium, Bulk metallic glass, 39, 76, 79</td>
<td></td>
</tr>
<tr>
<td>ex situ method, 78</td>
<td></td>
</tr>
<tr>
<td>in situ method, 78</td>
<td></td>
</tr>
<tr>
<td>composite, 79, 80</td>
<td></td>
</tr>
<tr>
<td>Magnesium compounds, 2</td>
<td></td>
</tr>
<tr>
<td>carallite, 2</td>
<td></td>
</tr>
<tr>
<td>dolomite, 2</td>
<td></td>
</tr>
<tr>
<td>magnesite, 2</td>
<td></td>
</tr>
<tr>
<td>Magnesium, Elektron alloy, 41, 55–63, 76</td>
<td></td>
</tr>
<tr>
<td>extruded, 60</td>
<td></td>
</tr>
<tr>
<td>forged, 61</td>
<td></td>
</tr>
<tr>
<td>casting, 55–57</td>
<td></td>
</tr>
<tr>
<td>wrought, 56, 58, 59, 62, 63</td>
<td></td>
</tr>
<tr>
<td>Magnesium, Pure, 4, 5</td>
<td></td>
</tr>
<tr>
<td>atomic properties, 4</td>
<td></td>
</tr>
<tr>
<td>crystal structure, 4</td>
<td></td>
</tr>
<tr>
<td>electrical properties, 4</td>
<td></td>
</tr>
<tr>
<td>mechanical properties, 5</td>
<td></td>
</tr>
<tr>
<td>physical properties, 4</td>
<td></td>
</tr>
<tr>
<td>Magnesium fluoride, 211</td>
<td></td>
</tr>
<tr>
<td>Magnesium oxide (MgO), 91, 115, 118, 134, 135, 208, 213, 223</td>
<td></td>
</tr>
<tr>
<td>Manganese, 41</td>
<td></td>
</tr>
<tr>
<td>Matrix, 88, 90, 114</td>
<td></td>
</tr>
<tr>
<td>properties, 88</td>
<td></td>
</tr>
<tr>
<td>Mechanical alloying, 21–23</td>
<td></td>
</tr>
<tr>
<td>Mechanical disintegrated and deposition, 35, 36</td>
<td></td>
</tr>
<tr>
<td>Melt infiltration, 14, 20</td>
<td></td>
</tr>
<tr>
<td>pressure-assisted infiltration, 20</td>
<td></td>
</tr>
<tr>
<td>pressure-less infiltration, 20, 21</td>
<td></td>
</tr>
<tr>
<td>Metal matrix composite (MMC), 88</td>
<td></td>
</tr>
<tr>
<td>continuous fiber reinforced, 89</td>
<td></td>
</tr>
<tr>
<td>interconnected, 89</td>
<td></td>
</tr>
<tr>
<td>particulate reinforced, 89</td>
<td></td>
</tr>
<tr>
<td>sheet reinforced, 89</td>
<td></td>
</tr>
<tr>
<td>short fiber reinforced, 89</td>
<td></td>
</tr>
<tr>
<td>singular metal cored, 89</td>
<td></td>
</tr>
<tr>
<td>whisker reinforced, 89</td>
<td></td>
</tr>
<tr>
<td>Microarc discharge sintering, 217</td>
<td></td>
</tr>
<tr>
<td>Microarc oxidation coating, 217</td>
<td></td>
</tr>
<tr>
<td>Microgalvanic influence, 215</td>
<td></td>
</tr>
<tr>
<td>Molybdenum, 41, 115, 176, 185</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td></td>
</tr>
<tr>
<td>NaCl solution, 208, 209, 214–217, 220, 222, 223, 225, 227</td>
<td></td>
</tr>
<tr>
<td>Near-net shape, 15, 19</td>
<td></td>
</tr>
<tr>
<td>Neodymium, 41</td>
<td></td>
</tr>
<tr>
<td>Neutral salt fog, 215</td>
<td></td>
</tr>
<tr>
<td>Nickel, 41–43, 90, 115, 176, 181, 182, 210, 213</td>
<td></td>
</tr>
<tr>
<td>O</td>
<td></td>
</tr>
<tr>
<td>Oil prices, 1</td>
<td></td>
</tr>
<tr>
<td>Oil pump housing, 222</td>
<td></td>
</tr>
<tr>
<td>Organic coating, 219</td>
<td></td>
</tr>
<tr>
<td>Orthopedic biomaterial, 8</td>
<td></td>
</tr>
<tr>
<td>Oxygenated solution, 216</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td></td>
</tr>
<tr>
<td>Phosphoric acid, 221</td>
<td></td>
</tr>
<tr>
<td>Pilling-Bedworth ratio, 208</td>
<td></td>
</tr>
<tr>
<td>Plasma polymerization, 226</td>
<td></td>
</tr>
<tr>
<td>Plasma electrolytic oxidation (PEO), 219, 222–224</td>
<td></td>
</tr>
<tr>
<td>Polarization resistance, 224</td>
<td></td>
</tr>
<tr>
<td>Polyethylene, 3</td>
<td></td>
</tr>
<tr>
<td>Polymer coating, 219</td>
<td></td>
</tr>
<tr>
<td>Polymer matrix composite (PMC), 88</td>
<td></td>
</tr>
<tr>
<td>Polymer plating, 226</td>
<td></td>
</tr>
</tbody>
</table>
INDEX

Polyoxadiazole-based coating, 226
Porosity, 17, 18, 21, 41, 46, 98, 101, 102, 106, 117, 118
Potassium fluoride, 221
Potassium hydroxide, 221
Potassium permanganate, 221
Potentiodynamic polarization test, 222, 223
Powder coating, 226
Powder metallurgy, 17, 18, 21, 41, 46, 98, 101, 102, 106, 117, 118
Precipitation reaction, 97
Prismatic slip, 120
Protecting coating, 219

R
Radio frequency interference, 10
Rare earth metal salt, 224
Rare earth metals, 41
Reactivity of metals, 209
Reinforcement, 88–93, 114–121
amount, 88, 116
cost, 92
distribution, 88
ductility effect, 118–121
interconnected, 116
laminates, 116
length scale, 116–118
mechanical properties, 92, 115, 117
morphology, 88, 92
orientation, 88
particulate, 116
physical properties, 116
rod-shaped, 92
shape, 116
sheet, 116
short fiber, 116
singular metal core, 116
size, 88, 92, 116–118
spherical-shaped, 116
type, 88, 114, 115
whisker, 116
Rule of mixture (ROM), 97–100

S
Sand casting, 14
Seat frame, 6, 7
Semisolid metal casting, 14, 17
rheocasting, 18
thixomolding, 17
Silicate additive, 224
Silicon, 41
Silver, 41, 90
Sintering, 26–32, 118, 119, 136, 160
conventional resistance heating, 26, 28
hybrid microwave heating, 26
pure microwave heating, 26
Slip system, 78, 118, 120
basal, 120
nonbasal, 120
Sodium dichromate, 221
Sol-gel, 226
Solid phase process, 13, 21
Solidification shrinkage, 15, 17
Solute segregation, 97
Spray forming, 14, 19
spray atomization, 19
spray casting, 19
Squeeze casting, 14, 16, 217
direct squeeze casting, 16, 17
indirect squeeze casting, 16, 17
Standard potential, 209
Steam treatment, 221
Steering column housing, 6
Steering wheel, 7
Stir casting, 14, 18
Stokes’ Law, 93
Stress raiser, 116
Strontium, 42
Susceptor, 28–31

T
Taganite coating, 221, 222
Temper designations, 43, 44
Tennis racket, 9
Texture, 120
Thermal spray coating, 219
Thorium, 42
Thrust reverser, 8
Tin, 42, 90
Tin oxide, 91, 115
Titanium, 2, 42, 90, 115, 176, 183, 184
Titanium boride, 91, 115
INDEX

Titanium carbide, 91, 115
Transmission case, 222
Trisodium phosphate, 221

W
Wettability, 94, 95

Y
Yield strength, 8, 40–42, 46, 66, 72, 76, 102–105, 116, 118, 170, 213
shear lag theories, 102
strengthening factors, 103
elastic modulus mismatch, 103, 104
Hall-Petch, 103, 105
load-bearing, 103–105
Orowan, 103, 105
thermal modulus mismatch, 103, 104
Young’s equation, 94
Yttrium, 42

Z
Zinc, 42
Zirconium, 42
Zirconium boride, 91, 115