INDEX

Absolute fitness, 140, 184–185, 257
in natural selection, 140–141

Accumulated admixture (M)
per generation admixture vs., 235–236
in simple admixture model, 227–228

Adaptation, 203
to disease and dietary change, 190
evolutionary forces and, 20
genetic drift and, 20
among high-altitude populations, 192–193

Adaptive value, of Duffy allele, 188–189

Admixture, 257
to African-Americans, 253–255
defined, 226
estimating, 228–229
extending analysis of, 229–230
genetic drift vs. gene flow and, 231
in human populations, 226–230
in Native American origins, 249
simple model of, 226–228

Admixture estimating model, 228–229

Advantage, in natural selection, 139

Aerobic capacity, in low vs. high-altitude populations, 192

Africa
in Duffy negative allele geography, 187–189
hemoglobin S allele in, 183–187
hominin dispersal outside, 195–196
human evolution in, 243–245, 256
human skin color in, 194, 196
lactase persistence allele in, 191–192
in Native American origins, 248–249

African-Americans
admixture to, 253–255
European gene flow into, 226, 228, 231

African apes
evolution of, 88–92, 96
relationship to other apes and to humans, 89, 91–92, 96

African replacement model, of human evolution, 243

Africans, Y chromosome haplogroups among, 95–97

Agriculture, 198–202
genetics and spread of, 249–251
in human population explosion, 20
in spread of malaria, 185–186

AIDS (acquired immune deficiency syndrome)
CCR5-Δ32 allele and resistance to, 189–190, 203
in human populations, 4

Åland Islands case study, 239–241

Albumin, in analyzing ape–human relationship, 91

Allele counting method, 29–30, 45–46, 184

Allele frequencies, 131–132, 168, 203, 257
changes over in time in, 45
chi-square statistic and, 47–48
computing, 25–30
deviations from random mating and, 36, 38–39, 44
Hardy–Weinberg equilibrium and, 24–40, 45–48
in impact of inbreeding on genotype frequencies, 63
INDEX

inbreeding and, 51, 64, 75
in linkage disequilibrium, 40–42
among more than two alleles, 42
with X-linked genes, 43–44
Alleles, 45, 131, 168, 257
codominant, 9–10
defined, 8
dominant and recessive, 9–10
in genetics, 8–10
in haplotypes, 11–12
harmful recessive, 161–162
Amino acids
in analyzing ape–human relationship, 89–90
DNA sequences for coding, 79
in hemoglobin molecule, 182
mutations and, 78
Among-group variation, 213, 257
Ancestors
inbreeding among descendants of, 49–51
mitochondrial DNA and, 12–13
Ancestry-informative markers (AIMs), 257
in admixture estimating model, 229
AND rule, 15–16
Anthropological genetics, 21
Anthropology
human population structure and history
in, 237–238, 255–256
inbreeding of human populations in, 65
population genetics and, 19–21
Antibodies
in analyzing ape–human relationship, 89
red blood cell markers and, 10
Antigens
with Duffy blood group, 187
red blood cell markers and, 10
Apes
classification of, 88–89
evolution of, 88–92, 96
traits shared with humans, 88
Archaeology, 1
in history of modern humans, 242–243
Asia
in colonization of Polynesia, 251–252
hemoglobin S allele in, 186–187
human African origins and, 245
human evolution in, 243
human skin color in, 194, 198
lactase persistence allele in, 191
in Native American origins, 248–249
origins of agriculture in, 249
Asian great ape, 89, 91, 96
Asians
Neandertals vs, 247
Y chromosome haplogroups among, 95–96
Assimilation model, of human evolution, 243
Assortative mating, 19, 257
Hardy–Weinberg equilibrium and, 36, 44
Assortment, Mendel’s law of independent, 7, 15
Aunt–nephew mating, inbreeding due to, 54, 59
Australasia, human skin color in, 194
Australia, in colonization of Polynesia, 251
Australians, Y chromosome haplogroups among, 96
Autosomes, 257
in assessing human genetic diversity, 13
Average genetic similarity, in R matrix, 234
Average population size, 117
in evolutionary theory vs. reality, 167
of hemoglobin molecule, 182–185
hemoglobin S and, 183–185
Base pairs (bps), 5, 257–258
Bases, in DNA, 5, 19, 78
Bedik tribe, migration matrix analysis of, 223–225
Bering Strait, in Native American origins, 248
Between-group variation, 3–4, 213, 258
measuring, 213–215
in R matrix, 233–234
Biological anthropology, 1
Biological evolution, cultural evolution vs., 181–182
Biological relatives, 52
Black death, CCR5-Δ32 allele and, 190
Blood
genetic markers in, 27–28, 253
hemoglobin in, 182
Blood cell production, in low- vs. high-altitude populations, 192
Bonobos, relationship to other apes and to humans, 89, 91–92, 96
Bottlenecks, 258
demographic history and coalescent theory and, 131
in populations, 118
Bougainville Island study, 27–28, 239
Brain size
 in human evolution, 243
 selection for increased, 166
Breastfeeding, evolution of, 190
Breeding population, 18
Breeding population size, 132, 258
 effective population size vs., 117–118
 fertility variation and, 118–119
 genetic drift and, 112–113
 sex ratio and, 119
Caingang Indians, sex ratio and, 119
Calculus, 14. See also Mathematics
 formulas for selection for heterozygotes, 177–178
Card decks, probability and, 14, 16
Carriers, sickle cell, 182
Cattle farming, lactase persistence allele and, 191
Cavalli-Sforza, Luigi Luca, 21
CCR5-Δ32 allele, disease resistance and, 189–190
CCR5 (C–C chemokine receptor type 5) gene, 79, 189, 203
Census population size, 258
Central America, European gene flow into, 226
Chest dimensions, in low- vs. high-altitude populations, 192
Chimpanzees, relationship to other apes and to humans, 89, 91–92, 96
Chi-square (χ^2) statistic, 258
 testing for Hardy–Weinberg equilibrium via, 39, 47–48
Chromosomal changes, 79
Chromosomes, 5, 258. See also
 Y-chromosome DNA
 in detecting recent selection, 199–200
 dominant and recessive alleles and, 9
 effect of mutations on, 79
 genetic markers on, 8
 inheritance and, 6–7
 Mendel’s laws and, 5–7
 mutations of, 96
 in recombination, 7
Classical genetic markers, 11
Cline, 258
Coalescence, average time to, 127–130
 coalescent theory, 125–132, 258
 coalescent trees, 130–131
 codominant alleles, 9–10, 168, 258
 in computing genotype frequencies, 24, 28
 selection with, 152–154
Cold injury hypothesis, skin color and, 197–198
Colonization, of Polynesia, 251–252
Common ancestry
 of apes and humans, 91–92
 in average time to coalescence, 127–130, 132
 in coalescent theory, 126–127
 computing inbreeding coefficient and, 57
 dating of divergence from, 90
 in inbreeding, 75
 inbreeding and close, 51–54
 Congenital defects, inbreeding and, 65
Consanguineous marriages, 258
 among Romany of Wales, 67
 computing random and nonrandom inbreeding components and, 70–73
demography of, 66
genealogical diseases and, 65
 in human populations, 65–66
 in potential-mates analysis, 74
Continental–island model, 208
Cousin marriages
 inbreeding due to, 53–55, 57–61, 75
 marital isonymy and, 68–70
 among Navajo, 67–68
 in potential-mates analysis, 74
 selection and inbreeding and, 165
 in surname analysis, 68
Crick, Frances, 5
Cultural anthropology, 1
Cultural diffusion, in origins of agriculture, 249–250
Culture, 19–20, 258
Culture change, 200
 hemoglobin S evolution and, 185–187
Dairy farming, 198
lactase persistence allele and, 191
Dark skin
 in colonization of Polynesia, 251
 evolution in human populations, 195–196
Darwin, Charles, 19, 68, 139, 197
Darwin, George, 68
Degrees of freedom, chi-square statistic and, 47–48
Deletions, 78–79, 96, 258
Demic diffusion, in origins of agriculture, 249–251
Demographic history, coalescent theory and, 130–132
Demography, 132
in Åland Islands case study, 240–241
in balancing genetic drift and gene flow, 219
in calculating mean inbreeding coefficient, 61
of consanguineous marriages, 66
in detecting recent selection, 200–201
evolutionary forces and, 19–20
in future human evolution, 201–202
in human evolution, 198–199
isolation by distance and, 220
of kin-structured migration, 212
in migration matrix analysis, 225
in potential-mates analysis, 74
role in human mate choice, 66
Denisovan genome, 247
Developmental acclimatization, in low- vs. high-altitude populations, 192
Diet in detecting recent selection, 200
in human evolution, 203
lactase persistence allele and, 191
Dietary advances, in cultural evolution, 181
Dietary change, adaptation to, 190
Diffusion, in origins of agriculture, 249
Diploid inheritance, 12, 258
Diploid population, in average time to coalescence, 128
Directional selection, 166, 259
Disease, 198
adaptation to, 190
in future human evolution, 202
in natural selection, 203
Disease resistance, CCR5-Δ32 allele and, 189–190
DNA (deoxyribonucleic acid), 259. See also Microsatellite DNA; Mitochondrial DNA (mtDNA);
DNA bases, 78
DNA markers
in assessing human genetic diversity, 11 quantitative traits and, 13
DNA sequences, 45
in DNA analysis, 11
Dominant alleles, 9–10, 168, 259
formulas for selection against, 171–172
Hardy–Weinberg equilibrium and, 23, 39–40
selection against, 151–152
selection against harmful, 162–163
X-linked genes and, 43–44
Double first cousins, inbreeding among, 55, 59
Down syndrome, 79
Duffy blood group, malaria and, 187–189
Duffy negative allele, 187–189, 203
geography of, 187–189
EcoRI bacterial enzyme, 11
Effective population size (N_e), 117, 132, 259
breeding population size vs., 117–118
fertility variation and, 118–119
genetic drift and, 116–119
sex ratio and, 119
Egyptian dynasties, inbreeding within, 66
Electrophoresis, 259
red blood cell markers and, 10–11
Endogamy, 67, 259
among Romany of Wales, 67
Equal and additive effects model, 13, 259
Equilibrium, 31, 85, 168. See also
Hardy–Weinberg equilibrium between-group and within-group variation and, 213
detecting deviations from, 38–39
formulas for mutation–selection, 178–180
for hemoglobin S allele, 185–186
in human evolution, 199
infinite alleles model at, 134–136
meaning of, 34–35
migration matrix analysis of, 221–225
between mutation and genetic drift, 123–125
recessive homozygotes in, 149–150
in reversible mutation model, 84–86
in selection against dominant alleles, 151–152
in selection against mutations, 161–163, 178–180
in selection for heterozygotes, 158–160
Ethnicity, in human populations, 18
Eurasians, Neandertals vs, 247
Europe Åland Islands case study in, 239–241
CCR5-Δ32 allele in, 189–190
gene flow to African-Americans from, 253–255
human African origins and, 244–245
human evolution in, 243
human skin color in, 194, 198
Irish Travelers in, 252–253
lactase persistence allele in, 191–192
in Native American origins, 248–249
Neandertals in, 245
spread of agriculture into, 249–250
Europeans
gene flow into African-American population, 226, 228, 231
gene flow to African-Americans from, 253–255
Neandertals vs, 247
origin of Irish Travelers and, 253
peopling of New World by, 247–248
Y chromosome haplogroups among, 96
Evolutionary change, rapidity of, 166–167
Evolutionary force(s), 19–20, 96, 259
Exogamous marriages, as affecting random and nonrandom inbreeding components, 72–73
Exogamy, 67, 259
in Jujay, Argentina case study, 242
among Romany of Wales, 67
Expected genotype frequencies from Hardy–Weinberg equilibrium, 30–31, 33–35
inbreeding and, 63
Expected genotype numbers chi-square statistic and, 47–48
deviations from Hardy–Weinberg equilibrium and, 38–39
Express train model, of colonization of Polynesia, 252
Extinction, 131, 168, 259
coalescent theory and, 126
as genetic drift outcome, 106, 108–112, 115, 120–122
of mutant alleles, 88
selection and genetic drift and, 163–164
Fertility
inbreeding and, 65
in natural selection, 139
variation in, 118–119
Fetal loss, inbreeding and, 65
First cousin mating
inbreeding due to, 54–55, 57–61
marital isonymy and, 68–70
prohibitions against, 66, 75
selection and inbreeding and, 165
First cousins, inbreeding among, 53–55, 59–61, 75
First cousins once removed, 53–54, 59
Fisher, Ronald, 20–21
Fitness, 167–168, 203, 259. See also Mean fitness absolute and relative, 140–141
in formulas for selection against dominant alleles, 171–172
in formulas for selection against heterozygotes, 174–176
in formulas for selection for heterozygotes, 176–178
in formulas for selection with codominant alleles, 172–174
in future human evolution, 202
in general natural selection models, 146–147
of hemoglobin S allele, 183–185
of heterozygotes, 151
mutation and selection and, 160–161
of normal vs. sickle cell genotypes, 182–183
of recessive homozygotes, 148–150
in selection against heterozygotes, 154–157
selection and genetic drift and, 163–164
selection coefficient vs., 148
in selection for heterozygotes, 157–160
in spread of malaria, 186–187
Fixation, 131, 168, 259
as genetic drift outcome, 106, 108–112, 115, 120–123
selection and genetic drift and, 163–164
Fixation index (FST), 259
in balancing genetic drift and gene flow, 216–219
defined, 215–216
human African origins and, 245
in measuring between-group variation, 213–214
Folate destruction, in human skin color evolution, 195
Fossil record
in analyzing ape–human relationship, 91
in history of modern humans, 242–243
in human population genetics, 21
Neandertal, 246
Founder effect, 259
human African origins and, 244–245
Founder effect (Continued)
in origin of Irish Travelers, 253
in populations, 118
Frostbite, skin color and, 197
Full first cousins, inbreeding among, 53–54,
59–61
Full sib mating, inbreeding due to, 53–54,
59
Gainj tribe, in New Guinea case study,
238–239
Gametes, 259
in linkage disequilibrium, 41
Genealogical data, inbreeding studies
using, 66–68
Genealogical diagrams, 50, 52–56, 58,
60–61, 69
Genealogy
among Navajo, 67–68
coevalent theory and, 126–127, 129
computing inbreeding coefficient from,
56–61
inbreeding and, 49–53
tracing mutations via, 92–93
Gene expression, 5
Gene flow, 101, 205–236, 255, 260
in admixture analysis extension, 229–230
admixture in human populations via,
226–230
in Åland Islands case study, 240–241
as limited by isolation by distance,
219–222
in colonization of Polynesia, 252
defined, 205–206
in detecting recent selection, 201
equilibrium between genetic drift and,
213, 215–219
as evolutionary force, 19, 37
evolutionary impact of, 205–208
genetic difference reduction via, 206–208
genetic drift and, 213–225, 230–231
Hardy–Weinberg equilibrium and, 37,
44–45
history and, 237
in human evolution, 243
in human populations, 205
in Jujay, Argentina case study, 242
migration matrix analysis of, 221–225
between modern humans and
Neandertals, 246
in simple admixture model, 226–228
Gene flow models, 205, 208–212
island model, 208–210
kin-structured migration, 212
two-way gene flow, 210–212
General natural selection models, 145–147
calculating allele frequency change for,
168–170
formulas for selection against dominant
alleles in, 171–172
formulas for selection against
heterozygotes in, 174–176
formulas for selection against recessive
homozygotes in, 170–171
formulas for selection for heterozygotes
in, 176–178
formulas for selection with codominant
alleles in, 172–174
Generations, 98, 168
in average time to coalescence, 127–130
coalescent theory and, 125–126
Genes, 45, 259. See also X-linked genes
defined, 8
genetic code and, 5
for hemoglobin proteins, 182
in molecular dating, 90
Genetic code
discovery of, 5
mutation of, 77–78
table of, 79
Genetic differences. See Genetic diversity
Genetic diseases, inbreeding and, 65
Genetic disequilibrium, 41
Genetic dissimilarity, in R matrix, 234
Genetic distance
in Åland Islands case study, 241
in colonization of Polynesia, 252
human African origins and, 245
in Jujay, Argentina case study, 242
measuring between species, 90
in Nei’s genetic identity measure, 235
in R matrix, 234
Genetic diversity
assessing human, 10–13
demographic history and coalescent
theory and, 131
effects of inbreeding on, 65
effects of mutations on, 86–87
from equilibrium between mutation and
genetic drift, 123–125
founder effect and, 118
history and, 237
in human evolution, 199–201
human population genetics and, vii
reducing via gene flow, 206–208
in tracing human evolution, 92
Genetic drift, 17, 101–137, 255, 260
in admixture analysis extension, 229–230
in admixture estimating model, 229
in Åland Islands case study, 240–241
average time to coalescence and, 129
in coalescent theory, 125–131
decay of heterozygosity over time due to, 132–134
effective population size and, 116–119
effects on genetic variation, 120–121
equilibrium between gene flow and, 213, 215–219
equilibrium between mutation and, 123–125
in fates of mutations, 87–88
fertility variation and, 118–119
in future human evolution, 201–202
gene flow and, 213–225, 230–231
Hardy–Weinberg equilibrium and, 36–37, 44–45
among high-altitude populations, 193
history and, 237
human African origins and, 244–245
in human evolution, 199
isolation by distance, 219–222
infinite alleles model and, 134–136
loss of heterozygosity over time due to, 121
migration matrix analysis of, 221–225
mutation and, 121–125
in natural selection simulation, 144–145
nature of, 102–112
in New Guinea case study, 239
nucleotide diversity and, 136–137
origin of Irish Travelers and, 253
outcome of, 106–112
population size and, 20, 106, 112–119
randomness of, 101–102, 106–112, 115
in selection against heterozygotes, 156
selection and, 160, 163–165
sex ratio and, 119
simulation of, 104–112, 122–123
skin color and, 198
Genetic identity (I), in Nei’s genetic identity measure, 235
Genetic identity measure, 220, 234–235
Genetic markers, 8, 260
blood and, 11, 27–28
classical, 11
quantitative traits and, 13
sex-linked, 43–44
Genetic relationships, 52–53
Genetic sampling, genetic drift and, 102–104
Genetic similarity
in Native American origins, 248–249
in Nei’s genetic identity measure, 234–235
R matrix and, 232–234
Genetic variants, via mutation, 77
Gene trees, human African origins and, 244
Genome, 7, 260
complete Neandertal, 246–247
Genome analysis, of humans, apes, and Neandertals, 246–247
Genotype frequencies, 45, 260
of blood genetic markers, 27–28
in calculating allele frequencies, 29–30, 45–46
chi-square statistic and, 47–48
computing, 24–27
deviations from Hardy–Weinberg equilibrium and, 38
equilibrium in, 34–35
in general natural selection models, 146–147
Hardy–Weinberg equilibrium and, 24, 30, 32–35, 37, 45–48
inbreeding and, 51, 62–64
among more than two alleles, 42
nonrandom mating and, 44
normalized, 143
selection and inbreeding and, 165
for two-allele loci, 45–46
with X-linked genes, 43–44
Genotype numbers
chi-square statistic and, 47–48
deviations from Hardy–Weinberg equilibrium and, 38–39
hemoglobin S allele and, 184
Genotypes, 168, 203, 260
absolute and relative fitness of, 140–141, 184–185
for allele counting method, 29–30, 45–46
defined, 8
distribution of possible, 16–17
dominant and recessive alleles and, 9–10
in general natural selection models, 145–147
in genetics, 8–10
Hardy–Weinberg equilibrium and, 23, 37
mating according to, 36
Genotypes (Continued)
 phenotypes and, 8–9
 population genetics and, 2
 in populations, 19
Geographic distance
 as barrier to gene flow, 219–222
 human African origins and, 244–245
 in Jujay, Argentina case study, 241–242
Geological time, macroevolution and, 3
Gibbons, 88–89
 classification of, 89, 92
Glucose-6-phosphate dehydrogenase (G6PD), 187
Gorillas, relationship to other apes and to humans, 89, 91–92, 96
Grandparents
 cousins and, 53–55
 inbreeding and, 49–51, 75
 marital isonymy and, 68–69
Great apes, 88–89, 91–92
Growth response, in low- vs. high-altitude populations, 192–193
Gullah people, 255
Gypsies, 252–253. See also Romany of Wales
 inbreeding study
 inbreeding among, 67
Hair loss, evolution of, 195–196
Haldane, J. B. S., 21
Half first cousins, inbreeding among, 55, 59
Half-sib mating, inbreeding due to, 53–54, 59
Haplogroups, 94–96, 260
 Native American, 248–249
Haplogroup trees, 95, 97
 mutations and, 92–97
Haploid inheritance, 12, 260
 Haplotype frequencies, in linkage disequilibrium, 41–42
Haplotypes, 260
 in assessing human genetic diversity, 11–12
 history and, 237
 tracing mutations in, 93–94, 97
Haplotype trees, 94, 97
Hardy, Godfrey, 23–24, 45
 Hardy’s law, 23
 Hardy–Weinberg equilibrium, 23–48, 101, 260
 allele frequencies and, 24–30, 45–48
 assumptions of, 94–37, 45
 chi-square statistic and, 39, 47–48
 detecting deviations from, 38–39
 dominant alleles and, 23, 39–40
 evolution and, 44–45
 extensions of, 40–44
 formulation of, 23–24, 45
 gene flow and, 206
 in general natural selection models, 146
 genotype frequencies and, 24, 45–48
 inbreeding and, 51, 62–65, 75
 linkage disequilibrium of, 40–42
 mathematics of, 30–37
 among more than two alleles, 42
 mutation and, 80
 nature of, 30–31, 45
 selection and inbreeding and, 165
 simple mutation model and, 81
 using, 37–40, 45
 X-linked genes and, 43–44
Hardy–Weinberg law, 23–24, 30. See also Hardy–Weinberg equilibrium
 Harmful dominant alleles, 162–163
 Harmful recessive alleles, 161–162
 Harmonic mean, effective population size and, 117
 Hemoglobin, sickle cell mutant of, 78. See also Hemoglobin S
 Hemoglobin alleles, malaria and natural selection of, 187
 Hemoglobin concentration, among high-altitude populations, 193
 Hemoglobin molecule
 natural selection of, 182
 structure of, 182
 Hemoglobin S, 198, 203
 balancing selection and, 183–185
 culture change and evolution of, 185–187
 in detecting recent selection, 200
 malaria and, 182–187
 Hemoglobin S case study, 182–187
 Heterozygosity (H), 260. See also Heterozygous genotypes
 in balancing genetic drift and gene flow, 216
 decay/loss over time of, 121, 132–134
 at equilibrium between mutation and genetic drift, 124
 in infinite alleles model at equilibrium, 134–136
 in measuring genetic variation, 120
 in measuring group variation, 213, 215
Heterozygotes, 168, 203
 fitness of, 151
 fitness of codominant, 152–154
 formulas for selection against, 174–176
 formulas for selection for, 176–178
 in general natural selection models, 145–147
 lethal recessive alleles in, 150
 in natural selection simulation, 142–145
 selection against, 154–157
 selection and inbreeding and, 165
 selection for, 157–160
Heterozygous genotypes, 8–10, 131. See also Heterozygosity (H)
 genetic drift and decay over time of, 132–134
 in genetic sampling, 102–104
 Hardy–Weinberg equilibrium and, 30–34
 inbreeding and, 51, 62, 75
Hierarchical population structure, 213–215, 260
High-altitude populations
 genetic adaptation among, 192–193, 203
 in Jujay, Argentina case study, 241–242
Hitchhiking, 199
HIV (human immunodeficiency virus), CCR5-Δ32 allele and resistance to, 189–190
Hominidae (hominids), 88–89, 91–92
Homininae (hominines), 91–92
Hominini (hominins), 92, 195
Hominoida (hominoids), evolution of, 88–89, 92, 96
Homo, evolution of, 243
Homo erectus, 195–196
 evolution of, 243
Homo heidelbergensis, 196
 evolution of, 243
Homo sapiens, 196, 256
 Neandertals vs., 246
Homozygosity, 55, 260. See also Homozygous genotypes
 decay of heterozygosity over time and, 133
Homozygotes.
 in general natural selection models, 145–147
 in natural selection simulation, 142–145
 selection against harmful recessive, 161–162
 in selection against heterozygotes, 154–157
 selection and inbreeding and, 165
 in selection for heterozygotes, 157–160
Homzygous genotypes, 8–10
 alleles of, 55–56
 computing inbreeding coefficient and, 56–57
 genetic diseases and, 65
 Hardy–Weinberg equilibrium and, 32–34
 inbreeding and, 36, 51, 62–64, 75
Horticulture
 in New Guinea case study, 238
 in spread of malaria, 185–186
Hotspots, of mutation, 80
Human cultural behavior, evolutionary forces and, 19–20
Human diet evolution, lactase persistence and, 190–192
Human evolution
 genetic drift in, 115–116
 natural selection in, 181–182
 Y chromosome in tracing, 92–97
Human genetic diversity, assessing, 10–13
Human genetic variation, studies of, 203
Human genome data, in detecting recent selection, 199
Human mate choice, inbreeding and, 65–66
Human population genetics
 genetic, mathematical, and anthropological background of, 1–21
 short history of, 20–21
Hunting/gathering lifestyle, 198–201
 genetic drift and, 20
Hutterite data, in computing random and nonrandom inbreeding components, 70–72
Hybrid populations
 in admixture estimating model, 229
 genetic drift vs. gene flow and, 231
 and per generation admixture vs. accumulated admixture, 235–236
 in simple admixture model, 226–228
Hylobatidae (hylobatids), 88–89, 92
Hypoxia, adaptation to high-altitude, 192–193
Identity by descent, 260
Identity by descent (Continued)
due to genetic drift, 215–216
in impact of inbreeding on genotype frequencies, 63, 75
infinite alleles model and, 134–136
Identity by state, 261
alleles in, 53–56
in impact of inbreeding on genotype frequencies, 63
Immunology, in analyzing ape–human relationship, 89–91
Inbreeding, 19, 49–75, 261
ancestry paradox and, 49–51
in colonization of Polynesia, 252
decay of heterozygosity over time and, 133
defined, 75
effects of cumulative, 59
evolutionary forces and, 64
genealogies and, 49–53
Hardy–Weinberg equilibrium and, 35–36, 44
in human populations, 4, 65–74
impact on allele frequencies, 64
impact on genotype frequencies, 62–64
incest vs., 66, 75
loss of heterozygosity over time due to, 121
medical impact of, 65
population genetics and, 62–65
quantifying, 51–62
random and nonrandom components of, 70–73
selection and, 160, 165–166
types of, 53–55
Inbreeding coefficient, 51, 55–61, 75, 261
calculating mean, 60–62
computing, 56–57
defined, 55–56
estimating from marital data, 60
inbred common ancestor and, 58–61
among Navajo, 67–68
in potential-mates analysis, 74
relationship levels and, 57–59
among Romany of Wales, 67
from studying marital isonymy, 68–70
Inbreeding loops, 53–55
computing inbreeding coefficient and, 57–58, 60–61
Inbreeding rates/levels, 65–66
Inbreeding studies
using genealogical data, 66–68
using potential-mates analysis, 73–74
using surname analysis, 68–73, 75
Incest, 261
in human populations, 66, 75
in potential-mates analysis, 74
Indel (insertion and deletion), 78–79, 261
Independent assortment, Mendel’s law of, 7, 15
Individual ancestry, in admixture analysis extension, 230
Industrialization
in human population explosion, 20
skin color and, 197
Industrial Revolution, peppered moth population genetics and, 3
Infection resistance, in human skin color evolution, 195
Infinite alleles model, 124, 134–136, 261
Infinite sites model, 125, 261
Inheritance. mitochondrial DNA and Y-chromosome DNA in, 12–13
probability and, 6–7, 14
Insertions, 78–79, 96, 261
Interbreeding
human African origins and, 244–245
in human evolution, 243
between modern humans and Neandertals, 246
Inversion, 261
Irish famine, 219
Irish Travelers, 119
Irreversible mutation model, 81–84, 86, 97–99
formulas for mutation–selection equilibrium and, 178–180
Island model, 208–210, 230, 261
changes in allele frequency over time in, 231–232
Isolation by distance, 261
in Åland Islands case study, 241
genetic drift and gene flow in, 219–222
human African origins and, 245
Isonymous marriage. See Marital isonymy
Isonymy, 68, 261
Iterative equations, using recurrence relation to solve, 97–99
Jujay, Argentina case study, 241–242
Kalam tribe, in New Guinea case study, 238–239
Kin-structured migration, 212, 261
Kung, average reproductive age among, 113
Lactase, evolution of, 190–191
Lactase activity alleles, 191
Lactase persistence, 8–9, 198
human dietary evolution and, 190–192
Lactose intolerance, development of, 190–191
Language. See also Linguistics
history and, 237
in New Guinea case study, 238–239
Lapita culture, in colonization of Polynesia, 251
Latitude, skin color and, 196–198
Lesser apes, 88–89
Lethal dominant alleles, 151–152
Lethal recessive alleles, 150
Light skin, evolution in human populations, 196–198
Linkage, 261
of alleles, 11–12
Linkage disequilibrium (LD), 41, 261
in detecting recent selection, 200
Hardy–Weinberg equilibrium and, 40–42
Locus (loci), 45, 261–262
of genes, 8–10
of haplotypes, 11–12
linkages between, 40–42
with more than two alleles, 28–29, 42
rates of mutation at, 80
Long-range gene flow, migration matrix analysis and, 224–225
Long-range migration, 230–231
Lung volume, in low- vs. high-altitude populations, 192
Macroevolution, 262
defined, 3
Mainland population, in island model, 208–210
Major gene model, 13, 262
Malaria, 198, 203
agriculture and spread of, 185–186
Duffy blood group and, 187–189
hemoglobin S and, 182–187
natural selection due to, 187
Marital data, estimating inbreeding coefficient from, 60
Marital isonymy
computing inbreeding coefficient from, 68–70
computing random and nonrandom inbreeding components and, 70
Marriage
in Åland Islands case study, 240
in calculating mean inbreeding coefficient, 61–62
in European–African-American gene flow, 253–254
as impacted by isolation by distance, 219–221
mating vs., 52
in migration matrix, 222–224
among Navajo, 67–68
in New Guinea case study, 238–239
Massachusetts, marriage and migration in colonial, 2
Massachusetts towns, random and nonrandom inbreeding components in, 72–73
Mating(s)
in calculating mean inbreeding coefficient, 60–62
as impacted by isolation by distance, 219–221
marriage vs., 52
population structure and, 238
Maximum fitness values, in selection for heterozygotes, 158–160
MC1R (melanocortin 1 receptor) locus, in human skin color evolution, 196
Mean fitness, 262
in general natural selection models, 146–147
in natural selection simulation, 142, 144–145
of recessive homozygotes, 148–150
in selection against dominant alleles, 151
in selection against heterozygotes, 154–157
in selection for heterozygotes, 157–158
Mean inbreeding coefficient (F), 75
calculating, 60–62
from studying marital isonymy, 68–70
in surname analysis, 68
Mean population size, 117
Meiosis, 262
recombination and, 7
Melanesia
 in colonization of Polynesia, 251–252
New Guinea case study and, 239
Mendel, Gregor, 2
Mendelian genetics, 45
 anthropology and, 17
Hardy–Weinberg equilibrium and, 23
mitochondrial DNA and Y-chromosome DNA and, 12–13
 population genetics and, 2
 probability and, 16–17
Mendel’s law of independent assortment, 7, 15, 262
Mendel’s law of segregation, 6, 262
Mendel’s laws, 5–7, 15, 262
 recombination and, 7
Mental retardation, inbreeding and, 65
Mexico, European gene flow into, 228
Microevolution, 45, 262
 defined, 3
 evolutionary forces and, 19–20
 Hardy–Weinberg equilibrium and, 39
 history and, 237
Micronesia, in colonization of Polynesia, 251
Microsatellite DNA, in DNA analysis, 11
Middle East
 in Duffy negative allele geography, 187
 human evolution in, 243
 lactase persistence allele in, 191–192
 Neandertals in, 245
 origins of agriculture in, 249–251
Migration
 in Åland Islands case study, 239–241
 as limited by isolation by distance, 219–221
 gene flow via, 205–206
 genetic drift and, 106
 genetic drift vs. gene flow and, 230–231
 of Homo erectus, 196
 human African origins and, 245
 in island model, 208–210
 in Jujay, Argentina case study, 241–242
 kin-structured, 212
 in New Guinea case study, 238–239
 in two-way gene flow, 210–212
Migration matrix, defined, 222–223
Migration matrix analysis, 230–231, 262
 in Åland Islands case study, 241
 of genetic drift and gene flow, 221–225
Migration rate (m)
 in Åland Islands case study, 240
 in balancing genetic drift and gene flow, 216–219
 in island model, 208–210
 in migration matrix analysis, 221–225
 in two-way gene flow, 210–212
Minisatellites
 in DNA analysis, 11–12
 mutations in, 80
Mismatch, 262
 in assessing nucleotide diversity, 136–137
Mitochondrial DNA (mtDNA), 262
 in African-American genetics, 254
 in assessing human genetic diversity, 12–13
 in colonization of Polynesia, 252
 in evolution of apes and humans, 91
 mutations in, 80
 Neandertal, 246
 in origins of agriculture, 250
Mitosis, 5–6, 262
Modern humans
 Neandertals vs., 245–247
 origin of, 242–247
Molecular clock, 90–91
Molecular dating, 90
Morbidity, inbreeding and, 65
Mortality
 absolute and relative fitness in and, 140–141
 inbreeding and, 65
Most recent common ancestor (MRCA), 262
 in coalescent theory, 126–127, 129, 132
Mutation, 77–99, 101, 168, 255, 262
 allele frequencies and, 36
 anthropology and, 88–96
 in balancing genetic drift and gene flow, 216
 in DNA analysis, 11
 equilibrium between genetic drift and, 123–125
 as evolutionary force, 19, 37, 80
 evolutionary impact of, 79–80
 in formulas for mutation–selection equilibrium, 178–180
 gene flow and, 206
 genetic drift and, 106, 121–125, 164–165
 Hardy–Weinberg equilibrium and, 36, 44–45
 history and, 237
 infinite alleles model and, 134–136
 models of, 81–88
<table>
<thead>
<tr>
<th>Index Term</th>
<th>Page Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>natural selection and, 77</td>
<td></td>
</tr>
<tr>
<td>rarity of, 80</td>
<td></td>
</tr>
<tr>
<td>reverse, 83–86</td>
<td></td>
</tr>
<tr>
<td>in selection against heterozygotes, 156</td>
<td></td>
</tr>
<tr>
<td>selection and, 160–165</td>
<td></td>
</tr>
<tr>
<td>simple model of, 81–83</td>
<td></td>
</tr>
<tr>
<td>skin color and, 198</td>
<td></td>
</tr>
<tr>
<td>types of, 78–79</td>
<td></td>
</tr>
<tr>
<td>Mutation rate (μ), 80–81, 96, 99</td>
<td></td>
</tr>
<tr>
<td>in balancing genetic drift and gene flow, 216–217</td>
<td></td>
</tr>
<tr>
<td>in equilibrium between mutation and genetic drift, 124</td>
<td></td>
</tr>
<tr>
<td>in formulas for mutation—selection equilibrium, 179–180</td>
<td></td>
</tr>
<tr>
<td>infinite alleles model and, 134–135</td>
<td></td>
</tr>
<tr>
<td>in introducing new mutants into a population, 86</td>
<td></td>
</tr>
<tr>
<td>in simple mutation model, 81–83</td>
<td></td>
</tr>
<tr>
<td>Mutations. See also Mutation</td>
<td></td>
</tr>
<tr>
<td>among apes and humans, 89–90, 96</td>
<td></td>
</tr>
<tr>
<td>average time to coalescence and, 129</td>
<td></td>
</tr>
<tr>
<td>of CCR5 gene, 189</td>
<td></td>
</tr>
<tr>
<td>in future human evolution, 201–202</td>
<td></td>
</tr>
<tr>
<td>geographic analysis of, 95–96</td>
<td></td>
</tr>
<tr>
<td>haplogroup trees and, 92–97</td>
<td></td>
</tr>
<tr>
<td>human African origins and, 244–245</td>
<td></td>
</tr>
<tr>
<td>for lactase persistence allele, 191</td>
<td></td>
</tr>
<tr>
<td>nature of, 77–81</td>
<td></td>
</tr>
<tr>
<td>numbers of new, 86–87</td>
<td></td>
</tr>
<tr>
<td>origin of Irish Travelers and, 253</td>
<td></td>
</tr>
<tr>
<td>passage of time and, 90</td>
<td></td>
</tr>
<tr>
<td>in population genetics, 7</td>
<td></td>
</tr>
<tr>
<td>population size and, 20</td>
<td></td>
</tr>
<tr>
<td>randomness of, 101</td>
<td></td>
</tr>
<tr>
<td>selection against, 161–163</td>
<td></td>
</tr>
<tr>
<td>selection for, 180–163</td>
<td></td>
</tr>
<tr>
<td>sickle cell, 182, 186–187</td>
<td></td>
</tr>
<tr>
<td>Native Americans</td>
<td></td>
</tr>
<tr>
<td>admixture analysis of, 229</td>
<td></td>
</tr>
<tr>
<td>in colonizaton of Polynesia, 251</td>
<td></td>
</tr>
<tr>
<td>European gene flow into, 226</td>
<td></td>
</tr>
<tr>
<td>in Jujay, Argentina case study, 242</td>
<td></td>
</tr>
<tr>
<td>origin of, 248–249</td>
<td></td>
</tr>
<tr>
<td>Y chromosome haplogroups among, 96</td>
<td></td>
</tr>
<tr>
<td>Natural selection, 101, 167–168, 263</td>
<td></td>
</tr>
<tr>
<td>case studies in human populations, 182–198</td>
<td></td>
</tr>
<tr>
<td>as evolutionary force, 19, 37</td>
<td></td>
</tr>
<tr>
<td>in fates of mutations, 87</td>
<td></td>
</tr>
<tr>
<td>in future human evolution, 201–202</td>
<td></td>
</tr>
<tr>
<td>Hardy–Weinberg equilibrium and, 37, 44–45</td>
<td></td>
</tr>
<tr>
<td>among high-altitude populations, 193</td>
<td></td>
</tr>
<tr>
<td>in human evolution, 20, 203</td>
<td></td>
</tr>
<tr>
<td>in human populations, 181–203</td>
<td></td>
</tr>
<tr>
<td>in human skin color evolution, 193–198</td>
<td></td>
</tr>
<tr>
<td>inbreeding and, 65</td>
<td></td>
</tr>
<tr>
<td>of lactase persistence allele, 191–192</td>
<td></td>
</tr>
<tr>
<td>mutation and, 77</td>
<td></td>
</tr>
<tr>
<td>operation of, 139–140</td>
<td></td>
</tr>
<tr>
<td>simulation of, 141–145</td>
<td></td>
</tr>
<tr>
<td>in theory vs. reality, 166–167</td>
<td></td>
</tr>
<tr>
<td>types of, 147–160</td>
<td></td>
</tr>
<tr>
<td>Natural selection models, 139–180</td>
<td></td>
</tr>
<tr>
<td>calculating allele frequency change for, 168–170</td>
<td></td>
</tr>
<tr>
<td>evolutionary forces and selection in, 160–167</td>
<td></td>
</tr>
<tr>
<td>fitness in, 139–140</td>
<td></td>
</tr>
<tr>
<td>formulas for mutation—selection equilibrium in, 178–180</td>
<td></td>
</tr>
<tr>
<td>formulas for selection against dominant alleles in, 171–172</td>
<td></td>
</tr>
<tr>
<td>formulas for selection against heterozygotes in, 174–176</td>
<td></td>
</tr>
<tr>
<td>formulas for selection against recessive homozygotes in, 170–171</td>
<td></td>
</tr>
<tr>
<td>formulas for selection for heterozygotes in, 176–178</td>
<td></td>
</tr>
<tr>
<td>formulas for selection with codominant alleles in, 172–174</td>
<td></td>
</tr>
<tr>
<td>general, 145–147</td>
<td></td>
</tr>
<tr>
<td>of malaria and sickle cell anemia, 186</td>
<td></td>
</tr>
<tr>
<td>mathematics in, 139, 140–145</td>
<td></td>
</tr>
<tr>
<td>types of natural selection in, 147–160</td>
<td></td>
</tr>
<tr>
<td>Navajo Indians, inbreeding among, 67–68</td>
<td></td>
</tr>
<tr>
<td>Neandertals, 202</td>
<td></td>
</tr>
<tr>
<td>evolution and history of, 245–247</td>
<td></td>
</tr>
<tr>
<td>evolution of, 243</td>
<td></td>
</tr>
<tr>
<td>features and appearance of, 245–246</td>
<td></td>
</tr>
<tr>
<td>skin color of, 198</td>
<td></td>
</tr>
<tr>
<td>Nearly neutral theory of evolution, 263. See also Neutral theory of evolution</td>
<td></td>
</tr>
<tr>
<td>Nei's genetic identity measure, 220, 234–235</td>
<td></td>
</tr>
<tr>
<td>Neutral mutations, 78</td>
<td></td>
</tr>
<tr>
<td>fates of, 87–88</td>
<td></td>
</tr>
<tr>
<td>in molecular dating, 90</td>
<td></td>
</tr>
<tr>
<td>Neutral theory of evolution, 263</td>
<td></td>
</tr>
<tr>
<td>in detecting recent selection, 199–200</td>
<td></td>
</tr>
<tr>
<td>equilibrium between mutation and genetic drift and, 124</td>
<td></td>
</tr>
</tbody>
</table>
Neutral theory of evolution (Continued)
in fates of mutations, 87–88
humans in, 199
population structure and history and, 238
selection and genetic drift and, 164–165
New Guinea, in colonization of Polynesia, 251
New Guinea case study, 238–239
New World. See also Americas
human African origins and, 245
Old World gene flow into, 226
peopling of, 247–249
Nonrandom inbreeding component (F_n), 70–73
in potential-mates analysis, 73–74
Nonrandom marital isonymy, computing
random and nonrandom inbreeding components and, 70
Nonrandom mating
Hardy–Weinberg equilibrium and, 44
inbreeding and, 70–73
Normalization, of genotype frequencies in
natural selection simulation, 143
Nuclear DNA, 131
in evolution of apes and humans, 91
mitochondrial DNA and Y-chromosome
DNA and, 12
Neandertal, 246–247
Nucleotide diversity (π), 263
in equilibrium between mutation and
genetic drift, 125
genetic drift and, 136–137
Nucleotide mismatches, in assessing
nucleotide diversity, 136–137
Nucleotides, in DNA, 5. See also DNA bases
Old World
gene flow into New World from, 226
human skin color in, 194
“Once removed” terminology, 53–54
One-way gene flow, 208–210
Orangutans
classification of, 89, 91–92, 96
relationship to other apes and to humans, 89, 91–92
Orkney Islands study, 74
or rule, 15, 16
Oxygen, sickle cell anemia and, 182
Oxygen shortage, adaptation to
high-altitude, 192–193
Pacãs Novos Indians study, 28–29
Pacific populations, Y chromosome
haplogroups among, 96
Panini (panins), 92
Papago Indians, 221–222
Papua New Guinea, human population
case study in, 238–239
Parental populations
in admixture analysis extension, 229–230
in admixture estimating model, 228–229
and per generation admixture vs.,
accumulated admixture, 235–236
in simple admixture model, 226–228
Parent–child mating
inbreeding due to, 53–54, 59
taboo against, 66
Parma Valley study, 21
Parsimony analysis, of haplogroup trees, 95
Partial sweeps, in detecting recent
selection, 201
Pedigrees, 49
in marital isonymy, 69–70
in potential-mates analysis, 74
Peppered moth, population genetics of,
2–3, 20, 87, 167
Per generation admixture (m)
accumulated admixture vs., 235–236
in simple admixture model, 228
Phenotype frequencies
Hardy–Weinberg equilibrium and, 40
with X-linked genes, 43–44
Phenotypes, 263
defined, 8–9
distribution of possible, 16–17
dominant and recessive alleles and, 9–10
in genetics, 8–10
genotypes and, 8–9
Hardy–Weinberg equilibrium and, 23
mating according to, 36
population genetics and, 2
quantitative traits of, 13
selection and quantitative traits among,
166
Phylogeography, 263
haplogroups in, 95
Plasmodium falciparum, hemoglobin S allele
and, 183
Plasmodium vivax, Duffy negative allele and,
187
Plymouth population, kin-structured
migration in, 212
Point mutations, 78, 263. See also Single-base mutations
Polygenic traits, 13, 263
Polymorphisms, 263
defined, 8
Polynesia, colonization of, 251–252
Pongidae (pongids), 88–89, 91–92
Ponginae (pongines), 92
Population(s), 45, 263
 absolute and relative fitness in, 140–141
 in admixture analysis extension, 229–230
 in anthropology, 18
 average time to coalescence in, 127–130
 between-group and within-group variation in, 213
 bottlenecks in, 118
 calculating mean inbreeding coefficient for, 60–62
 coalescent theory and, 125
 computing genotype frequencies for, 24 defined, 18
 deviations from Hardy–Weinberg equilibrium within, 38–39
 effective sizes of, 116–119
 equilibrium between mutation and genetic drift in, 123–125
 equilibrium in, 34–35
 evolution in, 131–132
 fertility variation in, 118–119
 founder effect in, 118
 gene flow as introducing new alleles into, 206
 gene flow as reducing genetic differences among, 206–208
 gene flow into, 37
 genetic composition of, 19
 in genetic drift simulation, 105–116
 genetic drift vs. gene flow in, 230–231
 genetic drift within, 36–37
 genetic variation in, 120
 Hardy–Weinberg equilibrium and, 23, 34–37
 hemoglobin S allele in, 183–185
 inbreeding in, 49–51
 introduction of new alleles into, 86–87
 of Ireland, 18
 in island model, 208–210
 kin-structured migration in, 212
 linkage disequilibrium in, 41–42
 measuring between-group variation in, 213–215
 in migration matrix, 222–224
 mutation within, 36, 160
 natural selection in, 168
 in Nei’s genetic identity measure, 234–235
 in potential-mates analysis, 74
 in R matrix, 232–234
 random and nonrandom inbreeding components in, 70–73
 selecting against dominant alleles in, 151–152
 selection in, 160
 two-way gene flow in, 210–212
 of the world, 87
Population genetics, 97. See also Human population genetics
 anthropology and, 19–21
 defined, 2
 evolution and, 3
 genetic variation and, 3–4
 Hardy–Weinberg equilibrium and, 36–37
 history and, 237
 inbreeding and, 51, 62–65
 Mendelian genetics in, 2
 scope of, 2–4
Population genomics, 263
 in detecting recent selection, 199
Population growth
 demographic history and coalescent theory and, 130–132
 in detecting recent selection, 200
Population history, 238, 255–256, 263
Population of origin, in migration matrix, 222–224
Population of residence, in migration matrix, 222–224
Population size (N), 112, 132. See also Effective population size (N_e)
 in Aland Islands case study, 240
 in balancing genetic drift and gene flow, 216–219
 changes in, 117–118
 decay of heterozygosity over time and, 133
 demographic history and coalescent theory and, 130–132
 evolutionary forces and, 19–20
 fertility variation and, 118–119
 future human, 201
 genetic drift and, 20, 106, 112–119
 in migration matrix analysis, 221–225
Population size (N) (Continued)
in New Guinea case study, 238–239
selection and genetic drift and, 163–165
Population structure, 238, 255–256, 263
case studies in human, 238–242
Positive assortative mating,
Hardy–Weinberg equilibrium and, 36
Potential-mates analysis, 263–264
inbreeding studies using, 73–74
Preferential mating, Hardy–Weinberg
equilibrium and, 36
Primates, evolution among, 88–92
Probability
anthropology and, 17
coin tossing and, 6–7, 14–16
in genetic sampling, 102–104
genetics and, 2–4, 14, 16–17
Hardy–Weinberg equilibrium and,
31–36
inheritance and, 6–7
simple rules of, 14–16
Proteins
in analyzing ape–human relationship,
89–91
genetic code and, 5
in molecular dating, 90
mutations and, 78
PTC tasting, Hardy–Weinberg equilibrium
and, 39–40
Punnett square, 16–17, 30, 264
Purines, as DNA bases, 78
Pyrimidines, as DNA bases, 78
Quantitative genetics, 13, 264
of inbreeding, 51–62
Quantitative traits, 13, 264
in assessing human genetic diversity, 13
selection and, 160, 166
Ramah Navajo inbreeding study, 67–68
Ramea Island study, 72
Random genetic drift, 104. See also Genetic
drift
Random inbreeding component (F_r), 70–73
in potential-mates analysis, 73–74
Random marital isonymy
computing random and nonrandom
inbreeding components and, 70
probability of, 71–73
Random mating, 45
as Hardy–Weinberg equilibrium
assumption, 35–36
inbreeding and, 51, 70–73
Rapid population growth, demographic
history and coalescent theory and,
130–132
Rare genetic diseases, inbreeding and, 65
Recent selection
detecting, 199–201
in human evolution, 203
Recessive alleles, 9–10, 264
in general natural selection models,
145–14

genetic diseases and, 65, 75
Hardy–Weinberg equilibrium and, 23,
39–40
harmful, 161–162
inbreeding and, 51
selection and inbreeding and, 165
X-linked genes and, 43–44
Recessive homozygotes, 167–168
in formulas for mutation–selection
equilibrium, 179–180
formulas for selection against, 170–171
selection against, 147–150
selection with codominant alleles and,
153–154
Recombination, 7, 264
linkage disequilibrium and, 42
in sex chromosomes, 13
Recurrence relation, 86
to solve iterative equations, 97–99
Red blood cell markers
in assessing human genetic diversity,
10–11
in colonization of Polynesia, 251–252
Relationships, among apes and humans,
88–89, 91–92, 96
Relative allele frequencies, 25–30
notation for, 25, 28
Relative fitness, 141, 184–185, 264
in natural selection, 140–141
Religion
consanguineous marriages and, 66
in human populations, 18
Repeated DNA sequences, in DNA
analysis, 11
Reproduction
fitness and selection coefficient and, 148
in natural selection, 139
probability and, 14
Respiration, in low- vs. high-altitude
populations, 192
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Restriction fragment length</td>
<td>264</td>
</tr>
<tr>
<td>polymorphisms (RFLPs)</td>
<td></td>
</tr>
<tr>
<td>in DNA analysis</td>
<td>11</td>
</tr>
<tr>
<td>haplotypes based on</td>
<td>11–12</td>
</tr>
<tr>
<td>Reverse mutation</td>
<td>83–86, 97–99</td>
</tr>
<tr>
<td>Reversable mutation model</td>
<td>83–86, 97–99</td>
</tr>
<tr>
<td>Rickets, vitamin D and</td>
<td>197</td>
</tr>
<tr>
<td>R matrix measure</td>
<td>220–222, 232–234</td>
</tr>
<tr>
<td>RNA (ribonucleic acid)</td>
<td></td>
</tr>
<tr>
<td>genetic code and</td>
<td>5</td>
</tr>
<tr>
<td>population genetics and</td>
<td>2</td>
</tr>
<tr>
<td>Rogers–Harpending migration matrix analysis method</td>
<td>224–225</td>
</tr>
<tr>
<td>Roma</td>
<td>252–253</td>
</tr>
<tr>
<td>Russia, in origins of agriculture</td>
<td>250. See also Siberia</td>
</tr>
<tr>
<td>Sampling bias, in admixture analysis extension</td>
<td>229</td>
</tr>
<tr>
<td>Sampling error</td>
<td></td>
</tr>
<tr>
<td>in admixture estimating model</td>
<td>229</td>
</tr>
<tr>
<td>Hardy–Weinberg equilibrium and</td>
<td>36–37</td>
</tr>
<tr>
<td>Second cousin mating</td>
<td></td>
</tr>
<tr>
<td>inbreeding due to</td>
<td>54, 59–60</td>
</tr>
<tr>
<td>incest and</td>
<td>66</td>
</tr>
<tr>
<td>marital isonymy and</td>
<td>68–69</td>
</tr>
<tr>
<td>selection and inbreeding and</td>
<td>165</td>
</tr>
<tr>
<td>Second cousins</td>
<td>53–54</td>
</tr>
<tr>
<td>Segregation, Mendel’s law of</td>
<td>6</td>
</tr>
<tr>
<td>Selection coefficient (s)</td>
<td>148, 264</td>
</tr>
<tr>
<td>of recessive homozygotes</td>
<td>148–150</td>
</tr>
<tr>
<td>in selection against heterozygotes</td>
<td>155–156</td>
</tr>
<tr>
<td>in selection against mutations</td>
<td>161–162</td>
</tr>
<tr>
<td>in selection for heterozygotes</td>
<td>157–159</td>
</tr>
<tr>
<td>in selection with codominant alleles</td>
<td>153–154</td>
</tr>
<tr>
<td>Selective sweep</td>
<td>264</td>
</tr>
<tr>
<td>in detecting recent selection</td>
<td>199–201</td>
</tr>
<tr>
<td>with Duffy negative allele</td>
<td>188</td>
</tr>
<tr>
<td>around MC1R (melanocortin 1 receptor) locus</td>
<td>196</td>
</tr>
<tr>
<td>Semal Senoi study</td>
<td>212</td>
</tr>
<tr>
<td>Sex cells</td>
<td></td>
</tr>
<tr>
<td>in meiosis</td>
<td>6</td>
</tr>
<tr>
<td>mutations in</td>
<td>7, 80</td>
</tr>
<tr>
<td>in recombination</td>
<td>7</td>
</tr>
<tr>
<td>Sex chromosomes, in assessing human genetic diversity</td>
<td>13</td>
</tr>
<tr>
<td>Sex-linked genetic markers</td>
<td>43–44</td>
</tr>
<tr>
<td>Sex ratio</td>
<td></td>
</tr>
<tr>
<td>genetic drift and</td>
<td>119</td>
</tr>
<tr>
<td>in New Guinea case study</td>
<td>238–239</td>
</tr>
<tr>
<td>Sexual selection</td>
<td>264</td>
</tr>
<tr>
<td>skin color</td>
<td>197–198</td>
</tr>
<tr>
<td>Short tandem repeats (STRs)</td>
<td>264</td>
</tr>
<tr>
<td>in DNA analysis</td>
<td>11</td>
</tr>
<tr>
<td>haplotypes based on</td>
<td>11–12</td>
</tr>
<tr>
<td>mutations in</td>
<td>80</td>
</tr>
<tr>
<td>Siberia</td>
<td></td>
</tr>
<tr>
<td>human African origins and</td>
<td>245</td>
</tr>
<tr>
<td>in Native American origins</td>
<td>248–249</td>
</tr>
<tr>
<td>Neandertals from</td>
<td>247</td>
</tr>
<tr>
<td>Sib mating</td>
<td></td>
</tr>
<tr>
<td>inbreeding due to</td>
<td>53–54</td>
</tr>
<tr>
<td>taboos against</td>
<td>66, 75</td>
</tr>
<tr>
<td>Sickle cell allele</td>
<td></td>
</tr>
<tr>
<td>for hemoglobin proteins</td>
<td>182–183</td>
</tr>
<tr>
<td>in human populations</td>
<td>4</td>
</tr>
<tr>
<td>Sickle cell anemia</td>
<td>78, 182, 203</td>
</tr>
<tr>
<td>spread of malaria and</td>
<td>186</td>
</tr>
<tr>
<td>Sickle cell carriers</td>
<td>182</td>
</tr>
<tr>
<td>Sickle cell hemoglobin</td>
<td>78</td>
</tr>
<tr>
<td>Sickle cell mutation, molecular genetics of</td>
<td>186–187</td>
</tr>
<tr>
<td>Silent mutations</td>
<td>78, 264</td>
</tr>
<tr>
<td>Single-base mutations</td>
<td>96. See also Point mutations</td>
</tr>
<tr>
<td>Single-locus model</td>
<td>13</td>
</tr>
<tr>
<td>Single-nucleotide polymorphisms (SNPs)</td>
<td>264</td>
</tr>
<tr>
<td>in admixture estimating model</td>
<td>229</td>
</tr>
<tr>
<td>in colonization of Polynesia</td>
<td>252</td>
</tr>
<tr>
<td>in detecting recent selection</td>
<td>200</td>
</tr>
<tr>
<td>in DNA analysis</td>
<td>11</td>
</tr>
<tr>
<td>haplotypes based on</td>
<td>11–12</td>
</tr>
<tr>
<td>Site frequency spectrum</td>
<td>265</td>
</tr>
<tr>
<td>in detecting recent selection</td>
<td>199–200</td>
</tr>
<tr>
<td>Skin cancers, in human skin color evolution</td>
<td>195</td>
</tr>
<tr>
<td>Skin color</td>
<td></td>
</tr>
<tr>
<td>in detecting recent selection</td>
<td>200</td>
</tr>
<tr>
<td>evolution of human</td>
<td>193–198</td>
</tr>
<tr>
<td>in human evolution</td>
<td>203</td>
</tr>
<tr>
<td>selection for lighter</td>
<td>166</td>
</tr>
<tr>
<td>Slow boat model, of colonization of Polynesia</td>
<td>252</td>
</tr>
<tr>
<td>Smallpox, CCR5-Δ32 allele and</td>
<td>190</td>
</tr>
<tr>
<td>Social classes, in human populations</td>
<td>18</td>
</tr>
<tr>
<td>Solar heat, adapting to</td>
<td>195–196</td>
</tr>
</tbody>
</table>
Spain
in admixture analysis, 229

gene flow into New World from, 226, 228

Speciation, gene flow and, 205

Species
evolutionary history within, 92–97
genetic distances between, 90

Stabilizing selection, 166, 265

Star-shaped coalescent trees, 130–131

Statistical significance, of deviations from
Hardy–Weinberg equilibrium, 38–39

STRUCTURE program, in admixture
analysis extension, 230

Subfamilies, including apes and humans, 91–92

Subpopulations
in balancing genetic drift and gene flow, 216
in hierarchical population structure, 213–215
population history and, 238

Sunburn, in human skin color evolution, 195

Superfamilies, 88
including apes and humans, 88–89, 92

Surname analysis, inbreeding studies using, 68–73, 75

“Survival of the fittest” paradigm, 139

Sweat glands, evolution of, 195–196

Synthetic theory of evolution, human population genetics and, 21

Tay–Sachs disease, 150

Thalassemias, 187

Third cousin mating, inbreeding due to, 54, 59

Third cousins, 53–54

Three-allele loci, 28–29, 42

Tlaxcaltecan Indians, admixture analysis of, 229

Total inbreeding (F), random and nonrandom components of, 70–73

Total variation defined, 213
measuring, 213–215

Transitions, 78, 265

Translocations, 79, 265

Transversions, 78, 265

TreeToy Java program, coalescence simulation via, 130

Tristan da Cunha study, 118

Two-way gene flow, 210–212

Ultraviolet (UV) radiation
adaptations to tropical, 195, 203
human skin color and, 194–195
vitamin D and, 196–197

Uncle–niece mating, inbreeding due to, 54, 59

United States
anthropology departments in, 1
consanguineous marriages in, 66
genetics of African-Americans in, 254–255
slave trade in, 253

Variance (V), in offspring number, 118–119

Vitamin D
natural synthesis of, 197
skin color and, 196–198
Vitamin D binding protein, alleles associated with, 28–29

Vivax malaria, 187–189, 203

Watson, James, 5

Weinberg, Wilhelm, 23–24, 45

Welsh Gypsy inbreeding study, 67

White blood cell markers, 11
in colonization of Polynesia, 251–252
Within-group variation, 3–4, 213

Wright, Sewall, 21

X chromosome, 13, 43–44

X-linked genes, Hardy–Weinberg equilibrium and, 43–44

Yanomama Indians, kin-structured migration in, 212

Y chromosome, 13, 43
in genetic analysis, 12
haplogroups on, 95–96
surname analysis and, 68
in tracing human evolution, 92–97

Y-chromosome DNA, 265
in African-American genetics, 254
in assessing human genetic diversity, 12–13
in colonization of Polynesia, 252
in origins of agriculture, 250–251

Zygotes, mitochondrial DNA and, 12