Contents

Preface XIX
List of Contributors XXI

1 Introduction to Nanoionic Elements for Information Technology 1
Rainer Waser, Daniele Ielmini, Hiro Akinaga, Hisashi Shima, H.-S. Philip Wong, Joshua J. Yang, and Simon Yu
1.1 Concept of Two-Terminal Memristive Elements 1
1.1.1 Classifications Based on Behavior, Mechanisms, and Operation Modes 1
1.1.2 Scope of the Book 6
1.1.3 History 9
1.2 Memory Applications 12
1.2.1 Performance Requirements and Parameter Windows 12
1.2.2 Device Isolation in Crossbar Arrays 16
1.2.3 3-D Technology 19
1.2.4 Memory Hierarchy 20
1.3 Logic Circuits 21
1.4 Prospects and Challenges 24
Acknowledgments 25
References 25

2 ReRAM Cells in the Framework of Two-Terminal Devices 31
E. Linn, M. Di Ventra, and Y. V. Pershin
2.1 Introduction 31
2.2 Two-Terminal Device Models 32
2.2.1 Lumped Elements 32
2.2.2 Ideal Circuit Element Approach 32
2.2.3 Dynamical Systems Approach 33
2.2.3.1 Memristive Systems 33
2.2.3.2 Memristor 34
2.2.4 Significance of the Initial Memristor and Memristive System Definitions in the Light of Physics 34
2.2.4.1 Limitations of Ideal Memristor Models 35
2.2.5 Memristive, Memcapacitive, and Meminductive Systems 35
2.2.6 ReRAM: Combination of Elements, Combination of Memory Features, and Consideration of Inherent Battery Effects 36
2.3 Fundamental Description of Electronic Devices with Memory 38
2.4 Device Engineer’s View on ReRAM Devices as Two-Terminal Elements 40
2.4.1 Modeling of Electrochemical Metallization (ECM) Devices 41
2.4.2 Modeling of Valence Change Mechanism (VCM) Devices 43
2.5 Conclusions 46
Acknowledgment 47
References 47

3 Atomic and Electronic Structure of Oxides 49
Tobias Zacherle, Peter C. Schmidt, and Manfred Martin
3.1 Introduction 49
3.2 Crystal Structures 50
3.3 Electronic Structure 54
3.3.1 From Free Atoms to the Solid State 55
3.3.2 Electrons in Crystals 58
3.3.2.1 Free Electron Model (Sommerfeld Model) 58
3.3.2.2 Band Structure Model 60
3.3.2.3 Density of States (DOS) and Partial DOS 62
3.3.2.4 Crystal Field Splitting 64
3.3.2.5 Exchange and Correlation 65
3.3.2.6 Computational Details 66
3.4 Material Classes and Characterization of the Electronic States 67
3.4.1 Metals 67
3.4.2 Semiconductors 68
3.4.3 Insulators 71
3.4.4 Point Defect States 72
3.4.5 Surface States 73
3.4.6 Amorphous States 75
3.5 Electronic Structure of Selected Oxides 76
3.5.1 Nontransition Metal Oxides 76
3.5.1.1 Al₂O₃ 76
3.5.1.2 SrO 77
3.5.1.3 ZnO 77
3.5.2 Titanates 79
3.5.2.1 TiO 79
3.5.2.2 Ti₂O₃ 79
3.5.2.3 TiO₂ 81
3.5.2.4 SrTiO₃ 82
3.5.3 Magnetic Insulators 82
3.5.3.1 NiO 84
3.5.3.2 MnO 85
3.5.4 M⁰⁷ Metal Oxides 86
4 Defect Structure of Metal Oxides 95

Giuliano Gregori

4.1 Definition of Defects 95
4.1.1 Zero-Dimensional Defects 95
4.1.2 One-Dimensional Defects 95
4.1.3 Two-Dimensional Defects 97
4.1.4 Three-Dimensional Defects 97
4.2 General Considerations on the Equilibrium Thermodynamics of Point Defects 98
4.3 Definition of Point Defects 99
4.3.1 Intrinsic Defects 99
4.3.1.1 Frenkel Defects 99
4.3.1.2 Anti-Frenkel Defects 99
4.3.1.3 Schottky Defects 100
4.3.1.4 Anti-Schottky Defects 100
4.3.1.5 Electron Band–Band Transfer 100
4.3.2 Extrinsic Defects 100
4.3.2.1 Reactions with the Environment 100
4.3.2.2 The Brouwer Diagram 101
4.3.2.3 Impurities and Dopants 102
4.4 Space-Charge Effects 103
4.4.1 Mott–Schottky Situation 104
4.4.2 Gouy–Chapman Situation 105
4.5 Case Studies 106
4.5.1 Titanium Oxide (Rutile) 106
4.5.1.1 Nominally Pure TiO₂ 107
4.5.1.2 Acceptor-Doped TiO₂ 108
4.5.1.3 Donor-Doped TiO₂ 108
4.5.1.4 The Role of Dislocations 109
4.5.2 Strontium Titanate 110
4.5.2.1 Acceptor-Doped SrTiO₃ 110
4.5.2.2 Donor-Doped SrTiO₃ 111
4.5.2.3 Grain Boundaries in SrTiO₃ 111
4.5.3 Zirconium and Hafnium Oxide 113
4.5.3.1 Zirconium Oxide 113
4.5.3.2 The Role of Grain Boundaries and Dislocations 115
4.5.3.3 Hafnium Oxide 116
4.5.4 Aluminum Oxide 116
4.5.4.1 Acceptor-Doped Alumina 117
4.5.4.2 Donor-Doped Alumina 118
4.5.5 Tantalum Oxide 119
References 121

5 Ion Transport in Metal Oxides 125
Roger A. De Souza
5.1 Introduction 125
5.2 Macroscopic Definition 126
5.2.1 Two Solutions of the Diffusion Equation 127
5.2.2 Dependence of the Diffusion Coefficient on Characteristic Thermodynamic Parameters 128
5.3 Microscopic Definition 129
5.3.1 Mechanisms of Diffusion 130
5.3.2 Diffusion Coefficients of Defects and Ions 131
5.3.3 The Activation Barrier for Migration 132
5.4 Types of Diffusion Experiments 134
5.4.1 Chemical Diffusion 135
5.4.2 Tracer Diffusion 137
5.4.3 Conductivity 139
5.5 Mass Transport along and across Extended Defects 141
5.5.1 Accelerated Transport along Extended Defects 143
5.5.2 Hindered Transport across Extended Defects 145
5.6 Case Studies 145
5.6.1 Strontium Titanate 147
5.6.2 Yttria-Stabilized Zirconia (YSZ) 150
5.6.3 Alumina 153
5.6.4 Tantalum Pentoxide 155
Acknowledgments 156
References 157

6 Electrical Transport in Transition Metal Oxides 165
Franklin J. Wong and Shriram Ramanathan
6.1 Overview 165
6.2 Structure of Transition Metal Oxides 166
6.2.1 Crystal Structures of Oxides 166
6.2.2 Bonding and Electronic Structure 167
6.3 Models of Electrical Transport 168
6.3.1 Band Transport of Carriers 168
6.3.2 Electronic Bandwidth 169
6.3.3 Small Polaron Formation 169
6.3.4 Small Polaron Transport 171
6.3.5 Thermopower (Seebeck Coefficient) 172
6.3.6 Hopping Transport via Defect States 172
6.3.7 Bad Metallic Behavior 174
6.4 Band Insulators 175
6.4.1 SnO$_2$: 3d10 System 175
6.4.2 TiO$_2$: 3d0 System 176
6.5 Half-Filled Mott Insulators 177
6.5.1 Correlations and the Hubbard U 177
6.5.2 MnO: 3d5 System 179
6.5.3 NiO: 3d8 System 179
6.5.4 α-Fe$_2$O$_3$: 3d5 System 182
6.5.5 Summary 184
6.6 Temperature-Induced Metal–Insulator Transitions in Oxides 184
6.6.1 Orbitals and Metal–Insulator Transitions 184
6.6.2 VO$_2$: 3d1 System 186
6.6.3 Ti$_2$O$_3$: 3d1 System 187
6.6.4 V$_2$O$_3$: 3d2 System 189
6.6.5 Fe$_3$O$_4$: Mixed-Valent System 190
6.6.6 Limitations 191
6.6.7 Summary 192
References 193

7 Quantum Point Contact Conduction 197
Jan van Ruitenbeek, Monica Morales Masis, and Enrique Miranda
7.1 Introduction 197
7.2 Conductance Quantization in Metallic Nanowires 197
7.3 Conductance Quantization in Electrochemical Metallization Cells 204
7.3.1 Current–Voltage Characteristics and Definition of Initial Device Resistance 206
7.3.2 Stepwise Conductance Changes in Metallic Filaments 207
7.4 Filamentary Conduction and Quantization Effects in Binary Oxides 210
7.5 Conclusion and Outlook 218
References 218

8 Dielectric Breakdown Processes 225
Jordi Suñé, Nagarajan Raghavan, and K. L. Pey
8.1 Introduction 225
8.2 Basics of Dielectric Breakdown 226
8.3 Physics of Defect Generation 231
8.3.1 Thermochemical Model of Defect Generation 232
8.3.2 Anode Hydrogen Release Model of Defect Generation 233
8.4 Breakdown and Oxide Failure Statistics 235
8.5 Implications of Breakdown Statistics for ReRAM 237
8.6 Chemistry of the Breakdown Path and Inference on Filament Formation 241
8.7 Summary and Conclusions 246
References 247
Contents

9 Physics and Chemistry of Nanoionic Cells 253
Ilia Valov and Rainer Waser

9.1 Introduction 253
9.2 Basic Thermodynamics and Heterogeneous Equilibria 254
9.3 Phase Boundaries and Boundary Layers 258
9.3.1 Driving Force for the Formation of Space-Charge Layers 258
9.3.2 Enrichment and Weak Depletion Layers 260
9.3.3 Strong Depletion Layers 261
9.3.4 Nanosize Effects on Space-Charge Regions 263
9.3.5 Nanosize Effects due to Surface Curvature 265
9.3.6 Formation of New Phases at Phase Boundaries 265
9.4 Nucleation and Growth 266
9.4.1 Macroscopic View 266
9.4.2 Atomistic Theory 267
9.5 Electromotive Force 269
9.5.1 Electrochemical Cells of Different Half Cells 269
9.5.2 Emf Caused by Surface Curvature Effects 270
9.5.3 Emf Caused by Concentration Differences 271
9.5.4 Diffusion Potentials 273
9.6 General Transport Processes and Chemical Reactions 274
9.7 Solid-State Reactions 275
9.8 Electrochemical (Electrode) Reactions 280
9.8.1 Charge-Transfer Process Limitations 280
9.8.2 Diffusion-Limited Electrochemical Processes 282
9.9 Stoichiometry Polarization 283
Summary 285
Acknowledgments 286
References 286

10 Electroforming Processes in Metal Oxide Resistive-Switching Cells 289
Doo Seok Jeong, Byung Joon Choi, and Cheol Seong Hwang

10.1 Introduction 289
10.1.1 Forming Methods 290
10.1.2 Dependence of the Bipolar Switching Behavior on the Forming Conditions 291
10.1.3 Factors Influencing Forming Behavior 294
10.1.4 Forming in Bipolar and Unipolar Switching 295
10.1.5 Phenomenological Understanding of Forming 297
10.2 Forming Mechanisms 297
10.2.1 Early Suggested Forming Mechanisms 298
10.2.2 Conducting Filament Formation 298
10.2.3 Redox Reactions and Ion or Ionic Defect Migration during Forming 300
10.2.4 Point Defect Introduction 302

Summary 303
Acknowledgments 304
References 304
10.2.5 Point Defect Dynamics during the Forming Process 304
10.2.6 Microscopic Evidence for CF Formation during Forming 308
10.3 Technical Issues Related to Forming 310
10.3.1 Problems of Current Overshoot Forming 310
10.3.2 Nonuniform Forming Voltage Distribution 311
10.3.3 Forming-Free Resistive Switching 311
10.4 Summary and Outlook 312
Acknowledgments 313
References 313

11 Universal Switching Behavior 317
Daniele Ielmini and Stephan Menzel
11.1 General Properties of ReRAMs and Their Universal Behavior 317
11.2 Explaining the Universal Switching of ReRAM 320
11.3 Variable-Diameter Model 321
11.4 Variable-Gap Model 329
11.5 Coexistence of Variable-Gap/Variable-Diameter States 334
11.6 Summary 337
Acknowledgment 337
References 338

12 Quasistatic and Pulse Measuring Techniques 341
Antonio Torrezan, Gilberto Medeiros-Ribeiro, and Stephan Tiedke
12.1 Brief Introduction to Electronic Transport Testing of ReRAM 341
12.2 Quasistatic Measurement of Current–Voltage Characteristics 342
12.2.1 Dependence of Switching Parameters on Sweep Rate 345
12.3 Current Compliance and Overshoot Effects 346
12.4 Pulsed Measurements for the Study of Switching Dynamics 350
12.4.1 Experimental Setup and Results for Nanosecond Switching with Real-Time Monitoring of Device Dynamics 353
12.4.2 Experimental Setup and Results for Subnanosecond Switching with Real-Time Monitoring of Device Dynamics 354
12.5 Conclusions 358
Acknowledgment 359
References 359

13 Unipolar Resistive-Switching Mechanisms 363
Ludovic Goux and Sabina Spiga
13.1 Introduction to Unipolar Resistive Switching 363
13.2 Principle of Unipolar Switching 364
13.2.1 Basic Operation of Unipolar Memory Cells 364
13.2.2 Structure of Unipolar Memory Arrays 365
13.2.3 Experimental Evidences of Filamentary-Switching Mechanism 366
13.2.4 Typical Materials Used in Unipolar-Switching Cells 367
13.3 Unipolar-Switching Mechanisms in Model System Pt/NiO/Pt 368
13.3.1 Microscopic Origin of Switching in NiO Layers 368
13.3.1.1 Defect Chemistry 368
13.3.1.2 Microscopic Mechanism of the Switching 371
13.3.2 Physics-Based Electrical Models 372
13.3.2.1 Modeling of the Reset Switching 372
13.3.2.2 Modeling of the Set Switching 373
13.3.3 Model Implications on the Device Level 375
13.3.3.1 CF Size and R_{LRS} Scaling with I_C 375
13.3.3.2 I_{reset} Scaling with CF Size Scaling 376
13.3.3.3 Switching Speed 377
13.4 Influence of Oxide and Electrode Materials on Unipolar-Switching Mechanisms 379
13.4.1 Influence of the Oxide Material 380
13.4.1.1 The Specific Case of TiO$_2$ 380
13.4.1.2 Influence of the Oxide Microstructure 380
13.4.1.3 Random Circuit Breaker Model 381
13.4.1.4 Coexistence of Bipolar and Unipolar Switching 382
13.4.1.5 Switching Variability and Endurance 383
13.4.2 Impacts and Roles of Electrodes 384
13.4.2.1 Anode-Mediated Reset Operation 384
13.4.2.2 Selection Criteria of Electrode Materials 385
13.5 Conclusion 386

References 387

14 Modeling the VCM- and ECM-Type Switching Kinetics 395
Stephan Menzel and Ji-Hyun Hur

14.1 Introduction 395
14.2 Microscopic Switching Mechanism of VCM Cells 395
14.3 Microscopic Switching Mechanism of ECM Cells 397
14.4 Classification of Simulation Approaches 398
14.4.1 Ab initio and Molecular Dynamics Simulation Models 398
14.4.2 Kinetic Monte Carlo Simulation Models 398
14.4.3 Continuum Models 398
14.4.4 Compact Models 399
14.5 General Considerations of the Physical Origin of the Nonlinear Switching Kinetics 399
14.6 Modeling of VCM Cells 402
14.6.1 Ab initio Models and MD Models 402
14.6.1.1 HRS and LRS State Modeling 402
14.6.1.2 Electron Transfer 404
14.6.1.3 Phase Transformations and Nucleation 405
14.6.1.4 Calculation of Migration Barriers 406
14.6.2 Kinetic Monte Carlo Modeling 407
14.6.3 Continuum Modeling 410
14.6.4 Compact Modeling 417
Acknowledgment 480
References 480

17 Electrochemical Metallization Memories 483
 Michael N. Kozicki, Maria Mitkova, and Ilia Valov
17.1 Introduction 483
17.2 Metal Ion Conductors 484
17.2.1 Materials 484
17.2.2 Ion Transport 490
17.3 Electrochemistry of CBRAM (ECM) Cells 492
17.3.1 Fundamental Processes 492
17.3.2 Filament Growth and Dissolution 495
17.3.3 Filament Morphology 500
17.4 Devices 503
17.4.1 Device Operation 503
17.4.2 Memory Arrays 506
17.5 Technological Challenges and Future Directions 508
Acknowledgment 509
References 510

18 Atomic Switches 515
 Kazuya Terabe, Tohru Tsuruoka, Tsuyoshi Hasegawa, Alpana Nayak, Takeo Ohno, Tomonobu Nakayama, and Masakazu Aono
18.1 Introduction 515
18.1.1 Brief History of the Development of the Atomic Switch 516
18.1.2 Basic Working Principle of the Atomic Switch 517
18.2 Gap-Type Atomic Switches 519
18.2.1 Switching Time 519
18.2.2 Electrochemical Process 521
18.2.3 Cross-Bar Structure 523
18.2.4 Quantized Conductance 524
18.2.5 Logic-Gate Operation 526
18.2.6 Synaptic Behavior 527
18.2.7 Photo-Assisted Switch 528
18.3 Gapless-Type Atomic Switches 529
18.3.1 Sulfide-Based Switch 529
18.3.2 Oxide-Based Switch 530
18.3.3 Effect of Moisture 533
18.3.4 Switching Time 534
18.3.5 Quantized Conductance and Synaptic Behavior 535
18.3.6 Polymer-Based Switch 536
18.4 Three-Terminal Atomic Switches 537
18.4.1 Filament-Growth-Controlled Type 537
18.4.2 Nucleation-Controlled Type 539
18.5 Summary 541
References 542
19 Scaling Limits of Nanoionic Devices 547
Victor Zhirnov and Gurtej Sandhu
19.1 Introduction 547
19.2 Basic Operations of ICT Devices 547
19.3 Minimal Nanoionic ICT 549
19.3.1 Switching Mechanisms and the Material Systems 549
19.3.2 Atomic Filament: Classical and Quantum Resistance 551
19.3.2.1 Classical Resistance 551
19.3.2.2 Quantum Resistance 552
19.3.2.3 Conductance in the Presence of Barriers 553
19.3.2.4 Barriers in Atomic Gaps: Nonrectangular Barrier 555
19.3.3 Interface Controlled Resistance (ICR) 556
19.3.3.1 Electrical Properties of Material Interfaces 557
19.3.3.2 Contact Resistance in a M–S (M–I) Structure 560
19.3.4 Stability of the Minimal Nanoionic State 563
19.4 Energetics of Nanoionic Devices 565
19.4.1 Switching Speed and Energy 565
19.4.2 Heat Dissipation and Transfer in a Minimal Nanoionic Device 567
19.5 Summary 569
Acknowledgment 569
Appendix A Physical Origin of the Barrier Potential 569
References 571

20 Integration Technology and Cell Design 573
Fred Chen, Jun Y. Seok, and Cheol S. Hwang
20.1 Materials 573
20.1.1 Resistance Switching (RS) Materials 573
20.1.1.1 Insulating Oxides 573
20.1.1.2 Semiconducting Oxides 574
20.1.1.3 Electrolyte Chalcogenides 574
20.1.1.4 Phase-Change Materials 575
20.1.2 Electrode Materials, Including Reductants 575
20.2 Structures 576
20.2.1 Planar Stack 576
20.2.2 Sidewall-Conforming Stack 577
20.2.3 Lateral Structure 578
20.3 Integration Architectures 579
20.3.1 Transistor in Series with RRAM (1T1R) 579
20.3.2 Transistor in Parallel with RRAM (T||R) 582
20.3.3 1S1R Stacked Crosspoint 583
20.3.3.1 The Selector Device 583
20.3.3.2 Sensing Margin 584
20.3.3.3 Write Margin 586
20.3.3.4 Cumulative Line Resistance 586
Reliability Aspects

Dirk J. Wouters, Yang-Yin Chen, Andrea Fantini, and Nagarajan Raghavan

21.1 Introduction 597

21.2 Endurance (Cyclability) 598
- 21.2.1 Endurance Summary of Bipolar Switching TMO RRAM 598
- 21.2.2 Balancing the Bipolar Switching for Better Endurance 599
- 21.2.3 Understanding of Endurance Degradation 600

21.3 Retention 601
- 21.3.1 Retention Summary of Bipolar TMO RRAM 601
- 21.3.2 Understanding of Retention Degradation in Bipolar TMO RRAM 603
- 21.3.3 Trade-Off between Retention/Endurance 604

21.4 Variability 605
- 21.4.1 Introduction 605
- 21.4.2 Experimental Aspects of Variability 605
 - 21.4.2.1 Variability of Forming Operation 605
 - 21.4.2.2 Intrinsic and Extrinsic Variability 606
- 21.4.3 Physical Aspects of Variability 607
 - 21.4.3.1 Variability in Unipolar Devices 607
 - 21.4.3.2 Variability in Bipolar Devices 607
- 21.5 Random Telegraph Noise (RTN) 609
 - 21.5.1 Introduction 609
 - 21.5.2 Charge Carrier Transport-Induced RTN 610
 - 21.5.3 Oxygen Vacancy Transport-Induced RTN 611
 - 21.5.3.1 Experimental Identification of Vacancy Perturbations 611
 - 21.5.3.2 Vacancy-Induced RTN for Shallow to Moderate Reset 612
 - 21.5.3.3 Vacancy-Induced RTN for Very Deep Reset 613
 - 21.5.3.4 Bimodal Filament Configuration and Disturb Immunity 614
 - 21.5.3.5 Role of Dielectric Microstructure on RTN Immunity 614
- 21.5.4 Summary of RTN Analysis Studies 615

21.6 Disturb 615
- 21.6.1 Phenomena 615
- 21.6.2 Understanding and Modeling 616
- 21.6.3 Anomalous Disturb Behavior 616

21.7 Conclusions and Outlook 617
Acknowledgment 618
References 618

22 Select Device Concepts for Crossbar Arrays 623
Geoffrey W. Burr, Rohit S. Shenoy, and Hyunsang Hwang

22.1 Introduction 623
22.2 Crossbar Array Considerations 624
22.2.1 Problems Associated with Large Subarrays 625
22.2.2 Considerations During NVM-Write 625
22.2.3 Considerations During NVM-Read 627
22.3 Target Specifications for Select Devices 627
22.4 Types of Select Devices 629
22.4.1 Si Based 629
22.4.2 Oxide Diodes 631
22.4.2.1 Oxide PN Junction 631
22.4.2.2 Metal-Oxide Schottky Barrier 632
22.4.3 Threshold Switch 633
22.4.3.1 Ovonic Threshold Switching 634
22.4.3.2 Metal–Insulator Transition (MIT) 636
22.4.3.3 Threshold Vacuum Switch 637
22.4.4 Oxide Tunnel Barrier 638
22.4.4.1 Single Layer Oxide-(Nitride-)Based Select Device (TiO$_2$ and SiN$_x$) 638
22.4.4.2 Multi-Layer Oxide-Based Select Device (TaO$_x$/TiO$_2$/TaO$_x$) 638
22.4.5 Mixed-Ionic-Electronic-Conduction (MIEC) 639
22.5 Self-Selected Resistive Memory 643
22.5.1 Complementary Resistive Switch 645
22.5.2 Hybrid ReRAM-Select Devices 647
22.5.3 Nonlinear ReRAM 649
22.6 Conclusion 651
References 652

23 Bottom-Up Approaches for Resistive Switching Memories 661
Sabina Spiga, Takeshi Yanagida, and Tomoji Kawai

23.1 Introduction 661
23.2 Bottom-Up ReRAM Fabrication Methods 662
23.2.1 Vapor–Liquid–Solid Method 662
23.2.2 Template-Assisted Fabrication Methods of NWs 663
23.3 Resistive Switching in Single (All-Oxide) NW/Nanoisland ReRAM 664
23.3.1 Resistive Switching in Single NiO NWs and Nanoislands 665
23.3.2 Resistive Switching in Oxide NWs Alternative to NiO 669
23.3.3 Study of Switching Mechanisms in Oxide NW ReRAM 671
23.3.4 Resistive Switching in NW ReRAM with Active Electrodes: ECM Mechanisms 675
23.4 Resistive Switching in Axial Heterostructured NWs 678
23.5 Core–Shell NWs toward Crossbar Architectures 680
23.5.1 Crossbar Devices with Si(core)/a-Si(shell) NWs and Ag Electrodes 681
23.5.2 Crossbar Devices with Ni(core)/NiO(shell) NWs and Ni Electrodes 683
23.6 Emerging Bottom-Up Approaches and Applications 686
23.6.1 1D1R Nanopillar Array 686
23.6.2 Block-Copolymer Self-Assembly for Advanced ReRAM 687
23.7 Conclusions 688
References 689

24 Switch Application in FPGA 695
Toshitsugu Sakamoto, S. Simon Wong, and Young Yang Liauw
24.1 Introduction 695
24.2 Monolithically 3D FPGA with BEOL Devices 696
24.3 Resistive Memory Replacing Configuration Memory 698
24.3.1 Architecture 698
24.4 Resistive Configuration Memory Cell 699
24.5 Resistive Configuration Memory Array 700
24.5.1 Prototype 702
24.5.2 Measurement Results 703
24.6 Complementary Atomic Switch Replacing Configuration Switch 706
24.6.1 Complementary Atomic Switch (CAS) 706
24.6.2 Cell Architecture with CAS 707
24.6.3 Demonstration of CAS-Based Programmable Logic 709
24.7 Energy Efficiency of Programmable Logic Accelerator 710
24.8 Conclusion and Outlook 712
References 712

25 ReRAM-Based Neuromorphic Computing 715
Giacomo Indiveri, Eike Linn, and Stefano Ambrogio
25.1 Neuromorphic Systems: Past and Present Approaches 715
25.2 Neuromorphic Engineering 715
25.3 Neuromorphic Computing (The Present) 716
25.4 Neuromorphic ReRAM Approaches (The Future) 718
25.4.1 ReRAM-Based Neuromorphic Approaches 718
25.4.2 Nonvolatility and Volatility of Resistive States 721
25.4.3 Nonlinear Switching Kinetics 722
25.4.4 Multilevel Resistance Behavior 722
25.4.5 Capacitive Properties 725
25.4.6 Switching Statistics 725
25.5 Applications of Neuromorphic ReRAM Architectures 728
25.6 Applications of Neuromorphic ReRAM Architectures 729
References 731

Index 737