Contents

Preface xv
List of Contributors xvii

SECTION 1 BASIC PRINCIPLES, PROCESSES, SAMPLING AND ANALYTICAL ASPECTS 1

1 **Introduction** 3
 Peter S. Hooda
 References 7

2 **Trace Elements: General Soil Chemistry, Principles and Processes** 9
 Filip M. G. Tack
 2.1 Introduction 9
 2.2 Distribution of Trace Elements in the Soil 10
 2.3 Chemical Species 11
 2.4 Sorption and Desorption 13
 2.4.1 Sorption Mechanisms 13
 2.4.2 Sorption Isotherms 16
 2.5 Precipitation and Dissolution 18
 2.6 Mobilization of Trace Elements 19
 2.6.1 pH and Redox Potential 19
 2.6.2 Influence of Soil Constituents 23
 2.7 Transport 25
 2.8 Plant Uptake 28
 2.9 Concluding Remarks 31
 References 32

3 **Soil Sampling and Sample Preparation** 39
 Anthony C. Edwards
 3.1 Introduction 39
 3.2 Soil Sampling 40
SECTION 2 LONG-TERM ISSUES, IMPACTS AND PREDICTIVE MODELLING

6 Trace Elements in Biosolids-Amended Soils
Weiping Chen, Andrew C. Chang, Laosheng Wu, Albert L. Page and Bonjun Koo

6.1 Introduction
6.2 Biosolids-Borne Trace Elements in Soils
6.2.1 Land Application and Trace Element Loading
6.2.2 Trace Element Availability in Biosolids-Amended Soils – A Time Bomb?
6.2.3 Plant Response to Trace Elements in Biosolids-Amended Soils – Is There a Plateau?
6.3 Assessing Availability of Trace Elements in Biosolids-Amended Soils
6.3.1 Source Assessment
6.3.2 End Measurement
6.4 Long-Term Availability Pool Assessment through a Root Exudates-Based Model
6.4.1 Rationale for Root Exudate-Based Trace Element Phytoavailability
6.4.2 Case Studies
6.5 Conclusions
References

7 Fertilizer-Borne Trace Element Contaminants in Soils
Samuel P. Stacey, Mike J. McLaughlin and Ganga M. Hettiarachchi

7.1 Introduction
7.2 Phosphatic Fertilizers
7.3 Micronutrient Fertilizers
7.4 Long-Term Accumulation of Fertilizer-Borne Trace Element Contaminants
7.5 Trace Element Contaminant Transfer to Crops and Grazing Animals
7.5.1 Arsenic
7.5.2 Cadmium
7.5.3 Fluorine
7.5.4 Lead
7.5.5 Uranium
7.6 Conclusions
References

8 Trace Metal Exposure and Effects on Soil-Dwelling Species and Their Communities
David J. Spurgeon

8.1 Introduction
8.2 Hazards and Consequences of Trace Metal Exposure
References
Contents

8.2.1 Effects on Individuals, Risk Assessment and the Prediction of Population Effects 156
8.2.2 Populations and Communities 158
8.3 Routes of Exposure, Uptake and Detoxification 162
8.3.1 Uptake Routes and Speciation Models 162
8.3.2 Toxicokinetics and Compartment Models 163
8.3.3 Molecular Mechanisms of Detoxification and Effect 166
8.4 Conclusions 167
References 168

9 Trace Element-Deficient Soils 175
Rainer Schulin, Annette Johnson and Emmanuel Frossard
9.1 Introduction 175
9.2 The Concept of Trace Element-Deficient Soils 176
9.2.1 The Role of Trace Elements as Essential Micronutrients 176
9.2.2 Soil Trace Element Concentrations and Micronutrient Deficiencies 177
9.2.3 Trace Element Deficiency as a Disturbance-Related Concept 178
9.3 Methods to Identify and Map Soil Trace Element Deficiencies 179
9.3.1 Detection and Diagnosis of Trace Element Deficiency 179
9.3.2 Mapping of Trace Element Deficiencies 181
9.4 Soil Factors Associated with Trace Element Deficiencies 182
9.4.1 General Relationships between Soil Factors and Micronutrient Deficiencies 182
9.4.2 Boron 183
9.4.3 Cobalt 186
9.4.4 Copper 187
9.4.5 Iron 188
9.4.6 Manganese 188
9.4.7 Molybdenum 189
9.4.8 Selenium 190
9.4.9 Zinc 191
9.4.10 Other Micronutrients 192
9.5 Treatment of Soils Deficient in Trace Elements 192
References 194

10 Application of Chemical Speciation Modelling to Studies on Toxic Element Behaviour in Soils 199
Les J. Evans, Sarah J. Barabash, David G. Lumsdon and Xueyuan Gu
10.1 Introduction 199
10.2 The Structure of Chemical Speciation Models 201
10.3 The Species/Component Matrix 203
10.4 Aqueous Speciation Modelling
 10.4.1 Calculating the Concentration of Soluble Species of Toxic Elements
10.5 Modelling of Surface Complexation to Mineral Surfaces
 10.5.1 Proton and Toxic Element Binding to Oxide Minerals
 10.5.2 Proton and Toxic Element Binding to Clay Minerals
10.6 Modelling of Surface Complexation to Soil Organic Matter
10.7 Discussion
References

SECTION 3 BIOAVAILABILITY, RISK ASSESSMENT AND REMEDIATION

11 Assessing Bioavailability of Soil Trace Elements
Peter S. Hooda
 11.1 Introduction
 11.2 Speciation, Bioavailability and Bioaccumulation: Definitions and Concepts
 11.3 Bioavailability Assessment Approaches
 11.3.1 Single Chemical Extraction Procedures
 11.3.2 Sequential Extraction Procedures
 11.3.3 Soil Solution Concentration and Speciation
 11.3.4 Other Approaches
 11.3.5 Bioaccessibility
 11.3.6 Bioassays, Biosensors and Bioavailability
 11.4 Discussion and Conclusions
References

12 Bioavailability: Exposure, Dose and Risk Assessment
Rupert L. Hough
 12.1 Introduction
 12.1.1 The ‘Classical’ Risk Assessment Model
 12.2 Hazard Identification
 12.2.1 Approaches, Uncertainties, Issues for Discussion
 12.3 Exposure Assessment
 12.3.1 Approaches to Estimating Exposure from Trace Elements in Soils
 12.3.2 Environmental Measurements and Influence of Bioavailability
 12.4 Dose–Response
 12.4.1 High- to Low-Dose Extrapolation
 12.5 Risk Characterization
 12.6 Assessment of Mixtures and Disparate Risks
 12.7 Conclusions
References
13 Regulatory Limits for Trace Elements in Soils
Graham Merrington, Sohel Saikat and Albania Grosso

13.1 Introduction
13.2 Derivation of Regulatory Limits for Trace Elements
 13.2.1 Environmental Protection Limit Values for Soils
 13.2.2 Human Health Protection Limit Values for Soils
13.3 National and International Initiatives in Setting Limit Values
13.4 Forward Look
13.5 Conclusions
References

14 Phytoremediation of Soil Trace Elements
Rufus L. Chaney, C. Leigh Broadhurst and Tiziana Centofanti

14.1 Introduction
14.2 The Nature of Soil Contamination where Phytoextraction may be Applied
14.3 Need for Metal-Tolerant Hyperaccumulators for Practical Phytoextraction
14.4 Phytoremediation Strategies: Applications and Limitations
 14.4.1 Phytomining Soil Nickel
 14.4.2 Soil Cadmium Contamination Requiring Remediation to Protect Food Chains
 14.4.3 Phytoextraction or Phytovolatilization of Soil Selenium
 14.4.4 Phytoextraction of Soil Cobalt
 14.4.5 Phytoextraction of Soil Boron
 14.4.6 Phytovolatilization of Soil Mercury
 14.4.7 Induced Phytoextraction of Soil Gold
 14.4.8 Induced Phytoextraction of Soil Lead
 14.4.9 Phytoextraction of Soil Arsenic
 14.4.10 Phytoextraction of Other Soil Elements
14.5 Phytostabilization of Zinc-Lead, Copper, or Nickel Mine Waste or Smelter-Contaminated Soils
14.6 Recovery of Elements from Phytoextraction Biomass
14.7 Risks to Wildlife during Phytoextraction Operations
14.8 Conclusions
References

15 Trace Element Immobilization in Soil Using Amendments
Jurate Kumpiene

15.1 Introduction
15.2 Soil Amendments for Trace Element Immobilization
 15.2.1 Metal Oxides
 15.2.2 Natural and Synthetic Aluminosilicates
References
15.2.3 Ashes 361
15.2.4 Phosphates 364
15.2.5 Organic Amendments 365
15.2.6 Liming Compounds 367
15.2.7 Gypsum 368
15.3 Method Acceptance 369
15.4 Concluding Remarks 370
References 371

SECTION 4 CHARACTERISTICS AND BEHAVIOUR OF INDIVIDUAL ELEMENTS 381

16 Arsenic and Antimony 383
Yuji Arai
16.1 Introduction 383
16.2 Geogenic Occurrence 385
 16.2.1 Arsenic 385
 16.2.2 Antimony 385
16.3 Sources of Soil Contamination 386
16.4 Chemical Behavior in Soils 387
 16.4.1 Arsenic Speciation and Solubility 387
 16.4.2 Arsenic Retention in Soils 388
 16.4.3 Arsenic Desorption in Soils 392
 16.4.4 Antimony Speciation and Solubility 393
 16.4.5 Antimony Adsorption and Desorption in Soils 394
16.5 Risks from Arsenic and Antimony in Soils 396
16.6 Conclusions and Future Research Needs 400
References 400

17 Cadmium and Zinc 409
Rufus L. Chaney
17.1 Introduction 409
17.2 Geogenic Occurrence and Sources of Soil Contamination 409
17.3 Chemical Behavior in Soils 415
17.4 Plant Accumulation of Soil Cadmium and Zinc 416
17.5 Risk Implications for Cadmium in Soil Amendments 419
17.6 Plant Uptake of Cadmium and Zinc in Relation to Food-Chain Cadmium Risk 422
17.7 Food-Chain Zinc Issues 427
References 429

18 Copper and Lead 441
Rupert L. Hough
18.1 Introduction 441
18.2 Copper 443
18.2.1 Sources and Content of Copper in Soils 443
18.2.2 Chemical Behaviour in Soils 445
18.3 Lead 446
18.3.1 Sources and Content of Lead in Soils 446
18.3.2 Chemical Behaviour in Soils 448
18.4 Risks from Copper and Lead 449
18.4.1 Essentiality and Metabolism 449
18.4.2 Exposure and Toxicology 450
18.5 Concluding Remarks 452
References 453

19 Chromium, Nickel and Cobalt 461
Yibing Ma and Peter S. Hooda

19.1 Introduction 461
19.2 Geogenic Occurrences 463
19.3 Sources of Soil Contamination 464
19.4 Chemical Behaviour in Soils 465
19.4.1 Chromium 465
19.4.2 Nickel 467
19.4.3 Cobalt 468
19.5 Environmental and Human Health Risks 470
19.5.1 Chromium 470
19.5.2 Nickel 472
19.5.3 Cobalt 474
19.6 Concluding Remarks 474
References 475

20 Manganese and Selenium 481
Zhenli L. He, Jiali Shentu and Xiao E. Yang

20.1 Introduction 481
20.2 Concentrations and Sources of Manganese and Selenium in Soils 482
20.2.1 Manganese 482
20.2.2 Selenium 483
20.3 Chemical Behaviour of Manganese and Selenium in Soils 484
20.3.1 Solution and Solid Forms 484
20.3.2 Ion-Exchange and Sorption–Desorption Reactions 485
20.3.3 Precipitation–Dissolution and Oxidation–Reduction Reactions 487
20.3.4 Availability of Manganese and Selenium in Soils 489
20.4 Effects on Plant, Animal and Human Health 490
References 493
21 Tin and Mercury

Martin J. Clifford, Gavin M. Hilson and Mark E. Hodson

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.1 Introduction</td>
<td>497</td>
</tr>
<tr>
<td>21.2 Geogenic Occurrence</td>
<td>500</td>
</tr>
<tr>
<td>21.2.1 Tin</td>
<td>500</td>
</tr>
<tr>
<td>21.2.2 Mercury</td>
<td>501</td>
</tr>
<tr>
<td>21.3 Sources of Soil Contamination</td>
<td>502</td>
</tr>
<tr>
<td>21.3.1 Tin</td>
<td>502</td>
</tr>
<tr>
<td>21.3.2 Mercury</td>
<td>503</td>
</tr>
<tr>
<td>21.4 Chemical Behaviour in Soils</td>
<td>505</td>
</tr>
<tr>
<td>21.4.1 Tin</td>
<td>505</td>
</tr>
<tr>
<td>21.4.2 Mercury</td>
<td>506</td>
</tr>
<tr>
<td>21.5 Risks from Tin and Mercury in Soils</td>
<td>506</td>
</tr>
<tr>
<td>21.5.1 Tin</td>
<td>506</td>
</tr>
<tr>
<td>21.5.2 Mercury</td>
<td>507</td>
</tr>
</tbody>
</table>

References 509

22 Molybdenum, Silver, Thallium and Vanadium

Les J. Evans and Sarah J. Barabash

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.1 Introduction</td>
<td>515</td>
</tr>
<tr>
<td>22.2 Molybdenum</td>
<td>517</td>
</tr>
<tr>
<td>22.2.1 Geochemical Occurrences and Soil Concentrations</td>
<td>517</td>
</tr>
<tr>
<td>22.2.2 Sources of Soil Contamination</td>
<td>518</td>
</tr>
<tr>
<td>22.2.3 Chemical Behavior in Soils</td>
<td>518</td>
</tr>
<tr>
<td>22.3 Silver</td>
<td>523</td>
</tr>
<tr>
<td>22.3.1 Geochemical Occurrences and Soil Concentrations</td>
<td>523</td>
</tr>
<tr>
<td>22.3.2 Sources of Soil Contamination</td>
<td>523</td>
</tr>
<tr>
<td>22.3.3 Chemical Behavior in Soils</td>
<td>524</td>
</tr>
<tr>
<td>22.4 Thallium</td>
<td>528</td>
</tr>
<tr>
<td>22.4.1 Geochemical Occurrences and Soil Concentrations</td>
<td>528</td>
</tr>
<tr>
<td>22.4.2 Sources of Contamination</td>
<td>529</td>
</tr>
<tr>
<td>22.4.3 Chemical Behavior in Soils</td>
<td>529</td>
</tr>
<tr>
<td>22.5 Vanadium</td>
<td>534</td>
</tr>
<tr>
<td>22.5.1 Geochemical Occurrences and Soil Concentrations</td>
<td>534</td>
</tr>
<tr>
<td>22.5.2 Sources of Contamination</td>
<td>534</td>
</tr>
<tr>
<td>22.5.3 Chemical Behavior in Soils</td>
<td>535</td>
</tr>
<tr>
<td>22.6 Environmental and Human Health Risks</td>
<td>540</td>
</tr>
<tr>
<td>22.6.1 Molybdenum</td>
<td>540</td>
</tr>
<tr>
<td>22.6.2 Silver</td>
<td>541</td>
</tr>
<tr>
<td>22.6.3 Thallium</td>
<td>542</td>
</tr>
<tr>
<td>22.6.4 Vanadium</td>
<td>542</td>
</tr>
</tbody>
</table>

References 543
23 Gold and Uranium
Ian D. Pulford

23.1 Introduction 551

23.2 Geogenic Occurrence 553
 23.2.1 Gold 553
 23.2.2 Uranium 554

23.3 Soil Contamination 555
 23.3.1 Gold 555
 23.3.2 Uranium 556

23.4 Chemical Behaviour in Soils 557
 23.4.1 Gold 557
 23.4.2 Uranium 559

23.5 Risks from Gold and Uranium in Soils 560
 23.5.1 Gold 560
 23.5.2 Uranium 561

23.6 Concluding Comments 562

References 562

24 Platinum Group Elements
F. Zereini and C.L.S. Wiseman

24.1 Introduction 567

24.2 Sources of PGE in Soils 568
 24.2.1 Geogenic Sources 568
 24.2.2 Anthropogenic Sources 569

24.3 Emissions, Depositional Behavior, and Concentrations in Soils 570

24.4 Geochemical Behavior in Soils 573

24.5 Bioavailability 573

24.6 Conclusions 574

References 575

Index 579