Index

Note: Page references in italics refer to figures; those in bold refer to Tables

Aa river 244, 247, 253, 254, 255
Abu Tumayam Trough 203, 207
Acoustic Doppler Velocimeter (ADV) 61, 65, 66–7, 66, 68
ADCP 76
Advanced Land Observing Satellite (ALOS) 23
Aegean Sea 226
Airborne LiDAR (Light Detection And Ranging) 6, 7–8, 9, 18
Albian, SW Iberian Ranges, Spain, tidal-bore deposits in 93–112
facies analysis 96–108, 97, 98
 Aeolian deposits 93, 102, 104–6
 ephemeral alluvial deposits 93, 103, 105, 106–7
 overbank/ephemeral floodplain deposits 93, 104, 105, 107–8
 tidal bore deposits 93, 98–104, 99–101, 111
 tidal flat deposits 93, 96
 facies architecture 108–9
 geological setting 95–6
 palaeographical evolution 109–11
 Serrania de Cuenca sub-basin 95, 96
Alborz zone 262
Alnus 251
ALOS PALSAR 21, 24, 31
Amazon Delta, Brazil 76
Amazon River, Brazil 226
Ammonia annectens 301, 304
Ammonia beccarii 301, 304
Ammonia pauciloculata 304
Ammonia tepida 304
Ancestral Rocky Mountains (ARM) orogeny 223
angular toeset 195–7, 196, 199, 199
Appalachian Basin 217, 218
Archaeonassa 46, 48, 55
Arenicola 108, 109, 111
Arenicolites 44, 45, 48, 52, 54, 58, 106, 107, 279, 280, 324, 325, 326
Argus Surface Meter (ASM) 61, 65–6, 66, 69–70
Artois hills 247
Asteriacites 326
Asteroides 325, 328
Asterosoma 324, 325, 326, 327, 328
Ba Mieu Formation 234, 235, 237, 239
Barremian Weald Facies (La Huerguina Formation) 95
Basque-Cantabrian Basin 134, 154, 163
Batsfjord Formation, northern Norway 124
bedding plane bioturbation index (BPBI) 44, 44, 46, 48, 54, 55
bedload convergence 90
Bergueria 324
Betula 251
Bien Hoa River 234
bioclasts 169, 171, 172, 176
Bishop Harbor River 7
Black Warrior Basin 218
Bolivina robusta 304
Bora wind 37
Braek bank, Dunkerque area, Northern France 313–14
Buliminella eleganteissima 247
Calabrian Arc 192–3, 192
Calolobrix 179
Cameros Basin, N. Spain 133
chronostratigraphic chart 164
geological map 163
see also Lez Formation, Cameros Basin; Oñaca Group (Cameros Basin), N Spain
Cape Basin, Argentina 130
Catanzaro basin 192–8
 angular-tangential toeset geometries 193–5, 196
 current modulation and toeset geometry 197–9, 198
 geological setting 192–3, 194
 Lower Pleistocene Catanzaro deposits 193
 mixed siliciclastic/bioclastic tidal dunes 196
 tidal signatures and 195–7
 Catanzaro succession 191–8
Cayeuxia 179
Cerastoderma edule 246, 247
Chanjiang see Yangtze River
Channelled Scablands 226
charophytes 134, 144, 147, 153, 162, 165, 168, 169, 171, 173, 174
Chera Marls Formation 109
Chondrites 279, 280, 324, 325, 326, 328
Co Chien River 23
Cobequid Bay–Salmon River estuary 90, 240
Colchester Coal 220, 223
Colorado River 240
compound incised-valley fill 262, 282, 283, 284–6
Con Ngheu 23
Cotentin peninsula 62
Couesnon rivers 62, 205
Creek Paum Mine, Illinois 221, 222
Cribroroelphidium excavatum 246
Cribroroelphidium gerthi 247, 251

© 2016 International Association of Sedimentologists. Published 2016 by John Wiley & Sons, Ltd.
Index

Cribroelphidium margaritaceum 251
Cribroelphidium williamsoni 247, 251
Cribrononion poeyanum 304
Cruziana 26, 121, 324, 326, 327
cryptobioturbation 326, 328
cyanobacteria
calcification 181–2
extracellular polymeric substances (EPS) secretion 181, 182, 185
lithification of 182
cyclothems 218–19, 228
Cylindrichnus 324
Cymodocea 45
Cyperaceae 251
Daly River, Northern Australia 62, 76
dasycladales 162, 168–9, 171, 174
Death Valley, California 134
dee estuary, north Wales 62
desmoinesian series of the pennsylvanian system 219
Dichothrix 179
differential interferometric SAR (InSAR) 32
digne‐les‐Bains, Alps, SE France 214
Diplocraterion 279, 280
dong nai estuary, southern vietnam 233–40
landward part of estuary: Phuoc Tan region 236–7, 237
seaward part of estuary: Nhon Trach region 235–6, 239–40
study area and local geology 234, 236, 239
tidal ravinement surfaces (TRSs) 233, 239
bar-TRS 233, 238–9, 238–40
inlet-TRS 240
wave/tidal ravinement surface (W/TRS) 233, 236, 239–40
Dunbarella 219
Du Quoin Monocline 223, 224
Dur At Talah Formation, Libya, inclined heteralithic stratifications (IHS) in 203–14
apogean/perigean lunar tidal rhythmites 211
daily cyclicity 207, 208, 213
elementary tidal cycle 208
fortnightly cyclicity 207–8
geological setting of study area 204, 205–7
hierarchy of tidal rhythmites in 207–11
New Idam Unit 203, 205, 207
planar tidal bedding 209
rate of sedimentation and lateral migration of tidal channels in 211, 213
rhymatic climbing ripples (RCR) 207
Sarir Unit 203, 205
semi-annual cyclicity 210–11, 212, 213
semi-lunar tidal rhythmites 210
stratigraphic subdivisions 206
Dutch Coast 314
East Bank, North Sea 314
East China Sea 293, 299, 306, 309, 313
EFDC (Environmental Fluid Dynamics Code) 5, 8, 18, 19
El Villar Limestone 315
Enciso Group 162
Equisetum 222
ERS-1 images 22
Etosha Pan, Namibia 184
exclusive tidal interpretation 128
flaser bedding
cross-bedding with 172, 172
lenticular bedding 172, 173
wavy bedding 172–3, 172
Fleuve Manche palaeoriver 244
Florida Everglades 173
Forest City Basin 218, 218, 219
French Flemish Coastal plain (FFCP), tidally-modulated infilling 243–57
coastal evolution 254–6, 255
facies associations 246–51
marsh-swamp facies association 249–51
mud flat facies association 247–9
subtidal sands facies association 246–7
geographical and geological setting 244, 245
methods 246
seismic stratigraphy 251, 252–3
stratigraphic framework 251–4, 254
Frog Creek System, Florida, salinity variations in 5–19
Bishop Harbor River 7
climate 6
data sources 7–8
EFDC (Environmental Fluid Dynamics Code) 5, 8, 18, 19
hydrodynamic model 8–12
calibration 9–10, 11–12
description 8
model scenarios 13, 13
numerical experiments 12–13
response of salinity recovery time 15–16, 18
response under different inflow conditions 13–15, 14, 16–17
setup 9–10, 9, 10
proposed engineered ponds 8
study area 6–7, 7
Surface Water Improvement and Management (SWIM) Program 8
tidal range 7
fugichnia 277, 278
Galatia channel 224
Ganpu 76, 77, 81
Garonne River, France 62, 70
Gastrochaenolites 319
gastropods 165, 168, 169, 280, 300
Geirud Formation (Alborz Basin, northern Iran) 261–86
dataset and methods 265, 266
depositional zones 280–1, 281, 282
facies associations 265–82, 267
Group 1: river-dominated bay-head delta
zone 268–71
fluvial plain deposits 270
fluvial channel belt deposits 268–70, 269
transitional fluvio-tidal channel deposits 270–1, 271
Group 2: mixed-energy, central basin zone 271–6, 274
longitudinal tidal bar deposits 275, 276
tidal channel deposits 274–5, 274
tidal flat deposits 272–4, 272, 273
Isonzo River delta 37
iterative self-organizing data analysis technique algorithm (ISODATA) 24

Jadammina macrescens 251
Jinshan 76
Jubera Formation 162
Kaiser Bank, Celtic Sea 313
Kaiser-I-Hind Bank 338
kettlebottoms 221
kriging 40
Kwinte Bank, southern North Sea 313

La Huerguina Formation 95, 108
La Salle Anticlinorium 223–4
Lake Agassiz 226, 227
Lake Missoula floods 226, 227, 228
Landsat Thematic Mapper 21
laser-diffraction grain-size analyses 80
Laurentide Ice Sheet 226
Leaia tricarinata 220
Leza Formation, Cameros Basin, N Spain 161, 162–85
agglutinated stromatolites 171, 171, 175, 176–7, 183, 185
black limestones facies association 167–71
clastic facies association 165–7, 166
clootted-peloidal microfabric 176, 177, 176
coarse-grained stromatolites 176
depositional system 180
evaporite-dolomite facies association 174
filament fans microfabric 179
flaser bedding
cross-bedding with 172, 172
lenticular bedding 172, 173
wavy bedding 172–3, 172
glacial facies association 165–7, 166
influence of tides on stromatolite development 180–3
calcification of microbial mats 181
granite availability 181
methodology 164
micrite with filaments microfabric 179
oidal trapping and tidal environments 183–4
oolite-stromatolite facies association 171–4, 171–2, 185
oolitic microfabric 176–7, 176
sedimentology 164–5
skeletal stromatolites 168, 169, 170, 175, 177–80, 178, 182
thin micritic crusts 176, 176, 177
well-bedded grey limestones facies association 174–6

Lingula 219
Lockea 46, 47
Longe de Boyard Sandbank, French Atlantic coast 313
Louden Anticline 224
Lourinhã Formation 76, 94, 104
Lower Table Mountain Group, Ordovician, South Africa 117–30, 118, 118
Graafwater Formation 117–30
chromostratigraphic position 129, 129
depositional evidence 119–28
distal alluvial fan model 122–9
facies sequence 122
glacial map 121
palaeogeography 128, 129–30
physical setting 119, 120
tide-dominated and wave-dominated depositional model 119–22
Peninsula Formation 117, 118, 119, 129
Precambrian-Cambrian Cape Granite Suite 119
Proterozoic Malmesbury Formation 119
Lucibu 76
Lusitanian Basin, Portugal 76, 195
Lycopsids 221–3

Macanopsis 47, 48
Macaronichnus 324
mangroves
hydrodynamic modelling of salinity variation 1–19
salinity 6
water temperature 6
Mazzoni Creek 223
Megalomma 46
Meghna/Padma/Brahmaputra system 226
Mekong River delta, South Vietnam, river-mouth bars 21–32, 234
map 23
seasonal changes of river-mouth bars 28–31, 30–1
regional setting 22–4
study area 23–4
SAR data and analysis 24, 25–6
annual changes of river-mouth bars 27–8, 28
Mellor-Yamada's 2.5-level turbulence closure sub-model 8
melt-water pulses 217–28
Mesozoic Iberian Rift System 162
Messinian salinity crisis 193
Meuse 256
Middelkerke banks, southern North Sea 313
Milaniforma fusca 251
Milla Formation 264, 281, 285
Millilinella subrotunda 246, 247
Milne Bank, Prince Edward Island, Canada 313
Mississippi River system 226
Mobarak Formation 264, 281
Monocraterion 46
Mont-Saint-Michel Bay, NW France, tidal rhythmites in 85, 90, 154, 203, 256
Mont-Saint-Michel estuary, NW France
Mont-Saint-Michel estuary, NW France, suspended sediment dynamics in 61–72, 63, 240
current velocity and water depth 67
evolution of suspended sediment concentration 67–9
material and methods 65–7
sediment characteristics 63–5, 65
Mont-Saint-Michel estuary, NW France
M Morrison Formation, SW USA 184
redox potential discontinuity (RPD) 52, 54
Rhine 256
Rhine Delta 125
Rhizocorallium 277, 278
rhythmic climbing ripples (RCR) 214
Rio Mearim 102
Rivularia 179
Roche Thorin 205
Roda Anticline 336
Roda Formation, Northern Spain 313–39
controls on variability of ridge facies 337–9
flow patterns associated with ridge accretion 337–9
sedimentary structures 337
vertical grain-size changes 339
facie distributions, isopach patterns and palaeocurrents 328–9
geologic setting 314–15, 315–17
isopach maps 330
methodology 316–18
stratigraphy 316, 319–20, 320, 321, 322
ridge origin 335–6
local flow patterns 335
ridge type 335–6
tidal ridge architecture 329–35
transgressive ridge facies 320–8, 323, 324, 325
vs Esdolomada Ridge 336–7
Rosselia 319, 324, 325, 326, 327, 328
R-type cycles 285
Rusophycus 324, 326, 328
Sai Gon River, southern Vietnam 22, 234
Salem Anticline 224
Salina de Ambargasta, Argentina 134
Saline Valley, California 134
Salmon River, Canada 76, 154
San Esteban Formation 315
Scirocco wind 37
Scolicia 121, 319, 324, 325, 326
Scytonema 179
Sée River, France 61, 62, 72, 76, 104, 205
Seine estuary, France 240, 256
Sélune River, France 62, 76, 104, 205
Serrania de Cuenca sub-basin 95, 96
palaeogeography 110, 112–13
Serre Massif 193
Severn River, UK 76
Shambles Bank, southern UK 313
Shark Bay, Australia 161, 181, 183, 184
sheath calcification, fossil cyanobacteria 179
signal to noise ratio (SNR) 67
Silla Massif 193
Sirte Basin 203, 205, 207
Skolithos 46, 47, 52, 54, 58, 121, 275, 276, 324, 326, 327, 328
Snouw bank, Dunkerque area, Northern France 313–14
Solecurtus 46
Song Ham Luong (Lower Mekong River) 23
South China Sea 29, 31–2, 234
South Yellow Sea, China, northern Jiangsu coast 293–311, 294
coastal geomorphology 295–7, 296
core stratigraphy 305
formation of sand ridges 309–10
Late Pleistocene channel infilling 307–9
long term evolution 305–7, 306
materials and methods 299–301
radial tidal ridge (RTR) system 294–5, 297, 298, 309–10
sedimentary facies, interpretation and chronology 301–5, 302
channel base lag facies association 304–5
flood plain facies association 304
ravinement lag facies association 304
tidal channel and creek infilling facies association 304
tidal flat facies association 301–4, 303
tidal ridge facies association 304
surface sediment distribution 299, 300
tidal regime 298–9, 298, 299
south-west Florida Inner Shelf 313
Southwest Florida Water Management District (SWFWMD) 8
Spokane Flood 226
SPOT data 21
Springfield Coals 220
strike-slip systems 193
stromatolites 148–50, 149, 153, 161–85
agglutinated 171, 171, 175, 176–7, 183, 185
agglutinated oolitic-peloidal 183
coarse-grained 176
filamentous calcimicrobial 179
oolite-stromatolite facies association 171–4, 171–2, 185
porostromate 179
skeletal 168, 169, 170, 175, 177–80, 178, 182
Surface Water Improvement and Management (SWIM) Program 8
Suspended Sediment Concentration (SSC) 61, 62, 66, 67, 68–70, 69, 71, 72
Sverdrup unit 226
synthetic aperture radar (SAR) 21–32
Syringopora 279, 280
Tampa Bay 6, 18
tangential toeset 195–7, 196, 199
Teichichnus 324, 326, 328
Teredolites 319
terminal splay complex 150
Terra Ceia Aquatic Preserve (TCAP) 6
Terra Ceia Bay 6, 18
Terra Ceia River 5, 6, 9
Tethyan margin 96
Tethys Ocean 95, 205
Thalassinoidei 44, 47, 52, 58, 205, 270, 277, 278, 279, 280, 319, 324, 326, 328
Thu Duc Formation 234, 235, 236
tidal bundles 1, 125, 133, 220, 191, 321, 324, 326
tidal facies model 1
tidal forcing 244
tidal ravinement surfaces (TRSs) 233, 239
bar-TRS 233, 238–9, 238, 240
classification 237–40
inlet-TRS 240
wave/tidal ravinement surface (W/TRS) 233, 236, 239–40
<table>
<thead>
<tr>
<th>Term</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>tidal rhythmites</td>
<td>1, 2, 3, 75, 85, 87, 88, 90, 91, 117, 122, 125–6, 152, 154, 191, 203–14, 221, 301</td>
</tr>
<tr>
<td>Tidalites Conferences, history of</td>
<td>1–2</td>
</tr>
<tr>
<td>Tremp Formation</td>
<td>314</td>
</tr>
<tr>
<td>Tremp-Graus Basin</td>
<td>314, 316</td>
</tr>
<tr>
<td>Triloculina trigonula</td>
<td>246</td>
</tr>
<tr>
<td>Trochammina inflata</td>
<td>251</td>
</tr>
<tr>
<td>Trubi Formation</td>
<td>193</td>
</tr>
<tr>
<td>Turnagain Arm, Cook Inlet, Alaska</td>
<td>72, 76, 85, 90, 102</td>
</tr>
<tr>
<td>Turritella</td>
<td>328</td>
</tr>
<tr>
<td>undular bores</td>
<td>76, 77</td>
</tr>
<tr>
<td>University of Hawaii Sea Level Center</td>
<td>27</td>
</tr>
<tr>
<td>(UHSLC)</td>
<td></td>
</tr>
<tr>
<td>Urbión Group</td>
<td>162</td>
</tr>
<tr>
<td>Urgonian Platforms (Aptian)</td>
<td>95</td>
</tr>
<tr>
<td>US Geological Survey (USGS)</td>
<td>8</td>
</tr>
<tr>
<td>US Naval Oceanographic Office</td>
<td>28</td>
</tr>
<tr>
<td>Utrillas Sandstone Formation</td>
<td>95, 96, 111, 112, 113</td>
</tr>
<tr>
<td>Vam Kenh</td>
<td>22</td>
</tr>
<tr>
<td>Variscan Massif</td>
<td>96</td>
</tr>
<tr>
<td>Vena di Maida Unit</td>
<td>193</td>
</tr>
<tr>
<td>Vung Tau</td>
<td>22</td>
</tr>
<tr>
<td>Wadden Sea (Jade Bay), Germany</td>
<td>126, 126</td>
</tr>
<tr>
<td>Walshville channel in the Herrin Coal</td>
<td>224</td>
</tr>
<tr>
<td>wave-dominated barrier-island depositional model</td>
<td>128</td>
</tr>
<tr>
<td>Wentworth granulometry scale</td>
<td>139</td>
</tr>
<tr>
<td>Wen-Yan</td>
<td>76, 78</td>
</tr>
<tr>
<td>XRF scanning</td>
<td>80</td>
</tr>
<tr>
<td>Yangtze delta</td>
<td>314</td>
</tr>
<tr>
<td>Yangtze River</td>
<td>76, 226, 293, 295, 299, 306, 309</td>
</tr>
<tr>
<td>Yellow River</td>
<td>293, 295, 299, 307, 310</td>
</tr>
<tr>
<td>Yellow Sea</td>
<td>313</td>
</tr>
<tr>
<td>Zostera</td>
<td>45</td>
</tr>
</tbody>
</table>