A
Accuracy B.5, B.6
Accurate positioning C.2
Adjustable heel pin 3.3
Adjustable locators 2.4
Anti-friction bearings B.5
Arbour 5.4, A.10
Arithmetically A.12, A.13
Axial force A.12, A.13
Axles B.6

B
Babbitt coupling B.5
Back Rake Angle A.1
Back-tapered A.5
Backplate 6.2, 6.3
Balanced C.6, 6.2
Balancing C.3 C.6
Balancing weight 6.3
Base plate WE.7
Basic hole B.2, B.7
Batch production 1.3
Bearing 6.3, B.20
Bilateral B.1
Bilateral Tolerances B.1
Blow holes 1.7
Boring C.6, C.7
Boring Fixture 6.10
Boring machines C.6
Boring tools A.1
Bottoming A.6, C.4
Box jig WE.3
Brackets C.7
Broaching Fixtures 6.1, 6.5, 6.10
Broaching force 6.11, 6.12
Broaching operation WE.5, A.5, 6.5
Broaching Tools A.11
Buckling loads 4.14, C.6
Bush 1.5, 1.6, 2.4
Butt-welded / tipped A.1
Button clamps 3.5

C
‘C’ Washers 3.7
Cam clamps 3.8, 6.6
Cam Profile 2.8, 3.9
Cam-operated 2.5, 3.8
Case hardened 4.9, 4.10
Cast iron 5.1, 5.7, 6.11
Cast steel WE.3, WE.4, A.2
Cast steel tools, A.2
Cemented carbides 4.9, A.7
Chamfer angle A.6
Chamfers 2.3, 2.9
Chatter 3.1, 3.12, 6.1, A.4
Chip breakers A.12
Chisel edge A.4, A.6
Chuck C.5, C.6
Chuck Jaws 6.1, C.1
Circular index plate C.4
Clamping 6.3, 6.5, 6.6, 6.7
Clamping bushes 4.7, 4.9
Clamping force 6.7, A.4, A.5, A.8, A.11, C.1
Clamps 1.1, 1.4, 1.6, 2.2, 2.4, 3.1
Clearance 4.6, 4.8, 4.9, 4.11, 5.2
Clearance angle A.12
Clearance fit B.3
Close running fits B.5
Close sliding fits B.5
Coarse threads 4.10
Collared bush 1.5, C.3
Collars 5.4
Collet 1.7, 6.1
I.2 Design of Jigs, Fixtures and Press Tools

Complex clamping devices C.2
Compressed air C.2, 3.9
Computer algorithms 6.1, 6.9, 6.11
Conical locators 2.6, 2.9
Connecting rod C.3
Constant 1.3, 2.7, 3.7
Constant of proportionality A.3
Constraints 2.1, C.1, 5.10
Cost factor 6.9
Cotter pin 3.5
Counter-sunk screws WE.7
Cutting 6.10, A.1, A.2, A.3
Cutting edge A.3, A.4, A.7
Cutting force F A.10
Cutting resistance A.12
Cutting speed, feed rate, depth of cut A.10
Cyanide hardened 4.10
Cyclic operations 3.1
Cylindrical locators 2.4, B.6

D

Dead centres 6.12
Depth of cut A.3, A.4, A.10, A.12
Depth of cut/tooth A.12
Diamond pin locations 2.7
Diamond Pin locator 2.9, 2.7, 3.12
Distortions 4.10, 6.6, C.2
Dovetail joint B.5
Down-cut milling A.9
Draw bar 6.1
Drill 6.11, WE.1, WE.2
Drill bit A.4, A.5, A.6, B.5, C.1
Drill bush in B.6
Drill Bushes C.3, C.4, 4.2, 4.7
Drill feet C.3, C.4
Drill fixture A.5, C.1,
Drill holders A.5
Drill jig A.5, C.1
Drilling C.1, C.3, C.4, C.6
Drilling, boring, reaming 4.1
Drilling bushes B.1
Drilling fixture C.8
Drilling jig 1.1, 1.4
Drilling torque A.5
Dynamic forces 1.6
Dynamometer A.3

E

Eccentric locators 2.8
Edge-type clamps C.6
Elbow WE.2
Electromagnetic force C.5
Electromechanical Clamp 3.2, 3.11, C.5
End Cutting Edge Angle A.1
End milling 3.6
End Relief Angle A.1
Equalising clamps 3.6
Expanding Pegs 6.1, 6.2
External 6.3, 6.5, WE.5
External Broaching WE.5,WE.6
External Cylindrical Grinding 6.3, 6.4
External slots 6.5

F

Fabric bearings B.5
Face milling 1.5, A.9
Face milling cutters 1.5, A.9
Faceplate 1.5, 6.3, C.6, C.7
Fasteners 1.4, B.1
Feed force A.3
Ferrous C.5
Fits C.7, B.1
Fixed bushes 4.7, 4.9
Fixels 6.7
Fixture 6.6, 6.7, 6.9
Flame 4.1
Floating 5.1
Flow production 1.3
Fluted knobs 4.10
Flutes A.4, A.6, C.1
Fool Proofing 2.3, C.2
Foolproof C.2
Footing 4.4, WE.4
Force A.1, A.2, A.3, A.4
Force/Shrunk fit B.3
Four-way 4.2
Free running fits B.5
Fulcrum 3.2
Functional constant 3.2

G

Gang drilling 3.4
Gang milling 5.4
Gang Milling Fixture 1.5, 5.4, 5.5
Index

Gear-hobbing A.1
Gear-shaping A.1
Grid-like 6.7
Grinding 6.5, 6.10, 6.13
Grinding Fixtures 6.3, 6.10
Guiding 3.1, B.5
Guiding bushes 4.18,
Gunmetal bush WE.1

H
Heel B.6, C.6, 1.4, 1.7
Heel Pin 3.2, 3.3
Heel-type 5.2, 6.2
Helix angle A.4
High-carbon steel 4.9, 5.7, WE.4
High tensile forces 4.10
High-speed drilling A.5
High-speed steel A.11
High-strength material, 6.5
High-tensile steel WE.3
Hinge joint 4.2
Hinged plate C.1
Hold-down bolts, tenons A.10
Hole Basis B.2, B.4
Horizontal boring machines C.6
Household appliances B.5
HSS A.5
Hydraulic clamps 1.4, 1.6, 3.1, 5,6
Hydraulic Fixtures 5.6
Hydraulic, pneumatic 3.2

I
Inclined Drilling Jig WE.1
Inclusions 1.7
Increased productivity 1.7, 2.3
Index plate 4.11, 5.5, WE.1
Indexing 4.3, 4.4, 4.7, 4.11, 4.12
Indexing jig 5.5, WE.1
Indexing mechanism WE.5, 4.3, C.4
Indexing milling 5.5, 5.6, WE.4
Indexing Milling Fixture WE.4, 5.5, 5.6
Indexing pin WE.1, WE.5, B.5
Indexing pin, cylinder, spring WE.5
Indexing plate 5.5, WE.1
Indian Standards B.3
Inserts A.1
Interchangeability 1.3, 4.1

Interference 4.7, 4.12, 6.2, B.2, B.3
Interference fit 2.4, B.2, B.3, C.4, C.6
Internal 5.7, 6.1
Internal Cylindrical Grinding 6.3, 6.5
Internal gears 6.5
Internal grinding operation 6.4
Internal keyways 6.5, A.11
Internal spline 6.5, A.11
International Standards B.3

J
Jaws 3.11, 5.1
Jig 5.5, WE.1
Jig bodies C.2
Jig body 4.2, 4.4, 4.10
Jig body frame B.6, 2.3
Jig feet 4.4, 4.10
Jig plate 4.1
Jigs 4.1, A.1
Job production 1.3
Job shops 6.9
Joint B.5, C.2, 4.2, B.5

K
Keys/tenons C.4
Keyway milling WE.5, A.9
Keyways 1.5, 3.4, WE.5
Knob WE.5
Knurled knobs 4.10

L
Latch–type 3.4, 3.5, 4.2
Latch-type clamps
one way clamps 3.4
Latch-type Jig 4.2, 4.4
Lathe 6.11, WE.7, A.2, C.6
Leaf-type drill jig C.1
Liner bush 4.7
Live 6.12
Loading C.2, 1.5, 1.6, 1.7, 2.3
Locates C.1
Locating 4.2, 4.4, C.2
Locating and Clamping bush C.2
Locating devices 1.4
Locating pins 2.7, 2.9, WE.5
Locational Clearance fit WE.5, B.3, B.6
Locational Interference fit B.3, B.6
Locational Transition fit B.3, B.5
Locators B.6, C.3, 2.1
Low-alloy medium-carbon steels 4.10

M
Machine A.4
Machine table 1.7, 5.4, C.4
Machine tool bearings B.5
Magnetic C.5
Magnetic chucks C.5
Magnetic fixtures C.5
Maintenance cost C.4
Manual brushing C.2
Mass production 1.3
Mating pairs B.1
Medium running fits B.5
Metal cutting tools 1.1, A.1
Metal removal rate A.10
Micro drills A.5
Milling A.9, WE.4, WE.5
Milling Cutters A.9
Milling Fixture A.11, C.1, C.4, C.6, 1.1, 1.5
Milling table 5.1
Modular fixtures 6.1, 6.6
Multi-point cutting tools A.1, A.4, A.6

N
Negative allowances B.2
Negative rake angles A.9
Neoprene 3.5
Nested Locators 2.7
Nesting type C.3
Nitrided, high-carbon 4.9
Non-ferrous C.5
Normal forces A.3, A.10
Nose Radius A.2
Number of teeth, material hardness, cutting condition A.10
Number of teeth per cutter A.10

O
One-way clamps: 3.4
Operator friendly 4.10
Orthogonal C.4, WE.3
Oscillations 6.2

P
Parallelopiped 2.1
Partial profile 2.1
Peg 2.1, 2.2
Peripheral milling A.9
Piloted boring bar A.4
Pin-type 2.4
Pitch of the cutting edges A.12
Pivoted A.5
Plain bush 1.5
Plain fixed 4.7
Plain Liner bush C.3
Plain milling C.4
Plain Milling Fixture 5.2, 5.3
Plate jig 4.1
Plug A.6
Pneumatic 1.4, 3.1
Pneumatic clamps 1.4, 3.10
Polygon 6.7
Polynomial 6.9, 6.10
Positive allowances B.2
Post jig 4.2, 4.6
Pot jig 4.2, 4.6, 4.12
Powder metallurgy A.7
Precision tools 4.2
Pressure pads 3.1, 3.5
Primary A.4
Principal C.3
Principal cylindrical locators 2.7
Productivity 3.7
Productivity tools 3.7
Profile 3.8
Profile locating pins 2.7, 2.9
Profiled locator WE.7
Prototype work 6.9
Punching 4.1

Q
Quick acting nut 3.10
Quick acting screws 1.6
Quick-acting, 3.4, 3.10, 4.4, 4.10
Quick-acting ‘C’ washer 6.4
Quicker C.2

R
Radial drilling 1.6, 4.4
Radial force A.3, A.12
Radial holes 3.8
Railway wheels B.6
Rake angles A.2, A.7, A.9, A.11
Reamers A.6
Reaming 1.5, 1.6, 4.1, B.3
Reciprocating 6.3
Redundant locator 2.2
Regenerative process A.10
Relief groove 2.2, A.10
Renewable bush 1.5, 4.12
Renewable-type bushes 4.7
Replaceable Collar bush C.3
Restraining forces A.5, A.7
Restraining translation WE.1
Resultant force A.3
Rigidity 5.1, 6.1
Rigidly 4.4, 6.9
Rotating member C.6
Rotational 2.1
Rubber, 3.5
Rugged clamping C.6
Running Clearance fit B.3
Running fit B.3, B.5, B.6

S
Screw-operated 2.5
Screw-type bush C.3
Screw-type clamp WE.1
Secondary clearances A.9
Secondary locators C.3
Self centering C.8
Serrated jaws 5.7
Setting block 1.5, 1.6, 5.1, 5.2, 5.4, 5.7 WE.5, B.1
Setting blocks, tenons B.1
Shaft Basis B.2, B.3
Shank A.1
Shrinkages 1.7
Side clearances A.9
Side Cutting Edge Angle A.2
Side Rake Angle A.9
Side Relief Angle A.1
Single-fluted spiral, A.5
Single-point A.4, A.7
Single-point cutting A.1, A.7, A.9
Six degrees of freedom 2.1
Six-Point Location 2.2
Sliding fits B.5
Sliding jaw 6.3
Sliding ‘V’ Clamp 6.3, 6.4, WE.5
Slip-type 4.7
Slip-type of Bush 4.8
Slots 5.4, 5.5, 5.7, 6.5
Small-run 6.9
Solid clamp 3.2
Solid-type jig 4.2
Special Jaws 6.1, 6.2
Special tools 1.3
Specialized tooling 1.3
Specific cutting Resistance A.12
Spherical washers 3.3
Spring washer WE.7
Spring-actuated locator 4.11
Square threads 5.7
Steady Rest 5.7, 6.11
Straddle Milling Fixture 5.3
Straight double fluted, A.5
Strength 1.6
Stress relieving C.2
Stresses C.2, 4.10
String Milling 5.4, 5.5
String Milling Fixture 5.5, WE.5
Support plate WE.5, A.11
Surface grinding 3.6, 6.3, C.5
Swarf A.5
Swarf removal 1.6
Swing washers 3.7
Swinging bolts and
removable-type clamps 3.7
Swinging latch type jig 4.2
Swiveling type 5.7
Symmetrical 2.9, 4.2

T
“T” 4.2
T-bolts 5.1, 5.2
Table/feed WE.5
Tangential force A.3
Taper A.4
Tapping A.7, 4.1
Taps A.6
Tenons A.10, B.1, C.4, 1.7, 5.1 WE.5
Thermal C.2
Threaded fasteners 1.4
I.6 Design of Jigs, Fixtures and Press Tools

Three-jaw chuck C.8
Three-point clamps 3.4
Throwaway A.1, A.9
Thrust 3.1, C.1
Tilting type 5.7
Tipped tools A.1
Toggle clamps 3.9
Tolerances 4.1, B.1
Tool life A.2

signature’ A.2
steel 3.11, 4.9
wear 4.10, WE3 A.1
Torque C.1
Tough 6.5
Toughness 3.1, 4.10, 6.10
Transition fit, B.5
Translations 2.1
Turning 3.2, 3.4, 6.1, 6.2 6.3
Turning Fixtures 3.2, 6.10, 6.11
Turning fixtures 6.1, 6.2
Turnover jig 4.2
Twist drill A.4
Two-fluted spiral, A. 5
Two-point clamps 3.4

U
Unilateral B.1
Unique 1.5, 4.4
Unloading 1.10, C.2, 1.4, 1.5, 1.6, 1.7, 2.4
Unsymmetrical 2.9

Up-cut milling A.9
Upside down 4.2
Upward pull A.5

V
‘V’ clamps B.5, 3.9, 6.1, 6.2, 6.4, C.5
‘V’ Locators 2.3
movable 2.6
fixed 2.5
sliding 3.9
‘V’ type sliding clamps 1.4
Vacuum C.5
Vertical boring machines C.6
Vertical milling machine WE.5
Vibration 3.1, 3.12 4.4, 4.10, 5.1, 6.1
Vibration damping 4.10
Vice-jaws 5.1
Vice-like C.6

W
Wear-resistant 4.4, WE.3, WE.5
Wedge 6.1, 6.2, B.6
Wedge-type edge clamp 3.6
Welded frame WE.1
Welding A.1, C.2
Welding fixtures 1.5, 6.1, 6.6
Width of cut A.10, A.12

Z
Zero allowance B.2

PART-II

A
Accumulator 1.4
Adjustable bed stationary 1.6
Advance 2.9, 3.10, 4.2
“Advance/ Lead” C.5
Agent B.1
Air dies C.4
Air-bend dies C.6
Air-bending C.2 C. 3
Air-cushion C.2
Air-vent C.9
Allowance 2.10, 2.11
Alloy Cast Iron A.3
Alloy Steel A.2

Aluminium alloys 2.6, 2.8
Angular clearance C.2
Annular 1.8, 2.16
Area of blanks 2.1
Assembly dies 2.15, 5.20
Austenitic variety A.2
AutoCad/ProE 5.22
Automatic interlock 4.10
Automatic stop 4.11, C.3, C.9
Axial straightness C.6

B
Back gauges 3.8
Backing plate 4.11
Base/bed 1.6
Bead 1.8, 5.16
Beading 1.8
Bench press 1.5
Bend allowance 2.11, 2.20, C.8
Bend angle 2.11
Bending 2.19
Bending, drawing 5.9, 5.11
Bending in ‘V’ die 2.1
Bending in ‘Wiping’ die 2.1
Bent 2.10, 2.16, 5.1
Blank 2.1, 2.2
Blank diameter 2.16, 2.17, 5.11
Blank holder 2.16, 2.18,
Blank layout 2.1
Blank length 4.2, 4.4
Blank size 4.4
Blanking 4.6, 4.8
Blanking die 4.14
Blanking, embossing, coining 1.8
Blanking force 4.18, 5.12
Blanking, piercing 1.9
Boiler plate A.1
Bolster plate 3.1, 4.4, 4.5
Borax B.1
Bottom bolster 4.4, 4.5, 4.11
Bottom bolster plates 4.4, 4.16
Bottoming dies C.4
Box-like shells 4.18
Boxes 2.16
Brass A.1
Bronze A.1
Buckling loads 4.14
Bulging 2.14, C.7
Bulging dies 2.14, 5.19
Burnish 2.5, 2.7, 2.8
Burnished 2.5, C.6
Burried edge 2.5
Burrs C.8
Button 3.8
Button die stops 3.10

C
Carbides A.2
Carbon Steel A.3, 2.6, 4.3, 4.17
Center of pressure 4.1, 4.14, C.6, C.10
Centroid C.6
Channel 2.11
Channel bending 2.11, 5.2, 5.3, C.2
Channel bends 5.2, C.4
Channel strippers 3.7, 4.6
Channel-type strippers 4.6, 4.10
Chlorinated additives B.1
Chlorinated oils 5.17
Chlorine B.1
Chromium DE.4, 3.5
Chute 2.2
Circularity 4.13
Cleaners B.1
Closed position C.3
Clutch 1.4
Coiler 4.1, 1.6
Coining 1.8, 1.9, 2.14, C.5
Coining dies 2.14
Cold drawn steel 5.3, A.2
Cold rolled steels 2.8
Combination die 5.12, 5.13, 5.14
Compound Die 1.1, 4.1, 4.13, C.2
Compressive force 2.8
Concentric ring C.8
Concentricity 5.9
Conical C.3
Controlled movement C.8
Convex pressure pad 2.12
Conveyor 2.2
Copper 2.6
Corner radius 2.17
Corner setting C.1
Corners 2.12
Counter-balance cylinders 1.6
Counter-pressure 2.5
Crack propagation 3.5
Cracks C.8
Crank shafts 1.7
Cranks 1.4
Cup 2.4
Cupro Nickel A.1
Curl 2.13, 5.18
Curling 5.20, 5.22, 5.23, C.2
Curling dies: 2.13, 5.18
Curly edges C.2
Cut-off 2.1, 2.2
Cutting 2.4, 2.19
Cylindrical 2.16, 2.19
I.8 Design of Jigs, Fixtures and Press Tools

D

Deep drawing 5.9, 5.17
Deformations 5.2, 5.7
Degreasers B.1
Deoxidized Copper A.2
Depressions 2.13
Depth of penetration 2.8, 2.20
Die 2.12
 block 3.4, C.1
cushion 1.5, 1.7, 1.8
cushion cylinder 1.7
opening factor 2.8
Plate 2.8, 3.1, 3.4
Set 3.10
Shoe 3.13, 4.4, 4.5, 4.6, 4.8
 steel 1.17
wear 1.17 C.4
Direct 2.20, C.4, C.8
Direct Pilots 3.11
Direct redrawing 2.18
Disappearing pin C.1
Dividing C.7
Double-action 1.8, 1.9, 2.18, 2.19
 hydraulic press 2.19, C.4
 press C.4
redrawing C.4, 2.18
Double-pass layout C.3
Double-row double-pass 4.2
Dowelled 4.4
Dowels and screws 4.10
 die ring C.1
 bead C.10
clearances 2.5
Ratio 2.8
ring 2.9
Draw-ability 2.16, 5.17
Drawing 2.16, 2.17, 2.18, 3.3
Drawing Dies 5.7
Drawing force 5.7, 5.8
Drive 1.4
Drop hammers 2.14
Dry film soaps 5.17
Ductile material 2.17
Ductility 3.4
Duralumin A.1

E

Eccentric C.3
 gear 1.4
 shaft 1.6
 shaft mechanical presses C.3
 shafts 1.7
Ejection 1.7, 2.7
Elastic strain 2.19
Elastomer rings 5.16
Electrical Steel A.2
Embossed 5.22
Embossing 5.22, 2.20
 dies: 3.3, 3.14
Emulsifiable B.2
Emulsion of soap B.1
Emulsions 5.17
Extrude C.8
Extrusion 5.7, 5.16

F

Fatty oils 5.17, B.2
Feed length 2.1
Final draw 5.12
Fine Blanking 2.1, 5.17, C.4
Finger stop C.3
Fixed C.6
Fixed bed 1.8
Flanged punches 3.4
Flanges 3.1, 3.4, 5.11
Flatness 4.13
Floating stripper C.9
Floating type 4.14
Flywheel 1.4
Folding 5.22
Formability criteria C.8
Forming 1.1, C.10
Forming Dies 2.12, 5.1
Forming processes 1.1, 2.1
Four-pin 3.2
Fracture 1.17, C.2
Frame 1.1, 1.5
French stop C.5

G

Gap-frame press 1.5, 1.6
Gears 1.4
Guide rails 3.8
Guiding bushes 4.18
Guiding pins 3.1, 4.18, C.4
Index

H
Hardened tool steel blocks 3.4
Heat-resistant Steel A.3
High-strength low-alloy steel 2.6
Hinges C.2
Hold-down pressure 5.10
Hold-down ring 5.10
Hole-flanging C.8
Hot rolled steel A.2, DE.1
Hydraulic presses C.4, 1.1, 1.4, 1.9, 1.10
Hydraulic pump 1.4

I
Impingement ring 2.5
Indirect knockout C.4
Indirect piloting C.6
Innovation 4.6
Inside radius 5.5
Insufficient clearance C.4
Interconnecting pipeline 1.5
Interlocking 2.2
Internal blank holder 2.19
Inverted dies 5.20, C.7
Inverted punch 5.20, C.7
Ironed 2.10
Ironing 2.10, 5.2, C.1,

J
Jamming 4.4

K
Knockout rod 4.14, 5.18, 5.19, C.6
Knockouts C.5
Knuckle lever drives 1.7

L
Lancing 2.4, C.3
Lead C.5
Limiting draw ratio 2.16
Linkages 1.4
Load on the press 2.6
Low-Carbon Steel 4.3, DE.2

M
Magnesium Alloys A.2, A.3
Male punch 2.13
Manually-fed C.4
Mating 2.3, 5.16
Mechanical presses C.3, 1.1
Mechanics of Drawing 2.16
Mechanics of fracture 2.7
Medium carbon steel 4.17
Metal stamping 1.8
Mild steel 2.8, 5.17, A.1
Mineral oils 5.17, B.2

N
Nesting 2.2
Neutral axis 2.10
Nickel 3.5, 3.6, A.1
Nitrided Tool Steel A.3
Nose radius 2.8
Notching 2.1, 2.4, C.9

O
OBI press C.1
Oil or wax B.1
Oil storage 1.5
One-slide 1.8
Open back inclinable 1.10, 1.5, C.1
Open back stationary 1.6
Over-hung flywheel 1.7

P
Pad-type form dies 2.12
Parting 2.20, 3.10, C.7
Pawl rises 3.10
Pedestal punches 3.4
Penetration 2.8, 2.20, C.2
Peripheral length 4.18
Piercing 4.20, 5.1, DE.1
Pilots 3.11, 3.12, C.8
Pin stop 3.10
Plastic Sheets A.3
Plastic zone 5.2
Pneumatic pressure 5.10, 5.16
Pneumatically 1.6
Polynomial C.1
Polyurethane foam C.7
Power source 1.1, 1.9
Press 2.1
brake 2.8, C.3
capacity 1.1
Tonnage 2.20
Tools 3.1, 3.2
Pressing speeds 1.3
Pressure gauges 1.5
Pressure pads/ knockout rod 5.18
Pressure pads 2.15, 3.7, C.2, C.5
Pressure switches 1.5
Primary 3.10
 stop 3.10, 3.11, 3.13, 3.14
Productivity 4.6
Profiled blank 4.1
Progressive 4.1
Progressive die 4.1, 4.6, 4.7, 4.11
Progressive stages 2.16
Prolonging die 5.17
Protrusions 2.13
Punch 4.21, 5.1, 5.7, 5.8

Punch Design 4.4
Punch holder 4.11, 5.12
Punch holder plates 5.12
Punch holding plate 3.1, 4.6
Punch material 2.8
Punch pad 4.14
Perforated 3.5
Punch press 2.8
Piercing 3.1

R
Ram 4.14, 4.15
Reciprocating motion 5.9, 6.3
Reciprocating slide 1.8
Registry 3.11
Resultant force 4.14
Retainer rings C.6
Reverse redrawing 2.18, 2.19, 5.9
Reverse drawing 1.8
Rigidity 4.4
Riveting 2.15, 5.20
Rocker arm drives 1.7
Roller Stock Guide 3.8
Rolling B.5
Rubber 5.19
Rust prevention 5.17, B.1

S
Scrap C.7, 2.1
Scrap skeleton 2.1
Scrap-strip layout 4.1
Second draw 5.9
Seizure 5.17

Serrations 2.4, C.9
Severity 2.9, 3.6 A.3
Shank 3.13, 4.18
Shaving 1.3, 2.1, 2.5
Shear strength 2.6, 4.7
Shearing 4.14, 4.17
Shedder 3.9, 3.10
Shell diameter 5.9, 5.17, 2.17
Shell height 2.17
Shells 2.16
Shoulder C.5
Shut height 3.2, 3.14, 4.5
Shut position C.3
Silicon steel 2.6, A.1
Single station 4.13, C.4
Single-action 1.8, 2.18
 redrawing 2.18
 straight-side C.3
Single-row single-pass layout 4.2
Sinks 5.17
Slides 1.3, 1.4
Slug pulled 3.9
Soft materials 5.20
Solenoid 1.5
Solid block design 3.6
Solid form dies 2.12
Solid gap-frame C.1
Solid Punch 3.4
Soluble B.1
Span C.2
Spool-type strip guides 3.8
Spring back 3.9, 5.2, C.1
Spring loads 3.9
Spring Steel A.2
Spring strippers 3.7
Spring-loaded 3.7, 4.6
Squeeze 2.14
Squeezing C.6
Stainless steel A.2
Standard Die Set 3.1
Steel casting A.1
Stepped punches 4.7
Stock 4.7, 4.8, 4.9
Stock Guides 3.8
Stock stop C.4
Stopper 3.10, 4.11
Stops 4.16, 4.18
Straight edge 1.10, 5.1
Straight-side presses 1.5
Straightening 1.4
Strength 2.6
Stretch forming C.3
Strip area 2.1
Strip layout 2.1
Strip thicknesses 2.8
Stripper plate 3.6, 3.7, 4.5, 4.11, 4.14, 4.16
Strippers 3.6, 5.1, 5.12, C.5
Strippers, ejectors C.5
Strippers 3.6, 3.7, 3.8, 3.13, 3.14
 ejectors C.5
 plate 2.20, 3.1
Stripping constant 2.7, 3.7
Stripping force 2.7, 3.7
Stripping pressure 3.7, 4.6
Stroke 4.1, 4.6, 4.8, 4.11, 4.12
Successive stations C.4
Sulfo-chlorinated oil B.2
Sulphur 5.17, B.2
Sulphurised oils 5.16
Surface tension 4.14
Swaging 5.19, 5.20
 dies 5.20

T
Thinning 5.17
Three-pin 3.2
Three-slide 1.8
Tiffin box 5.22
Time lag 4.14
Tin-rolled sheet A.1
Titanium alloys 2.6
Toggle mechanisms 1.7
Tool Steel 3.4, 3.6, 4.3, DE.2 A.1, A.2
Top bolster plate 4.4
Top crown 1.6
Top plate 4.14
Total force 4.17
Toughness 3.4
Transient impact loads 3.1
Transmitting member 3.1
Trigger stop C.2
Trimming 2.1, 2.4, 2.20
Trip Stop 3.10, 4.11
 hydraulic presses 1.3, C.4
Triple-action 1.5, 2.8, 2.19
Tube C.1
Tube forming 2.1

Tungsten, 3.6
Two columns 1.6
Two-pin configuration 3.2
Two-slide 1.8

U
‘U’ bending or channel 2.11, 5.2
U-bending die 2.1
Ultimate shear strength 4.17, A.1
Ultimate strength C.2
Ultimate tensile strength 2.8, 2.10
Un-coiler 4.1
Unit shear stress 4.4
Unsymmetrically profiled 4.14
Upper shoe 4.4
Upside down C.9
Upward stroke 4.14
Urethane 2.14
Utensils C.2
Utilisation factor 4.3

V
‘V’ bend 5.2, 5.6
‘V’ bending C.6
‘V’ Die 2.1
Vacuum C.9
Vanadium 3.6
Vapour degreasing 5.17
Variable strokes 1.4

W
Water-based B.1
Wear pads C.9
Wear resistance 3.4
Wiping bends 5.2
Wiping die 5.2, 5.20
Wire frame model 4.18
Wrap 2.16
Wrinkle 2.16, 4.6, 5.7, 5.10, 5.11

Y
Yellow Brass A.2
Yield point 5.17
Yield strength A.2, C.2
 material 2.1, 2.2, 2.5

Z
Zinc-rolled sheet A.1