Index

Note: Page numbers in *italics* refer to illustrations

A
Absolute viscosities, 590
AC coupling, 298
AC generators, 553
Acceleration, velocity measurement from, 540–543
Acceleration measurement, 531–537
 piezoelectric accelerometer, 538, 538
 with a seismic instrument, 537–539
Accelerometer, 84–85, 99, 304, 538–539
piezoelectric, 538–539, 538
vibrometer, 536
Accuracy, 17
 relative accuracy, 17
Acoustical measurements, 421–425
 A-weighting scale, 422, 422
 condenser microphone, 423, 423
 C-weighting scale, 422, 422
 microphones, 423–425
 signal weighting, 421–423
sound level meter (SLM), 424, 424
Acoustic wave speed, 428
Active filters, 251, 258–260
 inverting bandpass, 259, 260
 inverting high-pass, 259, 259
 inverting low-pass, 258, 259
 Lowpass Butterworth Active Filter program, 260
 Sallen–Key unit-gain filter, 260
Actuators, 355–561. See also Hydraulic actuators; Linear actuators;
 Pneumatic actuators; Rotary actuators; Solenoids
 flow-control valves, 560–561
A/D converters, 299–300
Address, 281
Advanced-stage uncertainty analysis, 187–193, 189
 higher-order uncertainty, 188
 Nth-order uncertainty, 188–193
 single-measurement uncertainty analysis, 187
 zero-order uncertainty, 188
Aleatory uncertainty, 179
Alias frequencies, 274–277
 folding diagram for, 275
Alloys, properties of, 585
Alternating current measurement, using analog devices, 224
American National Standards Institute (ANSI), 31, 169
American Society of Mechanical Engineers (ASME), 31, 169, 447, 454, 454–455, 553
American Society of Mechanical Engineers’ Performance Test Code (ASME PTC), 392, 553
American Society of Testing and Materials (ASTM), 31
 ASTM E29—Standard Practice for Using Significant Digits, 33
Ammeter, 221, 228
Amontons, Guillaume, 322
Ampere (A), 26
 Amplification, 296–299
 Amplifiers, 240–245, 297–298
 closed loop gain, 241
 operational amplifier, 241, 242–243
 Amplitude, 46
 ambiguity, 277–278
 of signal, 51–65
Analog devices, 219–264
 analog signal conditioning, 240–245
 special-purpose circuits, 245–250
 connecting wires, 260–264
 current measurements using, 220–224
 alternating current, 224
 D’Arsonval meter movement, 220, 221
 direct current, 220–224
 simple multirange ammeter, 221
 grounds, 260–264
 impedance matching, 235–240
 loading errors, 235–240
 measurements using, 219–264
 potentiometer, 226–228
 resistance measurements, 228–235
 shielding, 260–264
 shields, 263
 voltage measurements using, 224–228
 analog voltage meters, 225
 oscilloscope, 225–226
 Analog filters, 297
 Analog input-output communication, 301–306
 data acquisition modules, 301–306
 Analog signal, 44, 45
 conditioning, 250–261, 296–299. See also Filters
 amplification, 296–299
 Analog-to-digital converter, 285–289
 conversion error, 287–289
 quantization error, 286–287
 resolution, 285
 Analog voltage comparator, 245–246, 245
 Analog voltage meters, 225
Anemometry, 431
 Doppler anemometry; Thermal anemometry
 Angular velocity measurements, 544–547, 546
 electromagnetic techniques, 546–547
 mechanical measurement techniques, 544–545
 stroboscopic, 545–546, 545
ANSI. See American National Standards Institute (ANSI)
Anti-aliasing filter, 276
Aperiodic signal, 47
Apparent strain, 504–514, 504
 bridge static sensitivity, 507–508
 practical considerations, 508–510
ASME. See American Society of Mechanical Engineers (ASME)
Astable multivibrator, 248
ASTM. See American Society of Testing and Materials (ASTM)
Asynchronous transmission, 307
Average value, 15, 17, 482; 50, 123, 342
 analog signal, 45, 48
 digital signal, 49–50
 discrete time signal, 49–50
 moving, 297
Index

A-weighting scale, 422, 422
Axial strain, 488

B
Balance
null, 226–227, 294, 34n3
Bandpass filter, 250
Barometer, 396–397
Fortin barometer, 396, 397
Base dimensions and units, 24–26
current, 26
frequency, 25
length, 25
luminous intensity, 26
mass, 24–25
measure of substance, 26
temperature, 26
time, 25

Basic DC-RMS Measurement program, 224
Bellows, 405–406
Bending beam load cell, 547, 548
Bernoulli, Daniel, 443, 452
Bernoulli effect, 446
Bessel filters, 251
design, 257–258
Best estimate, 127, 181–182, 200
Beta ratio, 448
Biaxial strain gauge rosettes, 510, 511
rectangular strain gauge rosettes, 511, 511
single plane type,
stacked type,

BIH. See Bureau International de l’Heure (BIH)
Bimetallic thermometers, 327–328, 327
Binary codes, 281–282
Binary numbers, 46, 280, 283–286
Bistable multivibrator, 249
Bits, 280–282
Block diagrams, 567–569
Bluetooth communications, 307–308
Boltzmann’s constant, 366
Borda, Jean, 448
Bourdon tube, 404–405
Bourdon tube pressure gauge, 405, 405
Bragg grating, 519, 519
Bridge circuits, 229–230, 331, 331
Callender-Griffiths 3-wire bridge, 331, 331
Mueller 4-wire bridge, 331, 331
Wheatstone bridge, 229, 230
Bridge constant, 502–504
Bridge static sensitivity, 507–508
Buffer, 307
Bulb thermometer, 3, 3
Bureau International de l’Heure (BIH), 25
Butterworth filters, 251, 251
design, 251–252
first-order low-pass resistor-and-capacitor (RC) Butterworth filter circuit, 252, 252
improved designs, 252–257
ladder circuit for multistage high-pass LC filter, 254, 254
magnitude characteristics, 252, 253
Byte, 281

C
Calibration, 15–23
accuracy, 17
dynamic calibration, 16
errors, 17, 176, 176
hysteresis, 20–21
instrument precision, 22
instrument repeatability, 22
instrument uncertainty, 23
linearity error, 21
measured value, 17
overall instrument error, 23
random errors, 17–19
random test, 21
range, 16
reproducibility, 22
resolution, 16
sensitivity error, 21–22
sequential test, 19
span, 16
standard, 15
static calibration curve, 15, 15
static calibration, 15
static sensitivity, 16
systematic errors, 17–19
true value, 17
uncertainty, 19
validation, 23
verification, 23
zero errors, 21–22
Callender-Griffiths 3-wire bridge, 331, 331
Candella, 26
Canny method, 313, 314–315
Capacitance, 28
farad (F), 28
Capacitance elements, 407–409, 408
Capillary tube viscometer, 463n2
Capsule elements, 405–406
Cascading filters, 252
Castelli, Benedetto, 442
Catch-and-weigh technique, 480
Celsius (°C) scale, 26, 325
Central tendency, 125
Charge, 28
coulomb (C), 28
Charge amplifier, 247
Chauvenet’s criterion, 155
Chi-squared (χ²) distribution, 144–148
Goodness-of-fit test, 147–148
precision interval in a sample variance, 145–146
Circular frequency, 53
Closed-loop control, 562
Closed-loop controller, 300–301, 301
Closed loop gain, 241
Coaxial cable, 263
Combined standard uncertainty, 195, 201
Common-mode voltage (cmv), 262, 305
Comparator, 568, 568
Complete immersion thermometer, 326
Complex periodic waveform, 46
Complex waveforms, 54
Compliance, 416
Compressibility effects, 449
Concomitant methods, 14
Condenser microphone, 423, 423
Conduction errors, 374–377
Conductive plastic potentiometer, 529, 529
Confidence interval, 123, 124, 139, 150, 155–157, 161, 195, 209
Connecting wires, 263–264
coaxial cable, 263
optical cable, 264
single cable, 263
triaxial cable, 264
twisted pairs, 263
Continuous variable, 6
Controlled variable, 6
Controller model, 570–572
Controls, 561–579
block diagrams, 567–569
closed-loop control, 562
dynamic response, 564–565
feedback control, 563
Laplace transforms, 565–567
on-off control, 562, 563–564
open-loop control, 562, 562
operational blocks, 568–569
oven control model, 569–573
proportional-integral (PI) Control, 573–575
Conversion error, 287–289
Conversion factors, 585–591
Conversion resolution, 287, 287
Coriolis, Gaspard de, 475
Coriolis, 475–479
flow meter, 475–479, 476–477
turndown, 462, 464, 470–471, 475, 478
uncertainty, 471–472, 478–479
Correction for correlated errors, 205–208
Correction, 15
coefficient, 152
photon, for LDA, 432
Coulomb (C), 28
Coulomb (C), 28
Coupled systems, 114–116, 115
Cradled dynamometers, 553–555
AC generators, 553
DC generators, 553
eddy current dynamometers, 553
waterbrake dynamometers, 553, 554–555
Critically damped system, 99
Critical pressure ratio, 460
Current, 26
ampere (A), 26
measurement, using analog devices, 220–224
4–20mA current loop, 247–248
C-weighting scale, 422, 422
D
D/A converters, 300
D’Asconval meter movement, 220, 221
Damping ratio, 101
Data-acquisition errors, 176–177, 177
Data acquisition modules, 301–306
differential-ended connection, 304–305, 305
self-contained, portable multipurpose, 303
single-ended connection, 304–305, 304
special signal conditioning modules, 305–306
USB-based, 303
Data acquisition systems (DAS), 271–316
analog signal flow scheme using, 296, 296
components, 296–301
A/D converters, 299–300
amplifiers, 297–298
analog filters, 297
closed-loop controller, 300–301
D/A converters, 300
digital filters, 297
digital input/output, 300
filters, 296–299
multiplexer, 299
offset nulling circuit, 299
shunt resistor circuits, 298–299
Data acquisition triggering, 306
Data outlier detection, 155–156
Data presentation, 31–35
full log, 32–33, 32
numerical operations, 34
plotting, 32, 32
rectangular, 32
rounding, 33–34
semi-log, 32–33, 32
significant digits, 33–35
Data-reduction errors, 177, 177
Data transmission, 307
DC component, 48
DC generators, 553
Dead volume, 407, 416
Deadweight Testers, 402–403, 402
Deflection method, 231–235
Degrees of freedom, 136
Dependent variable, 6
Derived dimensions and units, 26–30
electrical dimensions, 28–30
energy, 27
force, 27
power, 28
pressure, 28
stress, 28
Design of experiments, 82, 171
Design-stage uncertainty analysis, 171–176
in combining uncertainties, 173, 173
elemental errors, combining, RSS method, 172–173
Detailed uncertainty analysis, 171
general versus, 171
Deterministic signal, 46
Deviation, 136
Deviation plot, 145
DFT, See Discrete Fourier transform (DFT)
Diaphragms, 406–409
capacitance elements, 407–409, 408
diaphragm meters, 473
piezoelectric crystal elements, 409, 409
pressure transducer using four active resistance strain gauges, 407, 407
strain gauge elements, 407
Differential-ended connection, 304–305, 305
Digit, 33
least significant digit, 33
most significant digit, 33
significant digit, 33
Digital devices, 280–282
address, 281
bits, 280–282
offset binary, 281
one-complement binary code, 281
two-complement binary code, 281
words, 280–282
Digital filters, 297
Digital image acquisition and processing, 311–316
Canny method, 313
detecting, 314
image acquisition, 312–313, 312
image processing, 313–316
Sobel method, 313
Digital input/output, 300
Digital input-output communication, 306–311
asynchronous transmission, 307
bluetooth communications, 307–308
data transmission, 307
parity, 307
RS-232C protocol, 308
synchronous transmission, 307
Universal Serial Bus (USB), 307
Index

606

Digital numbers, transmitting, 282–284
 high and low signals, 282–284
 methods for, 283, 283
Digital signal, 45, 46, 49–50
Digital-to-analog converter, 284–285
Digital voltmeters, 294–295
Dimension, 24
 base, 24–26
 derived, 26–30
 electrical, 28–30
 length, 25
 mass, 24–25
 temperature, 25–26
 time, 25
Direct current measurement, using analog devices, 220–224
Direct current offset, 50–51
Discharge coefficient, 448
Discrete Fourier transform (DFT), 67–71, 272
 fast Fourier transform (FFT), 68
 one-sided or half-transform, 68
Discrete-time signals, 44, 45, 49–50
Discrete variable, 6
Displacement sensors, 528–531
 conductive plastic potentiometer, 529, 529
 dynamic response, 530–531
 linear variable differential transformer (LVDT), 529–530, 529
 rotary variable differential transformer (RVDT), 531
Displacement, velocity measurement from, 540–543
Distortion, 110
Doppler, Johann, 431
Doppler (ultrasonic) flow meters, 471–472
Doppler anemometry, 431–433, 435
 laser Doppler anemometry (LDA), 431, 431
 phase Doppler anemometry, 432
Dynamic calibration, 16
Dynamic error, 97
Dynamic measurements, 82–83
Dynamic pressure, 426
 in moving fluids, 413
 transducer calibration, 410–412
 shock tube facility, 410, 410
Dynamic response, 564–565
Dynamic signal, 46, 47, 48
 analog representations of, 48
 discrete representations of, 48
Dynamometer, 550, 553
 absorbing, 553
 ac and dc generators, 553
 cradled, 553–555
 eddy current, 553
 engine, 550
 waterbrake, 553–555

E
Earth ground, 262
Eddy current dynamometers, 553
Edge detection methods, 313, 314
Elastic behavior of materials, 489
Elastic load cell designs, 547, 548
Electrical dimensions, 28–30
 capacitance, 28
 charge, 28
 electrical potential, 28
 resistance, 28
Electrical potential, 28
volt (V), 28
Electrical resistance thermometry, 328–342
 practical considerations, 335–336
 resistance temperature device resistance measurement, 331–335
Electrodynamometer, 224
Electromagnetic flow meters, 464–467
Electromagnetic spectrum, 365, 365
Electromagnetic techniques, 546–547
Electronic reference junction compensation, 347
Elemental errors:
 combining, RSS method, 172–173
 propagation of, 194–200
Emissive power, 366–367, 371–372
Energy, 27
 joule, 27
Epistemic uncertainty, 180
Error(s), 17
 calibration errors, 176, 176
 conversion error, 287–289
 data-acquisition errors, 176–177, 177
 data-reduction errors, 177, 177
 error fraction, 89
 hysteresis error, 20, 20
 linearity error, 20
 overall instrument error, 23
 propagation of error, 180–182
 random errors, 17–19, 179
 repeatability error, 20
 saturation error, 287
 sensitivity error, 20
 sources, identifying, 176–177
 systematic errors, 17–19
 zero shift (null) error, 20
Euler, Leonhard, 443
Euler formula, 59
Even functions, 59
Expansion factor, 448
Expanded uncertainty, 195, 201
Expansion factor, 449–450, 452
Experimental test plan, 5–15.
 See also Randomization; Variables
 concomitant methods, 14
 data reduction design plan, 6
 interference, 9–10
 noise, 9–10
 parameter design plan, 6
 repetition, 14
 replication, 14
 steps in, 6
 system and tolerance design plan, 6
Extraneous variables, 7

F
Fahrenheit, Gabriel D., 323
Fahrenheit (°F), 26
Farad (F), 26
Faraday, Michael, 465, 530
Fast Fourier transform (FFT), 68
Feedback control, 4, 563
Fiber Bragg strain measurement, 519–520, 519
Filter band, 106
Filters, 250–261, 296–299.
 See also Bessel filters; Butterworth filters
 active filters, 251, 258–260
 analog, 297
 bandpass filter, 250
 Butterworth filters, 251
 cascading filters, 252
 characteristics, 250, 250
 digital, 297
 high-pass filter, 250
 low-pass filter, 250
 notch filter, 250
 passband, 250
passive analog filter circuits, 251
roll-off, 251
stopband, 250
Final value theorem, 593
Finite data sets, statistics of, 135–141
finite statistics, 135
inherent statistics, 135
repeated tests and pooled data, 140–141
standard deviation of the means, 136–140
Finite statistics, 135
First-order systems, 87–98
frequency response, 95
determination of, of 98
magnitude ratio, 96, 97
phase shift, 96, 97
simple periodic function input, 94–98
step function input, 88–90
time constant, 88
First-order uncertainty, 188–190
Fixed point temperatures, 323–324
Flip-flop circuits, 248–250
Flip-flop multivibrator, 249, 249
Flow coefficient, 448
Flow-control valves, 560, 561, 560
Flow measurements, 442–481. See also Insertion volume flow meters;
Mass flow meters; Pressure differential meters
Bernoulli effect, 446
flow meter calibration and standards, 480–481
historical background, 442–443
mass flow rate, 442
standard flow rate, estimating, 481
volume flow rate, 442
through velocity determination, 444–446
Flow nozzle, 447, 454–460
Flow rate concepts, 443–444
Fluid velocity measuring systems, 425–435
particle image velocimetry (PIV), 433–434, 433
pitot-static pressure methods, 434–435
pitot-static pressure probe, 426–428, 427
thermal anemometry, 428–431, 429
velocity measuring methods, 434–435
Folding diagram, 275–276, 275
Force, 27
load cells, 547–550
measurement, 547–550
Newton, 27
Fortin barometer, 396, 397
Fossilization, 194
Fourier analysis, 51
Fourier coefficients, 58–59
Fourier series, 57–58
Cosine Series, 59
fundamental, 58
Sine Series, 59–65
Fourier transform, 65–73
discrete Fourier transform (DFT), 67–71
inverse Fourier transform, 66
Francis, James, 452
Freeman, John Ripley, 455
Frequency, 25, 43. See also Nyquist frequency
Frequency analysis, 54–57
Frequency bandwidth, 97
Frequency distribution, 126
Frequency of signal, 51–65
Frequency response, 95
Frequency spectrum, 65–73
Frontinus, Sextus, 443
Full field IR imaging, 372–373
Full-log coordinate format, 33
Functions:
even function, 59–65
odd function, 59–65
with \(T = 2 \pi, 59
Fundamental Fourier series, 58
Fundamental frequency, 58
G
Galvanometer, 222, 227, 227
Gases, transmission effects, 418–420
Gauge factor, 494–495
Gauge length, 493, 496
General measurement system, 2–5
components, 4, 5
General model for measurement system, 81–85
General purpose interface bus (GPIB), 307–308, 308
General system model, 85–108
first-order systems, 87–98. See also individual entry
second-order systems, 98–108. See also individual entry
static sensitivity (K), determination, 86
zero-order systems, 85–87
General template for measurement system, 4–5
General versus detailed uncertainty analysis, 171
Goodness-of-fit test, 147–148
Gosset, William, 136, 136n5
GPIB. See General purpose interface bus (GPIB)
Ground loops, 262
Grounds, 260–264
H
Hall effect, 224
Handshake, 306
Harmonics, 58
Heat flux, 359–362
heat flux sensor, 359
Heat flux sensor, 359
construction of, 359, 359
thin-film heat flux sensor, 360, 360
Heavily damped systems, 420–421
Hero of Alexandria, 442
Herschel, Clemens, 452
Herschel venturi meter, 451, 453
Hierarchy of standards, 30–31
Higher-order uncertainty, 188
High-pass filter, 250
Histogram, 126
Hooke’s law, 489
Hot-film sensor, 429, 435
Hot-wire sensor, 429, 431, 435
Hydraulic actuators, 556–558
Hypothesis testing, 141–144
p-value, 143
t-test, 143
z-test, 142
Hypsometer, 388
Hysteresis, 20–21
Hysteresis error, 20, 20
I
Image acquisition, 312–313, 312
Image processing, 313–316
Impact cylinder, 414, 414
Impedance matching, 235–240
Imshow function, 313
Inch-pound (I-P) unit system, 24
Inclined tube manometer, 398, 399
Index 607
Index

Independent variables, 6
Invariance, 416
Inferential statistics, 135
Infinite statistics, 135
Input, 43
Input/output signal concepts, 43–47
 generalized behavior, 44
 measurement system selection, 43, 44
 signal waveforms, 46–47
 waveforms, classification, 44–46
Insertion errors, 373–374
Insertion volume flow meters, 464–474
 diaphragm meters, 473
 Doppler (ultrasonic) flow meters, 471–472
 electromagnetic flow meters, 464–467
 positive displacement meters, 472–474
 rotameters, 469–470, 469
 rotating vane meters, 473
 transit time flow meters, 471–472
 turbine meters, 470–471
 vortex shedding meters, 467–469, 467–468
 wobble meters, 473
Instrument error:
 common elements of, 20, 20
 hysteresis error, 20
 linearity error, 20
 repeatability error, 20
 sensitivity error, 20
 zero shift (null) error, 20
Instrument Precision, 22
Instrument repeatability, 22
Instrument uncertainty, 23, 172
Interference, 9–10, 10
 International Bureau of Weights and Measures (BIPM), 24
 International Organization for Standardization (ISO), 31, 169, 179
 International Temperature Scale of 1990 (ITS-90), 325
Interpolation, 324
 standards for, 325–326
Interstage loading errors, 236–240
Inverting bandpass active filter, 259, 260
Inverting high-pass active filter, 259, 259
Inverting low-pass active filter, 258, 259

J
 Joule, 27
 Junction, 312

K
 Kelvin (K) scale, 26, 325
 K-factor, 468
 Kiel probe, 414, 414
 Kinematic viscosities, 591
 King's law, 429

L
 Laminar flow elements, 463–464
 Laplace transform analysis, 571
 Laplace transform basics, 592–593
 Laplace transform pairs, 593
 Laplace transforms, 565–567
 Laser Doppler anemometer (LDA), 431, 431, 435
 Lateral strains, 489–490
 Law of homogeneous materials, 345
 Law of intermediate materials, 345
 Law of successive or intermediate temperatures, 346
 LDA, See Laser Doppler anemometer (LDA)
 Leakage, 278–280
 Least significant digit, 33
 Least-squares regression analysis, 149–152
 Leibniz, Gottfried Wilhelm, 57n4
 Length, 25
 Level of significance, 142
 Light, characteristics, 515
 Linear actuators, 555–556
 screw-drive linear motion, 556
 slider-crank mechanism, 555–556
 using lead screw, 556, 556
 Linear polynomials, 152–155
 Linear variable differential transformer (LVDT), 405, 529–530, 529
 LVDT gauge head, 531, 532
 Linear velocity measurements, 539
 Linearity error, 20, 21
 Linkwitz–Riley high-pass or low-pass filter, 256, 257
 Linnaeus, Carolus, 323
 Liquid-in-glass thermometer, 324, 324, 326, 326–327
 complete immersion thermometer, 326
 partial immersion thermometer, 327
 total immersion thermometer, 327
 Liquids, transmission effects, 418
 Load cells, 547–550
 bending beam load cell, 547, 548
 elastic load cell designs, 547, 548
 piezoelectric load cells, 547–550
 design, 548, 549
 proving ring, 549–550, 550
 shear beam load cell, 547, 549
 strain gauge load cells, 547
 Loading errors, 235–240
 interstage loading errors, 236–240
 for voltage-dividing circuit, 236–237, 236
 Lowpass Butterworth Active Filter program, 260
 Low-pass filter, 250
 low-pass Butterworth filter, 251, 251
 Luminous Intensity, 26
 candella, 26
 LVDT, See Linear variable differential transformer

M
 Mach number, 381–382, 411
 Magnitude, 43
 magnitude ratio, 96
 Manometer, 397–402
 inclined tube manometer, 398, 399
 micromanometer, 398, 399
 U-tube manometer, 397, 398
 Mass, 24–25
 Mass flow meters, 474–480
 Coriolis flow meter, 475–479, 476–477
 thermal flow meter, 474–475
 McLeod gauge, 395–396, 396
 Mean value, 48, 48x2, 123–125, 127, 130–131, 136–141, 155, 170, 180–182, 186, 200, 202–205, 298
 digital signal, 49–50
 discrete time signal, 49–50
 sample mean, 124, 135–140, 155, 170, 180
 true mean, 7, 125, 130–131, 136, 138–141
 Measurand, 124
 Measured value, 17
 Measured variable, 2, 124
 Measurement errors, 169–171
 repeated measurements, distribution of errors on, 169, 170
 Measurement methods, 1–35. See also Calibration; Experimental test plan;
 Standards
 basic concepts, 1–35
 experimental test plan, 5–15
feedback-control stage, 4
general measurement system, 2–5
general template for, 4–5
output stage, 4
sensor, 2–4
signal conditioning stage, 4
transducer, 2–4
Measurement random standard uncertainty, 195
Measurement system behavior, 81–116. See also General system model
coupled systems, 114–116, 115
dynamic measurements, 82–83
general model for, 81–85
multiple-function inputs, 112–114
phase linearity, 110–112
transfer functions, 108–110
Measurement systematic standard uncertainty, 195
Mechanical measurement techniques, 544–545, 544
Mechanical power measurements, 551–555
cradled dynamometers, 553–555
proximity brake, 552, 552
rotational speed, 551–552
shaft power, 551–552
torque, 551–552
Mechatronics, 527–579. See also Actuators; Controls; Force:
measurement; Sensors; Velocity measurements
Metallic gauges, 491–493
metallic foil strain gauge, 493, 493
Mechanical power measurements, 551–555
Method of least-squares, 149
Metrology, 169
Micromanometer, 398, 399
Microphones, 423–425
Modified three-sigma test, 155
Moiré methods, 517
Moiré methods, 517, 519, 518
Mole, 26
Monostable multivibrator, 249
Monte Carlo simulations, 158–160, 158, 187
Most significant digit, 33
Moving coil transducers, 543–544, 543
Moving fluids, 412–415. See also Pressure measurements in moving fluids
Mueller 4-wire bridge, 331, 331
Multiple-function inputs, 112–114
Multiple gauge bridge, 501–502
Multiple-junction thermocouple circuits, 357–359
Multiple-measurement uncertainty analysis, 193–205, 194
combined standard uncertainty, 195, 201
elemental errors, propagation of, 194–200
expanded uncertainty, 195, 201
propagation of elemental systematic uncertainties, 194–195
propagation of uncertainty to a result, 200–205
Welch–Satterthwaite formula, 201
Multiplexer, 299, 300
Multi-variable error propagation, 180–187
Monte Carlo method, 187
propagation of error, 180–182
sensitivity index, approximating, 182–184
sequential perturbation, 184–186
Multivibrator, 248–250, 248
astable, 248
flip-flop/stable multivibrator, 249, 249
monostable, 249
TTL signal, 248
N
Narrow band infrared temperature measurement, 370–373
full field IR imaging, 372–373
fundamental principles, 370–371
two-color thermometry, 371–372
National Institute of Standards and Technology (NIST), 326, 347, 350, 355, 363–365, 480–481
Natural frequency, 101
Negative temperature coefficient (NTC), 328
Newton, Sir Isaac, 443
Newton, 27
NIST, See National Institute of Standards and Technology (NIST)
Noise, 9–10, 10
Nondeterministic signal, 47
Nonsymmetrical systematic uncertainty interval, 208–209
Normal (or gaussian) distribution, 131
Normal error function, 132
Normal stress, 487
Notch filter, 250
NTC, See Negative temperature coefficient (NTC)
Nth-order uncertainty, 188–193
Null method, 230–231
Numerical operations, 34
Nyquist frequency, 275, 297
O
Obstruction meters, 447–449
compressibility effects, 449
selection, 461–463
accuracy, 462
costs, 461
placement, 461
pressure loss, 461
turndown, 462–463
square-edged orifice plate meter, 447, 447
standards for, 449
Odd functions, 59–65
Offset binary, 281
Offset nulling circuit, 299
Ohm (Ω), 28
Ohmmeter circuits, 228–229
multirange ohmmeter circuits, 228, 229
Ones-complement binary codes, 281
One-shot circuit, 249
One-sided or half-transform, 68
On-off control, 562, 563–564
Open-loop control, 562, 562
Operational amplifier, 241, 242–243
Operational blocks, 568–569
single-input, single-output amplifier block, 568, 568
temperature-input, voltage-output amplifier block, 568, 568
Optical cable, 264
Optical fiber thermometer, 370, 370
Optical strain measuring techniques, 514–515
Orifice meter, 449–451
square-edged orifice meter, 449, 450–451
Orifice plate, 447
Oscilloscope, 225–226
Outlier, 155–156
Chauvenet’s criterion, 155–156
three-sigma test, 155
Output, 4, 43
Output stage, 4
Oven control model, 569–573, 570, 573
controller model, 570–572
Laplace transform analysis, 571
plant model, 569–570
step response, 572–573
Overall instrument error, 23
Overdamped system, 99
P
Parallel communications, 308–311
Parallel converters, 293–294
Index

Parameter, 6
Parity, 307
Partial immersion thermometer, 327
Particle image velocimetry (PIV), 433–435, 433
Pascal (Pa), 28
Passband, 250
Passive analog filter circuits, 251
Peltier, Jean Charles Athanase, 344
Peltier coefficient, 344
Peltier effect, 344
Period, 53
Periodic signals, 52–54
spring-mass system, 52, 53
Perturbation, sequential, 184–186
Phase Doppler anemometry, 432
Phase linearity, 110–112
Phase shift, 95
Photoelastic measurement, 515–517
plane polariscope, 516, 517
Physical errors in temperature measurement, 373–382
conduction errors, 374–377
errors associated with temperature sensors, 374
insertion errors, 373–374
probe design, 376–377
radiation errors, 377–379
radiation shielding, 379–380
random errors, 374
recovery errors, 380–382
systematic errors, 374
PI. See Proportional-integral (PI) control
PID. See Proportional integral–derivative (PID) control
Piezoelectric accelerometer, 538, 538
Piezoelectric crystal elements, 409, 409
Piezoelectric load cells, 547–550, 549
Pitot–static pressure methods, 434–435
Pitot-static pressure probe, 426–428, 427
Pitot tube, 414, 414
PIV. See Particle image velocimetry (PIV)
Place value, 33
Planck’s constant, 366
Plane polariscope, 516, 517–518
Plant model, 569–570
Platinum resistance temperature device (RTD), 331–336
PLC. See Programmable logic controller (PLC)
Plotting formats, 32, 32
full-log coordinate format, 33
rectangular coordinate format, 32
semilog coordinate format, 32–33
Pneumatic actuators, 556–558, 558
Poiseuille, Jean, 463
Poisson’s ratio, 406, 489, 491, 495
Polarization of light, 515, 515
Pooled data, 140–141
Pooled mean, 140
Pooled standard deviation, 140
Pop test, 411
Population behavior, 131–135
Positive displacement meters, 464, 472–474
Positive temperature coefficient (PTC), 328
Potentiometer pressure transducer, 405, 406
Potentiometer, 226–228
instruments, 227–228
voltage divider circuit, 227, 227
Power, 28
watt (W), 28
Prandtl tube for static pressure, 415, 415
Precision interval in a sample variance, 145–146
Pressure, absolute, 87, 392–394, 396, 404, 411
Pressure concepts, 28, 392–395
pascal (Pa), 28
relative pressure scales, 393, 393
Pressure measurements, 392–435. See also Transmission effects in moving fluids, 412–415
dynamic pressure, 413
stagnation, 413
static pressure, 413–415
total pressure measurement, 413–414
total pressure, 413
Pressure reference instruments, 395–403
barometer, 396–397
deadweight testers, 402–403, 402
inclined tube manometer, 398, 399
manometer, 397–402
McLeod gauge, 395–396, 396
micromanometer, 398, 399
U-tube manometer, 397, 398
Pressure sensors, elastic elements as, 403, 404
Pressure transducers, 403–410. See also Diaphragms bellow, 405–406
Bourdon tube, 404–405
calibration, 410–412
dynamic Calibration, 410–412
static calibration, 410
capsule elements, 405–406
diaphragms, 406–409
potentiometer pressure transducer, 405, 406
pressure sensors, elastic elements as, 403, 404
Primary standard, 24
Primary unit standards, 24
Probability, 123–167. See also Chi-squared (\(\chi^2 \)) distribution; Probability density functions; Regression analysis
Monte Carlo simulations, 158–160
number of measurements required, 156–158
Probability density functions, 125–131
standard statistical distributions, 128–129
binomial, 129
log normal, 128
classical, 128
Poisson, 129
rectangular, 128
triangular, 128
Programmable logic controller (PLC), 4
Proportional-integral–derivative (PID) control, 575–579, 579
proportional control, 578–579
of a second-order system, 575–579, 577
Proportional-integral (PI) control, 573–575, 574
integral control, 573–574
time response, 575
Provers, 480
Proving ring, 549–550, 550
P-value, 143
Pyranometer construction, 368
Pyrometry, 369–370

Q
Quantization, 45, 285
quantization error, 286–287

R
Radiation
blackbody, 325, 366
detectors, 366–368
emissive power, 366–367, 371–372
temperature measurement, 365–373

Radiative temperature measurements, 365–373
narrow band infrared temperature measurement, 370–373
optic fiber thermometer, 370, 379
pyrometry, 369–370
radiation detectors, 366–368
radiation fundamentals, 365–366
radiometer, 367–369, 367
Radiometer, 367–369, 367
pyranometer construction, 368
Ramp (integrating) converters, 291–293, 297–298
Random errors, 17–19, 18, 179, 374
Random standard uncertainty, 179
Random test, 21
Random uncertainty, 124, 139, 179
Random variable, 125
Randomization, 10–13
Range, 16, 43
Rayleigh relation, 428
Recovery errors in temperature measurement, 380–382
Rectangular coordinate format, 32
Rectangular distribution, 159, 171, 179n5, 187, 193, 209
standard uncertainty, 187
Reference junction, 347
Regression analysis, 148–155
least-squares regression analysis, 149–152
linear polynomials, 152–155
Relative accuracy, 17
Relative pressure scales, 393, 393
Repeatability, 22
Repeatability error, 20
Repeated measurements, distribution of errors on, 169, 170
Repeated tests, 140–141
Repetition, 14
Replication, 14
Reproducibility, 22
Resistance, 28, 416
ohm (Ω), 28
Resistance measurements, 228–235
bridge circuits, 229–230
deflection method, 231–235
Null method, 230–231
ammeter circuits, 228–229
Resistance strain gauges, 490–497
configurations, 494
delta rosette, 494
diaphragm pattern, 494
linear pattern, 494
rectangular rosette, 494
residual stress pattern, 494
stacked rosette, 494
tee pattern, 494
torque rosette, 494
gauge factor, 494–495
metallic gauges, 491–493
semiconductor strain gauges, 495–497
strain gauge construction and bonding, 493–495
Resistance temperature detectors (RTDs), 328–330, 329, 428, 475
platinum RTDs, 331–336
Resistance temperature device resistance measurement, 331–335
Resolution, 16, 285
conversion resolution, 287, 287
Resonance band, 104
Resonance frequency, 105
Reynolds number, 6
Ringing frequency, 101
Rise time of system, 89, 101
Roll-off, 251
Root-mean-square
analog signal, 49
Root-sum-squares (RSS) method, 172
Rotameters, 469–470, 469
Rotary actuators, 558–560
stepper motors, 558–560, 559
Rotary variable differential transformer (RVDT), 531, 533
Rotating vane meters, 473
Rotational speed, 551–552
Rounding, 33–34
RS-232C protocol, 308
RTDs. See Resistance temperature detectors (RTDs)
Ruge, Arthur, 491
RVDT. See Rotary variable differential transformer (RVDT)
S
Sallen–Key unit-gain filter, 260–261, 260
Sample-and-hold circuit (SHC), 246–247
Sample mean value (\bar{X}), 135
Sample standard deviation (s_n), 135
Sample variance (s^2), 135
Sampling, 271–316
alias frequencies, 274–277
amplitude ambiguity, 277–278
anti-aliasing filter, 276
concepts, 272–280
leakage, 278–280
sample rate, 272–274, 272–273
waveform fidelity, 280
Sampling theorem, 274
Saturation error, 287
Screw-drive linear motion, 556
Second-order systems, 98–108
ranging frequency, 101
rise time, 101
settling time, 101
simple periodic function input, 103–104
step function input, 100–103
system characteristics, 104–108
Seebeck, Thomas Johann, 343
Seebeck effect, 343–344
Seismic transducer, 531–537, 534–535
Semiconductor strain gauges, 495–497
Semilog coordinate format, 32–33
Sensitivity error, 20, 21–22
Sensitivity index, approximating, 182–184
Sensors, 2–4, 527–555. See also Displacement sensors: Load cells
acceleration measurement, 531–537
atomic force microscope, sensor stage of, 2–3
displacement sensors, 528–531
potentiometer construction, 528, 528
rotary variable differential transformer, 531, 533

612 Index

Sensors (Continued)
 seismic transducer, 531–537
 torque measurements, 550–551
 vibration measurement, 531–537
Sequential perturbation, 184–186
Sequential test, 19
Settling time, 101
Shaft power, 551–552
SHC. See Sample-and-hold circuit (SHC)
Shear beam load cell, 547, 549
Shielding, 260–264
Shields, 263
Shock tube facility, 410, 410
Shunt resistor circuits, 298–299
Signal, 43–73. See also Input/output signal concepts
 amplitude, 51–65
 analysis, 48–51
 digital signals, 49–50
 direct current offset, 50–51
 discrete-time signals, 49–50
 signal root-mean-square value, 49
 conditioning, 4
 strain measurement and, 512–514
 definition, 44
 dynamic characteristics of, 43–73
 frequency, 51–65
 periodic signals, 52–54
 static characteristics of, 43–73
 Signal root-mean-square value, 49
 Signal waveforms, 46–47
 aperiodic, 47
 deterministic signal, 46
 dynamic signal, 46, 47
 nondeterministic signal, 47
 simple periodic waveform, 46
 static signal, 46
 steady periodic signal, 46
 Signal weighting, 421–423
 A-weighting scale, 422, 422
 condenser microphone, 423, 423
 C-weighting scale, 422, 422
 Signals analysis in frequency space, 71–73
 Significant digits, 33–35
 Simmons, Edward, 491
 Single cable, 263
 Single-ended connection, 304–305, 304
 Single-measurement uncertainty analysis, 187, 189
 Single-tailed test, 142
 Slider–crank mechanism, 555–556
 Simple multirange ammeter, 221
 Simple periodic function input, 94–98, 103–104
 Simple periodic waveform, 46
 Sobel method, 313, 314–315
 Solenoids, 555–558, 558
 Sonic nozzles, 460–461
 Sound level meter (SLM), 424, 424
 Span, 16
 Special-purpose circuits, 245–250
 analog voltage comparator, 245–246, 245
 astable multivibrator, 248
 charge amplifier, 247
 4–20mA current loop, 247–248
 flip-flop circuits, 248–250
 multivibrator, 248–250
 sample-and-hold circuit (SHC), 246–247
 Special signal conditioning modules, 305–306
 Square-edged orifice meter, 449, 450–451
 Square-edged orifice plate meter, 447, 447
 Stagnation in moving fluids, 413
 Standard, 15
 Standard cubic feet per minute (SCFM), 481
 Standard cubic meters per minute (SCMM), 81
 Standard deviation, 22, 130
 of the means, 136–140
 Standard error of the fit, 150
 Standard flow rate, estimating, 481
 Standard statistical distributions, 128–129
 binomial, 129
 log normal, 128
 normal, 128
 Poisson, 129
 rectangular, 128
 triangular, 128
 Standard thermocouple voltage, 349–350, 359
 Standardized normal variate, 131
 Standards, 23–31. See also Base dimensions and units; Derived dimensions and units
 hierarchy, 30–31
 primary, 24
 temperature, 26
 test, 31
 Static calibration, 15
 Static pressure in moving fluids, 413, 413n2
 Static pressure measurement in moving fluids, 414–415
 Prandtl tube for static pressure, 415, 415
 static pressure wall tap, 414, 414
 Static pressure transducer calibration, 410
 Static sensitivity (K), 16, 86
 determination, 86
 Static signal, 46
 Statistical measurement theory, 124–131. See also Probability Density Functions
 Steady periodic signal, 46
 Step function input, 88–90
 Stepper motors, 558–560, 559
 Stiffness, 416
 Stopband, 250
 Strain, 487–490. See also Resistance strain gauges
 axial strain, 488
 lateral strains, 489–490
 Strain gauge, 487–520
 electrical circuits, 497–500
 elements, 407
 interface, 305, 306
 load cells, 547
 Wheatstone bridge circuit, 498
 Strain measurement, 487–520
 apparent strain, 504–514
 biaxial strain gauge rosettes, 510, 510
 bridge constant, 502–504
 fiber Bragg strain measurement, 519–520
 Moiré methods, 517–519
 multiple gauge bridge, 501–502
 optical strain measuring techniques, 514–515
 photoelastic measurement, 515–517
 practical considerations for, 500–504
 signal conditioning, 512–514
 strain gauge data, analysis, 510–512
 temperature compensation, 505–507
 Stream pressure, 413n2
 Stress, 28, 487–490
 biaxial state of stress, 489, 490
 normal stress, 487
 pascal (Pa), 28
 Stroboscopic angular velocity measurements, 545–546, 545
 Student’s t distribution, 136
Thermometry based on thermal expansion, 326–328
Thermoelectric temperature measurement, 342
Thermocouple voltage measurement, 350
Successive approximation converters, 289–295, 299
digital voltmeters, 294–295
parallel converters, 293–294
ramp (integrating) converters, 291–293, 291
Synchronous transmission, 307
Systematic errors, 17–19, 124n1, 177–179, 374
Systematic standard uncertainty, 177
Systematic uncertainty, 178

T
Temperature, 26
celsius (°C), 26
and definition, 323–326
fahrenheit (°F), 26
kelvin (K), 26
standards, 323–326
Temperature compensation
bridge arrangements for, 507, 507
common gauge mountings, 506
and strain measurement, 505–507
Temperature measurements, 322–382. See also Electrical resistance thermometry
fixed point temperatures, 323–324
historical background, 322–323
interpolation, 324
liquid-in-glass thermometer, 324, 324
physical errors in, 373–382. See also individual entry
scales and standards, 325–326
t estimator, 136
Test plan, 5–14. See also Experimental test plan
Test standards and codes, 31
The principle of superposition, 112
Thermal anemometer, 435
Thermal anemometry, 428–431, 429
hot-wire probe, 429, 429
operating modes, 429
Thermal flow meter, 474–475
Thermocouples, 336–342, 336
circuits, 336, 337
Thermocouple laws, 342, 343
basic temperature measurement with, 346–347, 347
multiple-junction thermocouple circuits, 357–359
in parallel, 358–359, 358
Thermocouple voltage measurement, 350–357
thermocouple reference table, 351–353
Thermoelectric temperature measurement, 342–365
applications for, 359–362
data acquisition considerations, 362–365
fundamental thermocouple laws, 345–346
Peltier effect, 344
reference junction, 347
Seebeck effect, 343–344
standard thermocouple voltage, 349–350, 350
thermocouple standards, 347–350
Thomson effect, 344–345, 345
Thermometer
bimetallic, 327–328
complete immersion, 326
electrical resistance, 328–342
liquid-in-glass, 326–327
optical fiber, 370
partial immersion, 327
platinum resistance, 31, 325–326, 331
radiation, 365
total immersion, 327
Thermometry based on thermal expansion, 326–328

bimetallic thermometers, 327–328
liquid-in-glass thermometers, 326–327
Thermophysical properties, 586–587
of air, 589
of metallic solids, 586–587
of saturated water (liquid), 588
Thermopiles, 357–358, 357
Thin-film heat flux sensor, 360, 360
Thomson, William (Lord Kelvin), 26, 344, 491
Thomson effect, 344–345, 345
Three-sigma test, 155
Thresholding, 313
Time, 25
time constant, 88, 90
Tolerance design plan strategy, 6n3
Torque, 551–552
measurements, 550–551
shaft instrumented for, 551, 551
Torricelli, Evangelista, 396, 451
Total immersion thermometer, 327
Total immersion in moving fluids, 413
Total pressure measurement, 413–414
impact cylinder, 414, 414
Kiel probe, 414, 414
Pitot tube, 414, 414
Transducers, 2–4
atomic force microscope, transducer stage, 3
for shock and vibration measurement, 538–539
Transfer functions, 108–110
operation of, 108, 109
Transit time flow meters, 471–472
Transmission band, 105
Transmission effects, 416–421
design and installation, 416–421
equivalent lumped parameter network, 417, 417
gases, 418–420
heavily damped systems, 420–421
liquids, 418
Triangular distribution, 128
Triaxial cable, 264
True mean value, 130
True value, 17
True variance, 130
T-test, 143
TTL signal, 248
Turbine meters, 470–471
Twisted pairs, 263
Two-color thermometry, 371–372
Two-complement binary codes, 281
Two-tailed test, 142
Type A uncertainty, 179
Type B uncertainty, 179

U
Uncertainty, 19
propagation, 172
Uncertainty analysis, 168–209. See also Advanced-stage uncertainty analysis; Multiple-measurement uncertainty analysis;
Multi-variable error propagation advanced-stage, 187–193
aleatory uncertainty, 179
correction for correlated errors, 205–208
design-stage, 171–176
epistemic uncertainty, 180
error sources, identifying, 176–177
general versus detailed, 171
measurement errors, 169–171
multiple-measurement, 193–205
Uncertainty analysis (Continued)
nonsymmetrical systematic uncertainty interval, 208–209
standard uncertainties, 177–180
systematic error, 177–179
Type A uncertainty, 179
Type B uncertainty, 179
Underdamped system, 99–101, 104–105, 261, 410
Unit, 24
Unit step function, 88, 88
Universal Serial Bus (USB), 307
U.S. Engineering Unit System, 24–25
U-tube manometer, 397, 398

V
Validation, 23
Valves, 560–561
Variables, 6–9
continuous, 6
controlled variable, 6
dependent, 6
discrete, 6
extraneous, 7
independent, 6
parameter, 6
Velocity measurements, 392–435, 539–544. See also Angular velocity measurement: Fluid Velocity measuring systems
Doppler anemometry, 435
laser Doppler anemometry (LDA), 435
particle image velocimetry (PIV), 435
pitot–static pressure methods, 434–435
selection of, 434–435
thermal anemometer, 435
velocity from displacement or acceleration, 540–543
Venturi, Giovanni, 452, 460
Venturi meter, 447, 451–454
Herschel venturi meter, 451, 453
Verification, 23
Vibration measurement, 531–537
transducers for, 538–539
Vibrometer, 536
Viscosity
absolute, 437, 533, 590
kinematic, 427, 444, 470, 591
Volt (V), 28
Voltage
analog measurement, 224–228
digital measurement, 284–295
Voltage divider circuit, 227, 227
Voltage measurements, 284–295
analog-to-digital converter, 285–289
digital-to-analog converter, 284–285
quantization, 285
using analog devices, 224–228
Voltage-dividing circuit, loading errors for, 236–237, 236
Voltmeters, 225
Volt-ohmmeters (VOMs), 225
Volume flow rate through velocity determination, 444–446
von Karman, Theodore, 467
Vortex shedding meters, 467–469, 467–468

W
Water, thermophysical properties, 588
Waterbrake dynamometers, 553, 554–555
Watt (W), 28
Waveforms, 43
classification, 44–46. See also Signal waveforms
analog signal, 44, 45
analog-to-digital (A/D) converter, 46
digital signal, 45, 46
discrete time signal, 44, 45
fidelity, 280
Weisbach, Julius, 460
Welch–Satterthwaite formula, 201
Wheatstone bridge, 229, 230
voltage-sensitive Wheatstone bridge, 231, 231
Wobble meters, 473
Words, 280–282

Y
Young’s modulus, 489

Z
Zero errors, 21–22
Zero-order systems, 85–87
Zero-order uncertainty, 171, 188
Zero shift (null) error, 20
Zeroth law of thermodynamics, 323
z-test, 142
z variable, 131, 136, 142