Contents

Preface xiii
Acknowledgements xv
Notations and Abbreviations xvii

1 Introduction 1
1.1 A Sample of Computer Vision 3
1.2 Overview of Book Contents 6
References 8

2 Tensor Methods in Computer Vision 9
2.1 Abstract 9
2.2 Tensor – A Mathematical Object 10
 2.2.1 Main Properties of Linear Spaces 10
 2.2.2 Concept of a Tensor 11
2.3 Tensor – A Data Object 13
2.4 Basic Properties of Tensors 15
 2.4.1 Notation of Tensor Indices and Components 16
 2.4.2 Tensor Products 18
2.5 Tensor Distance Measures 20
 2.5.1 Overview of Tensor Distances 22
 2.5.1.1 Computation of Matrix Exponent and Logarithm Functions 24
 2.5.2 Euclidean Image Distance and Standardizing Transform 29
2.6 Filtering of Tensor Fields 33
 2.6.1 Order Statistic Filtering of Tensor Data 33
 2.6.2 Anisotropic Diffusion Filtering 36
 2.6.3 IMPLEMENTATION of Diffusion Processes 40
2.7 Looking into Images with the Structural Tensor 44
 2.7.1 Structural Tensor in Two-Dimensional Image Space 47
 2.7.2 Spatio-Temporal Structural Tensor 50
 2.7.3 Multichannel and Scale-Space Structural Tensor 52
 2.7.4 Extended Structural Tensor 54
 2.7.4.1 IMPLEMENTATION of the Linear and Nonlinear Structural Tensor 57
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.8</td>
<td>Object Representation with Tensor of Inertia and Moments</td>
<td>62</td>
</tr>
<tr>
<td>2.8.1</td>
<td>IMPLEMENTATION of Moments and their Invariants</td>
<td>65</td>
</tr>
<tr>
<td>2.9</td>
<td>Eigendecomposition and Representation of Tensors</td>
<td>68</td>
</tr>
<tr>
<td>2.10</td>
<td>Tensor Invariants</td>
<td>72</td>
</tr>
<tr>
<td>2.11</td>
<td>Geometry of Multiple Views: The Multifocal Tensor</td>
<td>72</td>
</tr>
<tr>
<td>2.12</td>
<td>Multilinear Tensor Methods</td>
<td>75</td>
</tr>
<tr>
<td>2.12.1</td>
<td>Basic Concepts of Multilinear Algebra</td>
<td>78</td>
</tr>
<tr>
<td>2.12.1.1</td>
<td>Tensor Flattening</td>
<td>78</td>
</tr>
<tr>
<td>2.12.2</td>
<td>IMPLEMENTATION Tensor Representation</td>
<td>84</td>
</tr>
<tr>
<td>2.12.1.2</td>
<td>The k-mode Product of a Tensor and a Matrix</td>
<td>95</td>
</tr>
<tr>
<td>2.12.1.3</td>
<td>Ranks of a Tensor</td>
<td>100</td>
</tr>
<tr>
<td>2.12.1.4</td>
<td>IMPLEMENTATION of Basic Operations on Tensors</td>
<td>101</td>
</tr>
<tr>
<td>2.12.2</td>
<td>Higher-Order Singular Value Decomposition (HOSVD)</td>
<td>112</td>
</tr>
<tr>
<td>2.12.3</td>
<td>Computation of the HOSVD</td>
<td>114</td>
</tr>
<tr>
<td>2.12.4</td>
<td>IMPLEMENTATION of the HOSVD Decomposition</td>
<td>119</td>
</tr>
<tr>
<td>2.12.5</td>
<td>HOSVD Induced Bases</td>
<td>121</td>
</tr>
<tr>
<td>2.12.6</td>
<td>Tensor Best Rank-1 Approximation</td>
<td>123</td>
</tr>
<tr>
<td>2.12.7</td>
<td>Rank-1 Decomposition of Tensors</td>
<td>126</td>
</tr>
<tr>
<td>2.12.8</td>
<td>Best Rank-(R₁, R₂, . . ., Rₚ) Approximation</td>
<td>131</td>
</tr>
<tr>
<td>2.12.8.1</td>
<td>IMPLEMENTATION – Rank Tensor Decompositions</td>
<td>134</td>
</tr>
<tr>
<td>2.12.8.2</td>
<td>CASE STUDY – Data Dimensionality Reduction</td>
<td>137</td>
</tr>
<tr>
<td>2.12.9</td>
<td>Subspace Data Representation</td>
<td>145</td>
</tr>
<tr>
<td>2.12.10</td>
<td>Nonnegative Matrix Factorization</td>
<td>149</td>
</tr>
<tr>
<td>2.12.11</td>
<td>COMPUTATION of the Nonnegative Matrix Factorization</td>
<td>151</td>
</tr>
<tr>
<td>2.12.12</td>
<td>Image Representation with NMF</td>
<td>155</td>
</tr>
<tr>
<td>2.12.13</td>
<td>IMPLEMENTATION of the Nonnegative Matrix Factorization</td>
<td>160</td>
</tr>
<tr>
<td>2.12.14</td>
<td>Nonnegative Tensor Factorization</td>
<td>162</td>
</tr>
<tr>
<td>2.12.15</td>
<td>Multilinear Methods of Object Recognition</td>
<td>169</td>
</tr>
<tr>
<td>2.13</td>
<td>Closure</td>
<td>173</td>
</tr>
<tr>
<td>2.13.1</td>
<td>Chapter Summary</td>
<td>179</td>
</tr>
<tr>
<td>2.13.2</td>
<td>Further Reading</td>
<td>180</td>
</tr>
<tr>
<td>2.13.3</td>
<td>Problems and Exercises</td>
<td>181</td>
</tr>
</tbody>
</table>

Classification Methods and Algorithms

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Abstract</td>
<td>189</td>
</tr>
<tr>
<td>3.2</td>
<td>Classification Framework</td>
<td>190</td>
</tr>
<tr>
<td>3.2.1</td>
<td>IMPLEMENTATION Computer Representation of Features</td>
<td>191</td>
</tr>
<tr>
<td>3.3</td>
<td>Subspace Methods for Object Recognition</td>
<td>194</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Principal Component Analysis</td>
<td>195</td>
</tr>
<tr>
<td>3.3.1.1</td>
<td>Computation of the PCA</td>
<td>199</td>
</tr>
<tr>
<td>3.3.1.2</td>
<td>PCA for Multi-Channel Image Processing</td>
<td>210</td>
</tr>
<tr>
<td>3.3.1.3</td>
<td>PCA for Background Subtraction</td>
<td>214</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Subspace Pattern Classification</td>
<td>215</td>
</tr>
</tbody>
</table>
Contents

3.14.1 Chapter Summary 336
3.14.2 Further Reading 337
Problems and Exercises 338
References 339

4 Object Detection and Tracking 346
4.1 Introduction 346
4.2 Direct Pixel Classification 346
4.2.1 Ground-Truth Data Collection 347
4.2.2 CASE STUDY – Human Skin Detection 348
4.2.3 CASE STUDY – Pixel Based Road Signs Detection 352
 4.2.3.1 Fuzzy Approach 353
 4.2.3.2 SVM Based Approach 353
4.2.4 Pixel Based Image Segmentation with Ensemble of Classifiers 361
4.3 Detection of Basic Shapes 364
4.3.1 Detection of Line Segments 366
4.3.2 UpWrite Detection of Convex Shapes 367
4.4 Figure Detection 370
4.4.1 Detection of Regular Shapes from Characteristic Points 371
4.4.2 Clustering of the Salient Points 375
4.4.3 Adaptive Window Growing Method 376
4.4.4 Figure Verification 378
4.4.5 CASE STUDY – Road Signs Detection System 380
4.5 CASE STUDY – Road Signs Tracking and Recognition 385
4.6 CASE STUDY – Framework for Object Tracking 389
4.7 Pedestrian Detection 395
4.8 Closure 402
 4.8.1 Chapter Summary 402
 4.8.2 Further Reading 402
Problems and Exercises 403
References 403

5 Object Recognition 408
5.1 Abstract 408
5.2 Recognition from Tensor Phase Histograms and Morphological Scale Space 409
 5.2.1 Computation of the Tensor Phase Histograms in Morphological Scale 411
 5.2.2 Matching of the Tensor Phase Histograms 413
 5.2.3 CASE STUDY – Object Recognition with Tensor Phase Histograms in Morphological Scale Space 415
5.3 Invariant Based Recognition 420
 5.3.1 CASE STUDY – Pictogram Recognition with Affine Moment Invariants 421
5.4 Template Based Recognition 424
 5.4.1 Template Matching for Road Signs Recognition 425
 5.4.2 Special Distances for Template Matching 428
 5.4.3 Recognition with the Log-Polar and Scale-Spaces 429
Contents

5.5 Recognition from Deformable Models 436
5.6 Ensembles of Classifiers 438
5.7 CASE STUDY – Ensemble of Classifiers for Road Sign Recognition from Deformed Prototypes 440
5.7.1 Architecture of the Road Signs Recognition System 442
5.7.2 Module for Recognition of Warning Signs 446
5.7.3 The Arbitration Unit 452
5.8 Recognition Based on Tensor Decompositions 453
5.8.1 Pattern Recognition in SubSpaces Spanned by the HOSVD Decomposition of Pattern Tensors 453
5.8.2 CASE STUDY – Road Sign Recognition System Based on Decomposition of Tensors with Deformable Pattern Prototypes 455
5.8.3 CASE STUDY – Handwritten Digit Recognition with Tensor Decomposition Method 462
5.8.4 IMPLEMENTATION of the Tensor Subspace Classifiers 465
5.9 Eye Recognition for Driver’s State Monitoring 470
5.10 Object Category Recognition 476
5.10.1 Part-Based Object Recognition 476
5.10.2 Recognition with Bag-of-Visual-Words 477
5.11 Closure 480
5.11.1 Chapter Summary 480
5.11.2 Further Reading 481

Problems and Exercises 482
Reference 483

A Appendix 487
A.1 Abstract 487
A.2 Morphological Scale-Space 487
A.3 Morphological Tensor Operators 490
A.4 Geometry of Quadratic Forms 491
A.5 Testing Classifiers 492
A.5.1 Implementation of the Confusion Matrix and Testing Object Detection in Images 496
A.6 Code Acceleration with OpenMP 499
A.6.1 Recipes for Object-Oriented Code Design with OpenMP 501
A.6.2 Hints on Using and Code Porting to OpenMP 507
A.6.3 Performance Analysis 511
A.7 Useful MATLAB® Functions for Matrix and Tensor Processing 512
A.8 Short Guide to the Attached Software 513
A.9 Closure 516
A.9.1 Chapter Summary 516
A.9.2 Further Reading 519
Problems and Exercises 520
References 520

Index 523