CONTENTS

Preface xv
Contributors xix

1 Fundamentals of Surface Adhesion, Friction, and Lubrication 1
 Ali Faghihnejad and Hongbo Zeng

 1.1 Introduction 1

 1.2 Basic Concepts 2
 1.2.1 Intermolecular and Surface Forces 2
 1.2.2 Surface Energy 7

 1.3 Adhesion and Contact Mechanics 12
 1.3.1 Hertz Model 13
 1.3.2 Johnson–Kendall–Roberts Model 14
 1.3.3 Derjaguin–Muller–Toporov Model 15
 1.3.4 Maugis Model 16
 1.3.5 Indentation 16
 1.3.6 Effect of Environmental Conditions on Adhesion 18
 1.3.7 Adhesion of Rough Surfaces 19
 1.3.8 Adhesion Hysteresis 20

 1.4 Friction 20
 1.4.1 Amontons’ Laws of Friction 20
 1.4.2 The Basic Models of Friction 21
 1.4.3 Stick-Slip Friction 26
 1.4.4 Directionality of Friction 29

 1.5 Rolling Friction 29

 1.6 Lubrication 31

 1.7 Wear 35
2 Adhesion and Tribological Characteristics of Ion-Containing Polymer Brushes Prepared by Controlled Radical Polymerization 59
Motoyasu Kobayashi, Tatsuya Ishikawa, and Atsushi Takahara

3 Lubrication and Wear Protection of Natural (Bio)Systems 83
George W. Greene, Dong Woog Lee, Jing Yu, Saurabh Das, Xavier Banquy, and Jacob N. Israelachvili
3.5 Wear

3.5.1 How Are Friction and Wear Related? 112

3.5.2 Characterization, Measurement, and Evaluation of Wear 113

3.5.3 Biological Strategies for Controlling Wear 119

3.5.4 Wear of Soft, Compliant Biological Materials 120

3.5.5 Controlling Wear in Hard Biological Materials: Self-Sharpening Mechanism in Rodent Teeth 122

3.6 Biomimetic and Engineering Approaches of Biolubrication 123

3.6.1 Hydrogel Coatings as Artificial Cartilage Materials 123

3.6.2 Mimicking Synovial Fluid Lubricating Properties: Polyelectrolytes Lubrication 124

3.6.3 Superlubrication by Aggrecan Mimics: End-Grafted Polymers and the Brush Paradigm 125

3.6.4 Perspectives and Future Research Avenues 126

Acknowledgment 127

References 127

4 Polymer Brushes and Surface Forces 135

Jacob Klein, Wuge H. Briscoe, Meng Chen, Erika Eiser, Nir Kampf, Uri Raviv, Rafael Tadmor, and Larissa Tsarkova

4.1 Introduction 135

4.2 Some Generic Properties of Polymer Brushes 136

4.3 Sliding of High-T_g Polymer Brushes: The Semidilute to Vitrified Transition 138

4.4 Sliding Mechanism and Relaxation of Sheared Brushes 140

4.5 Compression, Shear, and Relaxation of Melt Brushes 146

4.6 Shear Swelling of Polymer Brushes 150

4.7 Telechelic Brushes 155

4.8 Polyelectrolyte Brushes in Aqueous Media 158

4.8.1 Charged Brushes: The Symmetric Case 159

4.8.2 Charged Brushes: The Asymmetric Case 162

4.9 Zwitterionic Polymer Brushes 163

4.10 Summary 166

Acknowledgments 167

Appendix: Self-Regulation and Velocity Dependence of Brush–Brush Friction 167

References 169

5 Adhesion, Wetting, and Superhydrophobicity of Polymeric Surfaces 177

Mehdi Mortazavi and Michael Nosonovsky

5.1 Introduction 177

5.2 Adhesion between Polymeric Surfaces 178

5.2.1 Van der Waals Forces 179

5.2.2 Capillary Forces 181
5.2.3 Electrostatic Double-Layer Forces 182
5.2.4 Solvation Forces 183
5.2.5 Mechanical Contact Force 183
5.3 Wetting of Polymers 185
5.3.1 Definition of Contact Angle: Young’s Equation 185
5.3.2 Rough Surfaces: Wenzel’s Model 186
5.3.3 Heterogeneous Surfaces: Cassie–Baxter Model 187
5.4 Fabrication of Superhydrophobic Polymeric Materials 189
5.4.1 Replication of Natural Surfaces 189
5.4.2 Molding or Template-Assisted Techniques 192
5.4.3 Roughening by Introduction of Nanoparticles 197
5.4.4 Surface Modification by Low Surface Energy Materials 202
5.4.5 Electrospinning 205
5.4.6 Solution Method 207
5.4.7 Plasma, Electron, and Laser Treatment 210
5.5 Surface Characterization 213
5.5.1 Surface Chemistry 213
5.5.2 Wetting Property 213
5.5.3 Microscopy Techniques 215
5.6 Conclusions 218
Acknowledgments 218
References 218

6 Marine Bioadhesion on Polymer Surfaces and Strategies for Its Prevention 227
Sitaraman Krishnan

6.1 Introduction 227
6.2 Protein Adsorption on Solid Surfaces 230
6.2.1 Protein-Repellant Surfaces 230
6.3 Polymer Coatings Resistant to Marine Biofouling 242
6.3.1 Hydrophobic Marine Fouling-Release Coatings: The Role of Surface Energy and Modulus 243
6.3.2 Hydrophilic Coatings 255
6.3.3 Amphiphilic Coatings 257
6.3.4 Self-Polishing Coatings 262
6.3.5 Coatings with Topographically Patterned Surfaces 262
6.3.6 Antifouling Surfaces with Surface-Immobilized Enzymes and Bioactive Fouling-Deterrent Molecules 265
6.4 Conclusion 266
Acknowledgments 266
References 267
7 Molecular Engineering of Peptides for Cellular Adhesion Control 283
Won Hyuk Suh, Badriprasad Ananthanarayanan, and Matthew Tirrell

7.1 Introduction: Cells, Biomacromolecules, and Lipidated Peptides 283
7.2 Biomaterials 285
7.3 Chemistry Tools
 7.3.1 Bioconjugate Chemistry 287
 7.3.2 Solid-Phase Peptide Synthesis 288
7.4 Self-Assembly of Lipidated Peptides: Peptide Amphiphiles Engineering
 7.4.1 Double-Tailed Peptide Amphiphile 289
 7.4.2 Single-Tailed (Monoalkylated) Peptide Amphiphiles 290
7.5 Biomimetic Peptide Amphiphile Surface Engineering Case Studies
 7.5.1 Melanoma Cell Adhesion on a Lipid Bilayer Incorporating RGD 292
 7.5.2 Adhesion of \(\alpha_\text{v} \beta_\text{1} \) Receptors to Biomimetic Substrates 292
 7.5.3 Human Umbilical Vein Endothelial Cell Adhesion 293
 7.5.4 Cell Adhesion on a Polymerized Monolayer 295
 7.5.5 Cell Adhesion and Growth on Patterned Lipid Bilayers 296
 7.5.6 Cell Adhesion on Metallic Surfaces 297
 7.5.7 Bone Marrow Mononuclear Cell Adhesion 298
 7.5.8 Nanofibrous Peptide Amphiphile Gels for Endothelial Cell Adhesion 299
7.6 Neural Stem Cells on Surfaces: A Deeper Look at Cell Adhesion Control
 7.6.1 The Stem Cell Microenvironment 299
 7.6.2 Neural Stem Cells on Lipid Bilayers 299
 7.6.3 Vesicle Fusion and Bilayer Characterization 300
 7.6.4 Initial NSC Adhesion on Peptide Surfaces 300
 7.6.5 NSC Proliferation on Peptide Surfaces 301
 7.6.6 NSC Differentiation on Peptide Surfaces 302
7.7 Overview of Molecular Engineering Designs for Cellular Adhesion
 7.7.1 Self-Assembled Peptide Surfaces 303
 7.7.2 Cell Adhesion Molecule RGD Surface Density Control: An Example 303
 7.7.3 Cell Adhesion Molecule Accessibility (Exposure) Control 307
7.8 Conclusion 307
Acknowledgments 308
References 308
8 A Microcosm of Wet Adhesion: Dissecting Protein Interactions in Mussel Attachment Plaques 319
Dong Soo Hwang, Wei Wei, Nadine R. Rodriguez-Martinez, Eric Danner, and J. Herbert Waite

8.1 Introduction 319
8.2 Mussel Adhesion 320
 8.2.1 Marine Surfaces 320
 8.2.2 Byssal Attachment 320
 8.2.3 Direct Observation of Plaque Attachment 323
8.3 Surface Forces Apparatus 323
 8.3.1 Making the SFA Relevant to Biological Environments 325
8.4 Assessing Protein Contributions by SFA 327
 8.4.1 Asymmetric/Symmetric Configurations 327
 8.4.2 Protein–Surface Interactions 330
 8.4.3 Protein–Protein Interactions 335
8.5 Conclusions 343
 8.5.1 Insights about Protein Interactions 343
 8.5.2 Effects of DOPA Reactivity on Adhesion 344
 8.5.3 Mussel Foot Controls the Microenvironment around DOPA 345
 8.5.4 Other Factors Influencing Adhesion 345
Acknowledgments 346
References 346

9 Gecko-Inspired Polymer Adhesives 351
Yiğit Mengüç and Metin Sitti

9.1 Introduction 351
 9.1.1 A Note on Terminology 352
9.2 Biological Inspirations 354
 9.2.1 Key Discoveries in Gecko Adhesion 354
 9.2.2 Structured Adhesion in Other Animals 355
 9.2.3 Summary of Observed Principles of Micro-Structured Adhesives 357
9.3 Mechanical Principles of Structured Adhesive Surfaces 359
 9.3.1 Adhesion 359
 9.3.2 Friction 365
9.4 Gecko-Inspired Adhesives and Their Fabrication 367
 9.4.1 Macro- and Microscale Fibers 367
 9.4.2 Nanoscale Fibers 371
 9.4.3 Hierarchical Fibers 372
9.5 Applications of Bioinspired Adhesives 374
 9.5.1 Robotics 374
 9.5.2 Safety and Medical Devices 377
9.6 Future Directions: Unsolved Challenges and Possible Applications 378
References 379

10 Adhesion and Friction Mechanisms of Polymer Surfaces and Thin Films 391
Hongbo Zeng

10.1 Introduction 391
10.2 Adhesion and Contact Mechanics 392
 10.2.1 Surface Energies 392
 10.2.2 Advances in Contact and Adhesion Mechanics 393
10.3 Adhesion of Glassy Polymers and Elastomers 398
 10.3.1 Adhesion Interface: Chain Pull-Out 399
 10.3.2 Glassy Polymers: Transition from Chain Pull-Out, Chain Scission to Crazing 403
 10.3.3 Adhesion Promoters for Polymer Systems 407
10.4 Experimental Advances in Adhesion and Friction between Polymer Surfaces and Thin Films 408
10.5 Adhesion and Fracture Mechanism of Polymer Thin Films: from Liquid to Solid-Like Behaviors 416
10.6 Adhesion and Friction between Rough Polymer Surfaces 423
10.7 Friction between Immiscible Polymer Melts 425
10.8 Hydrophobic Interactions between Polymer Surfaces 426
10.9 Perspectives and Future Research Avenues 431
Acknowledgment 432
References 432

11 Recent Advances in Rubber Friction in the Context of Tire Traction 443
Xiao-Dong Pan

11.1 Introduction 443
11.2 Background on Rubber Friction and Tire Traction 445
 11.2.1 Characterization of Surface Roughness and Contact Mechanics 453
11.3 Recent Innovations on Tire Tread Compounds 457
11.4 Rubber Friction under Stationary Sliding on Rough Surfaces 461
 11.4.1 Theory of Rubber Friction on Rough Surfaces by Klüppel and Heinrich 462
 11.4.2 Persson’s Model on Rubber Friction 471
 11.4.3 The Model by Heinrich and Klüppel versus the Model by Persson: Some Comparisons 474
11.5 Rubber Friction under Nonstationary Conditions 475
11.6 Interfacial Effects on Rubber Friction 478
 11.6.1 Rubber Surface Treatment 482
 11.6.2 Molecular Scale Probing of Contact/Sliding Interface 482
11.7 Rubber Friction Involving Textured Surfaces 484
11.8 Field Measurements within a Frictional Contact 486
11.9 Other Studies on or Related to Rubber Friction 488
11.10 Concluding Remarks 490
References 491

12 Polymers, Adhesion, and Paper Materials 501
Boxin Zhao, Dhamodaran Arunbabu, and Brendan McDonald

12.1 Introduction 501
12.2 Polymer Nature of Paper 502
 12.2.1 Paper as a Network of Fibers 502
 12.2.2 Wood Fibers and Its Natural Polymeric Constituents 503
 12.2.3 Cellulose Fibers 508
12.3 Functional Polymers and Sizing Agents Used in Papermaking 509
 12.3.1 Major Functions of Polymer Additives 509
 12.3.2 Common Functional Polymers 514
 12.3.3 Sizing Agents 519
12.4 Polymer Adhesion and the Formation of Paper 520
 12.4.1 Intermolecular Forces or Molecular Adhesion Processes 521
 12.4.2 Capillary Forces 524
 12.4.3 Work of Adhesion and Johnson–Kendall–Roberts Contact Mechanics 524
 12.4.4 The Formation of Interfiber Bonds 526
 12.4.5 Linkage between Molecular Adhesion to Paper Strength 530
12.5 Polymer Adhesion Measurement 533
 12.5.1 Shear Adhesion Testing 533
 12.5.2 Peeling Adhesion Testing 535
 12.5.3 JKR-Type Contact Adhesion Testing 536
 12.5.4 AFM Colloidal Probe Testing 537
12.6 Summary and Perspectives 538
References 539

13 Carbohydrates and Their Roles in Biological Recognition Processes 545
Keshwaree Babooram and Ravin Narain

13.1 Introduction 545
13.2 Recent Advances in the Field of Carbohydrate Chemistry 546
13.2.1 Glycopolymers 546
13.2.2 Carbohydrate Microarrays 550
13.2.3 Carbohydrate-Based Vaccines 552
13.3 Molecular Interactions of Carbohydrates in Cell Recognition 557
13.4 Techniques Used in the Identification of Carbohydrate Interactions in Cell Recognition 558
13.4.1 Atomic Force Microscopy (AFM) 558
13.4.2 Cantilever Microarray Biosensors 563
13.5 Conclusions and Future Trends 564
References 566

14 The Impact of Bacterial Surface Polymers on Bacterial Adhesion 575
Yang Liu
14.1 Bacterial Adhesion 575
14.1.1 Significance of Bacterial Adhesion 575
14.1.2 Mechanisms of Bacterial Adhesion 576
14.2 The Impact of Bacterial Surface Polymers on Bacterial Adhesion 577
14.2.1 Bacterial Surface Polymers 577
14.2.2 Impact of Bacterial Surface Polymers on Adhesion 579
14.3 Methods and Models for Understanding Interaction Mechanisms of Bacterial Adhesion 582
14.3.1 Techniques for Studying Bacterial Surface Polymers 582
14.3.2 Models to Explain Bacterial Adhesion Mechanisms 590
References 600

15 Adhesion, Friction, and Lubrication of Polymeric Nanoparticles and Their Applications 617
Bassem Kheireddin, Ming Zhang, and Mustafa Akbulut
15.1 Introduction 617
15.2 Applications of Polymeric Nanoparticles 617
15.2.1 Biomedical Applications of PNPs 618
15.2.2 Energy Storage 621
15.2.3 Skin Care 622
15.2.4 Sensors 623
15.2.5 Electronic Devices 624
15.3 Methods of Preparation of Polymeric Nanoparticles (PNPs) 625
15.3.1 Dispersion of Preformed Polymers 625
15.3.2 Polymerization of Monomers 633
15.4 Adhesion of PNP
15.4.1 Hertz Theory 637
15.4.2 JKR Theory 637
15.4.3 DMT Theory 638
15.4.4 Studies on Adhesion of PNPs 638

15.5 Adsorption of Polymeric Nanoparticles 641
15.5.1 Adsorption onto Polymeric Nanoparticles 641
15.5.2 Adsorption of Polymeric Nanoparticles on Large Surfaces 642
15.5.3 Adsorption Isotherms 643
15.5.4 Adsorption Kinetics of Polymeric Nanoparticles onto Substrates 644

15.6 Friction of PNP 647
15.7 Summary 648
References 649

16 Electrorheological and Magnetorheological Materials and Mechanical Properties 659
Yu Tian, Yonggang Meng, and Shizhu Wen

16.1 Electrorheological and Magnetorheological History 659
16.2 ER/MR Phenomenon 661
16.3 ER/MR Materials 662
16.4 ER/MR Effect Models 664
16.5 Properties of ER/MR Fluids under Shearing, Tension, and Squeezing 667
16.5.1 Shear Properties of ER/MR Fluids 667
16.5.2 Tensile Behavior of ER/MR Fluids 669
16.5.3 Compression of ER/MR Fluids 672
16.6 Transient Response to Field Strength, Shear Rate, and Geometry 676
16.7 Shear Thickening in ER/MR Fluids at Low Shear Rates 681
16.8 Applications 683
References 684

Index 691