Contents

Preface xi
About the Editors xiii
Contributing Authors xv

1 Introduction and Overview: Protons, the Nonconformist Ions

Maria Luisa Di Vona and Philippe Knauth

1.1 Brief History of the Field 2
1.2 Structure of This Book 2
References 4

2 Morphology and Structure of Solid Acids

Habib Ghobarkar, Philippe Knauth and Oliver Schäf

2.1 Introduction 5
2.1.1 Preparation Technique of Solid Acids 5
2.1.2 Imaging Technique with the Scanning Electron Microscope 6
2.2 Crystal Morphology and Structure of Solid Acids 8
2.2.1 Hydrohalic Acids 8
2.2.2 Main Group Element Oxoacids 10
2.2.3 Transition Metal Oxoacids 20
2.2.4 Carboxylic Acids 22
References 24

3 Diffusion in Solid Proton Conductors: Theoretical Aspects and Nuclear Magnetic Resonance Analysis

Maria Luisa Di Vona, Emanuela Sgreccia and Sebastiano Tosto

3.1 Fundamentals of Diffusion 25
3.1.1 Phenomenology of Diffusion 26
3.1.2 Solutions of the Diffusion Equation 35
3.1.3 Diffusion Coefficients and Proton Conduction 37
3.1.4 Measurement of the Diffusion Coefficient 38
3.2 Basic Principles of NMR 40
3.2.1 Description of the Main NMR Techniques Used in Measuring Diffusion Coefficients 42
3.3 Application of NMR Techniques 47
3.3.1 Polymeric Proton Conductors 47
3.3.2 Inorganic Proton Conductors 58
6 Mechanical and Dynamic Mechanical Analysis of Proton-Conducting Polymers 185
Jean-François Chailan, Mustapha Khadhraoui and Philippe Knauth

6.1 Introduction 185
6.1.1 Molecular Configurations: The Morphology and Microstructure of Polymers 185
6.1.2 Molecular Motions 187
6.1.3 Glass Transition and Other Molecular Relaxations 188
6.2 Methodology of Uniaxial Tensile Tests 191
6.2.1 Elasticity and Young’s Modulus E 192
6.2.2 Elasticity and Shear Modulus G 195
6.2.3 Elasticity and Cohesion Energy 196
6.3 Relaxation and Creep of Polymers 197
6.3.1 Stress Relaxation of Polymers 198
6.3.2 Creep of Polymers 199
6.4 Engineering Stress–Strain Curves of Polymers 201
6.4.1 True Stress–Strain Curve for Plastic Flow and Toughness of Polymers 203
6.4.2 Behavior of Composite Membranes 204
6.4.3 Behavior in the Glassy Regime 205
6.4.4 Influence of the Rate of Deformation 206
6.4.5 Effect of Temperature on Mechanical Properties 209
6.4.6 Thermal Strain 210
6.5 Stress–Strain Tensile Tests of Proton-Conducting Ionomers 211
6.5.1 Influence of Heat Treatment and Cross-Linking 212
6.5.2 Behavior of Composites 214
6.5.3 Conclusions 215
6.6 Dynamic Mechanical Analysis (DMA) of Polymers 217
6.6.1 Principle of Measurement 217
6.6.2 Molecular Motions and Dynamic Mechanical Properties 218
6.6.3 Experimental Considerations: How Does the Instrument Work? 219
6.6.4 Parameters of Dynamic Mechanical Analysis 220
6.7 The DMA of Proton-Conducting Ionomers 222
6.7.1 Perfluorosulfonic Acid Ionomer Membranes 222
6.7.2 Nonfluorinated Membranes 225
6.7.3 Organic–Inorganic Composite (or Hybrid) Membranes 230
Glossary 235
References 236

7 Ab Initio Modeling of Transport and Structure of Solid State Proton Conductors 241
Jeffrey K. Clark II and Stephen J. Paddison

7.1 Introduction 241
7.2 Theoretical Methods 244
7.2.1 Ab Initio Electronic Structure 244
### Contents

7.2.2 *Ab Initio* Molecular Dynamics (AIMD) 248
7.2.3 Empirical Valence Bond (EVB) Models 249
7.3 Polymer Electrolyte Membranes 251
7.3.1 Local Microstructure 251
7.3.2 Proton Dissociation, Transfer, and Separation 258
7.4 Crystalline Proton Conductors and Oxides 279
7.4.1 Crystalline Proton Conductors 279
7.4.2 Oxides 284
7.5 Concluding Remarks 290

References 290

8 *Perfluorinated Sulfonic Acids as Proton Conductor Membranes*

*Giulio Alberti, Riccardo Narducci and Maria Luisa Di Vona*

8.1 Introduction on Polymer Electrolyte Membranes for Fuel Cells 295
8.2 General Properties of Polymer Electrolyte Membranes 296
8.2.1 Ion Exchange of Polymers Electrolytes in H\(^+\) Form 297
8.3 Perfluorinated Membranes Containing Superacid –SO\(_3\)H Groups 303
8.3.1 Nafion Preparation 304
8.3.2 Nafion Morphology 304
8.3.3 Nafion Water Uptake in Liquid Water at Different Temperatures 306
8.3.4 Water-Vapor Sorption Isotherms of Nafion 307
8.3.5 Curves T/\(n_c\) for Nafion 117 Membranes in H\(^+\) Form 308
8.3.6 Water Uptake and Tensile Modulus of Nafion 311
8.3.7 Colligative Properties of Inner Proton Solutions in Nafion 313
8.3.8 Thermal Annealing of Nafion 315
8.3.9 MCPI Method 315
8.3.10 Proton Conductivity of Nafion 319
8.4 Some Information on Dow and on Recent Aquivion® Ionomers 321
8.5 Instability of Proton Conductivity of Highly Hydrated PFSA Membranes 321
8.6 Composite Nafion Membranes 323
8.6.1 Silica-Filled Ionomer Membranes 323
8.6.2 Metal Oxide-Filled Nafion Membranes 324
8.6.3 Layered Zirconium Phosphate- and Zirconium Phosphonate-Filled Ionomer Membranes 324
8.6.4 Heteropolyacid-Filled Membranes 325
8.7 Some Final Remarks and Conclusions 326

References 327

9 *Proton Conductivity of Aromatic Polymers*

*Baijun Liu and Michael D. Guiver*

9.1 Introduction 331
9.2 Synthetic Strategies of the Various Acid-Functionalized Aromatic Polymers with Proton Transport Ability 332
9.2.1 Sulfonated Poly(arylene ether)s 332