Contents

Preface XI
List of Contributors XIII

1 Introduction to Nanoparticles 1

Satoshi Horikoshi and Nick Serpone

1.1 General Introduction to Nanoparticles 1
1.2 Methods of Nanoparticle Synthesis 8
1.3 Surface Plasmon Resonance and Coloring 10
1.4 Control of Size, Shape, and Structure 12
 1.4.1 Size Control of Nanoparticles 12
 1.4.2 Shape Control of Nanoparticles 15
 1.4.3 Structure Control of Nanoparticles 17
1.5 Reducing Agent in Nanoparticle Synthesis 18
1.6 Applications of Metallic Nanoparticles 19
 1.6.1 Application of Nanoparticles in Paints 20
 1.6.2 Application in Chemical Catalysis 20
 1.6.3 Application of Nanoparticles in Micro-wiring 22
 1.6.4 Application of Nanoparticles in Medical Treatments 22
References 23

2 General Features of Microwave Chemistry 25

Satoshi Horikoshi and Nick Serpone

2.1 Microwave Heating 25
2.2 Some Applications of Microwave Heating 26
2.3 Microwave Chemistry 29
 2.3.1 Microwaves in Organic Syntheses 29
 2.3.2 Microwaves in Polymer Syntheses 30
 2.3.3 Microwaves in Inorganic Syntheses 31
 2.3.4 Microwave Extraction 32
 2.3.5 Microwave Discharge Electrodeless Lamps 32
2.4 Microwave Chemical Reaction Equipment 33
References 36
5.7.3 Other Examples of Continuous Microwave Nanoparticle Synthesis Equipment 94
5.7.4 Microwave Calcination Equipment for the Fabrication of Nanometallic Inks 95
5.7.5 Synthesis of Metal Nanoparticle Using Microwave Liquid Plasma 96
5.7.6 Compendium of Microwave-Assisted Nanoparticle Syntheses 96
References 103

6 Microwave-Assisted Solution Synthesis of Nanomaterials 107
Xianluo Hu and Jimmy C. Yu
6.1 Introduction 107
6.2 Synthesis of ZnO Nanocrystals 110
6.2.1 Synthesis of Colloidal ZnO Nanocrystals Clusters 111
6.2.2 Controlled Growth of Basic and Complex ZnO Nanostructures 113
6.2.3 Synthesis of ZnO Nanoparticles in Benzyl Alcohol 113
6.3 Synthesis of α-Fe$_2$O$_3$ Nanostructures 114
6.3.1 α-Fe$_2$O$_3$ Hollow Spheres 115
6.3.2 Monodisperse α-Fe$_2$O$_3$ Nanocrystals with Continuous Aspect-Ratio Tuning and Precise Shape Control 116
6.3.3 Self-Assembled Hierarchical α-Fe$_2$O$_3$ Nanoarchitectures 118
6.4 Element-Based Nanostructures and Nanocomposite 118
6.4.1 Silver Nanostructures 118
6.4.2 Te Nanostructures 122
6.4.3 Selenium/Carbon Colloids 123
6.5 Chalcogenide Nanostructures 125
6.5.1 Cadmium Chalcogenides 125
6.5.2 Lead Chalcogenides 129
6.5.3 Zinc Chalcogenides 131
6.6 Graphene 132
6.7 Summary 135
References 135

7 Precisely Controlled Synthesis of Metal Nanoparticles under Microwave Irradiation 145
Zhi Chen, Dai Mochizuki, and Yuji Wada
7.1 Introduction 145
7.1.1 General Introduction—Green Chemistry 145
7.1.2 Microwave Chemistry for the Preparation of Metal Nanoparticles 147
7.2 Precise Control of Single Component under Microwave Irradiation 152
7.2.1 Spheres 152
7.2.1.1 Au Nanoparticles 152
7.2.1.2 Ag Nanoparticles 154
7.2.1.3 Pt Nanoparticles 156
7.2.1.4 Pd, Ru, and Rh Nanoparticles 157
7.2.1.5 Other Transition Metals 158
7.2.2 Nanorods and Nanowires 160
7.2.2.1 Ag Nanorods and Nanowires 160
7.2.2.2 Au, Pt, Ni Nanorods and Nanowires 161
7.2.3 Other Morphologies 162
7.2.3.1 Au 162
7.2.3.2 Ag 163
7.2.3.3 Pt, Pd, Ni, and Co 163
7.3 Precise Control of Multicomponent Structures under Microwave Irradiation 164
7.3.1 Multicomponent Nanoparticles 164
7.3.1.1 Core–Shell Structures 164
7.3.1.2 Alloys 168
7.3.2 Metal Nanoparticles on Supports 170
7.3.2.1 Metal Oxide Supports 170
7.3.2.2 Carbon Material Supports 171
7.3.2.3 Other Supports 176
7.4 An Example of Mass Production Oriented to Application 178
7.5 Conclusion 180
References 180

8 Microwave-Assisted Nonaqueous Routes to Metal Oxide Nanoparticles and Nanostructures 185
Markus Niederberger
8.1 Introduction 185
8.2 Nonaqueous Sol–Gel Chemistry 186
8.3 Polyol Route 189
8.4 Benzyl Alcohol Route 191
8.5 Other Mono-Alcohols 197
8.6 Ionic Liquids 198
8.7 Nonaqueous Microwave Chemistry beyond Metal Oxides 199
8.8 Summary and Outlook 201
References 202

9 Input of Microwaves for Nanocrystal Synthesis and Surface Functionalization Focus on Iron Oxide Nanoparticles 207
Irena Milosevic, Erwann Guenin, Yoann Lalatonne, Farah Benyettou, Caroline de Montferrand, Frederic Geinguenaud, and Laurence Motte
9.1 Introduction 207
9.2 Biomedical Applications of Iron Oxide Nanoparticles 208
9.3 Nanoparticle Synthesis 211
9.3.1 Synthesis in Aqueous Solution 211
9.3.1.1 Coprecipitation Method 211
9.3.1.2 Forced Hydrolysis 211
11 Microwave Plasma Synthesis of Nanoparticles: From Theoretical Background and Experimental Realization to Nanoparticles with Special Properties 271
Dorothée Vinga Szabó

11.1 Introduction 271
11.2 Using Microwave Plasmas for Nanoparticle Synthesis 272
11.2.1 General Comments on Plasmas 272
11.2.2 Considerations in a Microwave Plasma 274
11.2.3 Particle Formation 277
11.2.4 Characterization of Nanoparticles 278
11.3 Experimental Realization of the Microwave Plasma Synthesis 279
11.3.1 Custom-Made Applicators 279
11.3.2 Coated Nanoparticles and Particle Collection 280
11.4 Influence of Experimental Parameters 282
11.4.1 Precursor Selection 284
11.4.2 Influence of Precursor Concentration 287
11.4.3 Interdependence of Microwave Power, Pressure, Temperature, and Gas Velocity 288
11.4.4 Influence of Residence Time in the Plasma on Particle Size 292
11.4.5 Summary of Experimental Parameters 292
11.5 Nanoparticle Properties and Application 294
11.5.1 Ferrimagnetic Nanoparticles 294
11.5.2 Gas-Sensing Nanoparticles 297
11.5.3 Nanoparticles for Anodes in Li-Ion Batteries 299
11.6 Summary 300
References 301

12 Oxidation, Purification and Functionalization of Carbon Nanotubes under Microwave Irradiation 311
Davide Garella and Giancarlo Cravotto

12.1 Introduction 311
12.2 Oxidation and Purification 313
12.3 Functionalization 316
12.4 Conclusion 321
References 321

Index 325