Contents

Preface to the Technical Series xiii
Preface xv
Contributors xvii

1 Development of Membrane Processes 1
K. Smith

1.1 Historical background 1
1.2 Basic principles of membrane separations 3
 1.2.1 Depth versus screen filters 3
 1.2.2 Isotropic versus anisotropic membranes 4
 1.2.3 Cross-flow filtration 5
 1.2.4 Requirements of membrane processes 7
1.3 Types of membrane separations 8
 1.3.1 Reverse osmosis 8
 1.3.2 Nanofiltration 8
 1.3.3 Ultrafiltration 9
 1.3.4 Microfiltration 9
1.4 Theory of membrane transport 9
 1.4.1 Transport models 9
 1.4.2 Reverse osmosis/nanofiltration membranes 10
 1.4.3 Ultrafiltration/microfiltration membranes 11
1.5 Factors affecting membrane separations 11
 1.5.1 Factors affecting reverse osmosis/nanofiltration separations 11
 1.5.2 Factors affecting ultrafiltration/microfiltration separations 12
 1.5.3 System parameters 13
1.6 General characteristics of membrane processes 13
 1.6.1 Retention and rejection 13
 1.6.2 Pore size 14
 1.6.3 Molecular weight cut-off 14
 1.6.4 Flux 14
 1.6.5 Concentration factor 15
 1.6.6 Membrane life 15
1.7 Conclusion and future development 15
Suggested literature 15
2 Principles of Membrane Filtration 17
A. Hausmann, M.C. Duke and T. Demmer

2.1 Introduction and definitions 17
 2.1.1 Membrane processes 17
 2.1.2 Definitions of membrane processes 18

2.2 Membrane properties based on materials 24
 2.2.1 Membrane structure 24
 2.2.2 Material properties 26

2.3 Flux behaviour in pressure-driven membrane operations 29
 2.3.1 Modelling flux behaviour 30
 2.3.2 Influence of chemical potential on the reverse osmosis process 35

2.4 Effects of feed characteristics and operating parameter on separation efficiency 37
 2.4.1 Effects of feed components 37
 2.4.2 Effects of operating parameters 40

2.5 Cross-flow systems 43
 2.5.1 Background 43
 2.5.2 Single-pass versus feed-and-bleed operation 43

2.6 Recent membrane processes following different operating principles 44
 2.6.1 Forward osmosis 44
 2.6.2 Osmotic distillation 45
 2.6.3 Membrane distillation 46

2.7 Conclusions 47
References 47

3 Commercial Membrane Technology 52
K. Smith

3.1 Introduction: polymers used in membrane manufacture 52
 3.1.1 Cellulose acetate 52
 3.1.2 Polysulphone/polyethersulphone 53
 3.1.3 Polyamide 54
 3.1.4 Polyvinylidene fluoride 55
 3.1.5 Thin-film composites 55

3.2 Other materials used for membranes 56
 3.2.1 Ceramic membranes 56
 3.2.2 Metallic membranes 57

3.3 Membrane configuration 58
 3.3.1 Spiral-wound 59
 3.3.2 Tubular 61
 3.3.3 Hollow fibre 63
 3.3.4 Plate and frame 64

3.4 Modes of operation 65
 3.4.1 Diafiltration 66
3.4.2 Batch design 67
3.4.3 Continuous design 69
3.5 Conclusion and future developments 71
Suggested literature 71

4 Membrane Fouling, Cleaning and Disinfection 73
L.L.A. Koh, M. Ashokkumar and S.E. Kentish

4.1 Introduction 73
4.2 Flux reduction 73
 4.2.1 Membrane resistance 74
 4.2.2 Concentration polarisation 74
 4.2.3 Fouling 80
 4.2.4 Fouling in the beverage industry 83
 4.2.5 Fouling in the dairy industry 83
4.3 Membrane cleaning and disinfection 84
 4.3.1 Cleaning methods 84
 4.3.2 Chemical cleaning factors 87
 4.3.3 Disinfection 95
 4.3.4 Cleaning procedures 95
 4.3.5 Chemical cleaning agents recovery and reuse 97
4.4 Recent developments 98
4.5 Conclusions 99
4.6 Nomenclature 100
References 102

5 General Application for the Treatment of Effluent and Reuse of Wastewater 107
N.A. Milne and S.R. Gray

5.1 General wastewater quality issues 107
5.2 General wastewater treatment 108
 5.2.1 Primary treatment: solids, fats, oils and grease removal 110
 5.2.2 Secondary treatment: biological treatment and the membrane bioreactor 110
 5.2.3 Tertiary treatment: disinfection 115
 5.2.4 Desalination: nanofiltration and reverse osmosis 116
5.3 Water reuse 117
5.4 Conclusions and future applications 123
References 124

6 Liquid Milk Processing 128
G. Gézan-Guiziou

6.1 Introduction 128
6.2 On-farm concentration of milk 128
6.3 Protein standardisation by ultrafiltration 130
 6.3.1 Advantages of protein standardisation 131
Contents

6.3.2 Regulatory aspects 132
6.3.3 Process involved 133
6.4 Removal of bacteria by microfiltration 134
 6.4.1 Microfiltration process: operating conditions and performances 134
 6.4.2 Industrial applications 137
6.5 Fractionation of fat 138
6.6 Removal of somatic cells by microfiltration 139
6.7 Conclusions and future trends 140

References 140

7 Membrane Processing of Fermented Milks 143
B. Özer and A.Y. Tamime
 7.1 Introduction 143
 7.2 Microflora of the starter cultures 144
 7.3 Patterns of production and consumption 145
 7.4 Manufacturing practice of gel-type (set and stirred) products 145
 7.4.1 Mesophilic–lactic fermentations 145
 7.4.2 Thermophilic–lactic fermentations 148
 7.4.3 Yeast–lactic fermentations 151
 7.4.4 Mould–lactic fermentations 152
 7.5 Manufacturing practice of concentrated products 152
 7.5.1 Background 152
 7.5.2 Concentrated yoghurt 153
 7.5.3 Shrikhand and chakka 156
 7.5.4 Ymer 156
 7.5.5 Skyr 158
 7.6 Quality control 158
 7.6.1 Compositional quality 158
 7.6.2 Microbiological quality 167
 7.6.3 Organoleptic properties 168
 7.7 Conclusion 169

References 170

8 Cheese 176
V.V. Mistry
 8.1 Background 176
 8.2 Properties of membrane processed concentrates 177
 8.2.1 Buffering capacity 177
 8.2.2 Rheology of concentrated milks 178
 8.2.3 Rennet coagulation 178
 8.3 Applications of ultrafiltration in cheesemaking 178
 8.3.1 Protein standardisation 178
8.3.2 Medium or intermediate concentrated retentates 179
8.3.3 Liquid pre-cheeses concept 180
8.3.4 Application of ultrafiltration for fresh and soft cheeses 184
8.4 Cheese quality 185
8.5 Applications of microfiltration in cheesemaking 186
 8.5.1 Removal of bacteria 186
 8.5.2 Casein standardisation 187
 8.5.3 \(\alpha_s/-\beta \)-casein ratio adjustment by microfiltration 187
 8.5.4 Recovery of fat and brine 188
8.6 Nanofiltration 188
8.7 Milk protein concentrates 189
8.8 Future potential 189
References 190

9 Whey Processing 193
L. Ramchandran and T. Vasiljevic

9.1 Introduction 193
9.2 Whey: components, their functionality and uses 193
9.3 Problems of traditional whey processing 195
9.4 Membranes in whey processing 196
 9.4.1 Microfiltration 197
 9.4.2 Ultrafiltration 198
 9.4.3 Diafiltration 199
 9.4.4 Nanofiltration and reverse osmosis 200
 9.4.5 Electrodialysis and other related processes 200
 9.4.6 Integrated processes 204
9.5 Conclusions 204
References 205

10 Concentrated Milk and Powders 208
G. Géran-Guiziou

10.1 Introduction 208
10.2 Concentrated milks and powders 208
 10.2.1 Background 208
 10.2.2 Production of concentrated whole milk and powder 209
 10.2.3 Production of concentrated skimmed milk and powder 211
 10.2.4 Applications of reverse osmosis concentrated milks 215
 10.2.5 Dulce de Leche 217
10.3 Milk protein concentrates 218
 10.3.1 Manufacture of milk protein concentrates 218
 10.3.2 Applications of milk protein concentrates 219
10.4 Conclusion and future trends 222
References 222
11 Further Applications of Membrane Filtration in Dairy Processing

J.A. O’Mahony and J.J. Tuohy

11.1 Introduction

11.2 Fractionation of milk proteins using membranes
- 11.2.1 Separation of casein and whey proteins in milk
- 11.2.2 Fractionation of individual casein proteins
- 11.2.3 Fractionation of individual whey proteins
- 11.2.4 Fractionation of milk protein hydrolysates
- 11.2.5 Enrichment of osteopontin from milk/whey
- 11.2.6 Production of microparticulated whey protein
- 11.2.7 Isolation and enrichment of growth factors from milk/whey

11.3 Fractionation of milk fat using membranes
- 11.3.1 Isolation and enrichment of native milk fat globules
- 11.3.2 Isolation and enrichment of milk fat globule membrane
- 11.3.3 Removal of phospholipids from liquid whey
- 11.3.4 Filter sterilisation of polyunsaturated fatty acids

11.4 Fractionation of milk carbohydrates using membranes
- 11.4.1 Isolation and purification of bovine milk oligosaccharides
- 11.4.2 Filter sterilisation of lactase
- 11.4.3 Lactic acid removal and purification

11.5 Fractionation of milk salts using membranes
- 11.5.1 Demineralisation using membranes
- 11.5.2 Demineralisation using electrodialysis

11.6 Conclusions and future trends

References

12 Fruit Juices

A. Cassano

12.1 Introduction
- 12.1.1 General Background
- 12.1.2 Background to manufacturing practice

12.2 Fruit juice clarification by microfiltration and ultrafiltration
- 12.2.1 Microfiltration
- 12.2.2 Ultrafiltration
- 12.2.3 Selection of microfiltration and ultrafiltration membranes

12.3 Membrane fouling and membrane cleaning
- 12.3.1 Membrane fouling
- 12.3.2 Methods of reducing membrane fouling
- 12.3.3 Methods of fouling treatment

12.4 Performance of microfiltration and ultrafiltration membranes

12.5 Process configurations

12.6 Quality of the clarified juices

12.7 Integrated processes

12.8 Conclusions and future development

References
13 Beer and Cider 281
J. Bergin and J.J. Tuohy

13.1 Introduction 281
13.2 Beer brewing process 282
13.2.1 Milling 283
13.2.2 Mashing 284
13.2.3 Wort separation 284
13.2.4 Boiling 287
13.2.5 Trub separation 287
13.2.6 Fermentation 288
13.2.7 Clarification 289
13.2.8 Beer make-up 290
13.2.9 Packaging and microbiological stabilisation 291

13.3 Cidermaking process 292
13.3.1 Juice extraction and formulation 292
13.3.2 Fermentation 293
13.3.3 Racking and maturation 293
13.3.4 Blending, filtration and packaging 293

13.4 Membrane applications in the brewing process 294
13.4.1 Wort separation 295
13.4.2 Beer filtration and stabilisation 298

13.5 Membrane applications in cidermaking 300
13.5.1 Background 300
13.5.2 Cider clarification 301

13.6 Membrane applications common to brewing and cidermaking 302
13.6.1 Yeast separation and product recovery 302
13.6.2 Microbiological stabilisation 304
13.6.3 Gas standardisation using membranes 305
13.6.4 Water recovery/cleaning-in-place systems 308
13.6.5 Alcohol removal for non- or low-alcohol products and malt beverage production 309

13.7 Future opportunities 311
References 313

14 Wine 316
K. Grainger

14.1 Background 316
14.2 Clarification and filtration methods 318
14.2.1 Traditional methods in common use 318
14.2.2 Membrane filtration 319
14.2.3 Cross-flow microfiltration 320
14.3 Membrane fouling 322
14.4 Must correction, wine correction and alcohol reduction using membrane technologies 322
14.4.1 Reverse osmosis 322
Contents

14.4.2 Ultrafiltration 324
14.4.3 Wine correction: reducing alcohol content 324
14.4.4 Wine correction: removing acetic acid 325
14.4.5 Wine correction: removal of taints 326
14.5 Wine stabilisation and pH adjustment 327
 14.5.1 Tartrate stabilisation 327
 14.5.2 pH adjustment 328
14.6 Conclusions and future developments 328
 References 330

15 Application of Membrane Technology in Vinegar 334
 F. López
 15.1 Introduction 334
 15.2 Process of vinegar making 335
 15.3 Membrane technology in the production of vinegar 336
 15.4 Conclusions 338
 References 338

Index 339