INDEX

Note: Page numbers in *italics* refer to Figures; those in **bold** to Tables.

absolute matrix effect, 162
acaricides
 chemical classes, 5, 6
 metabolomic studies, 5, 6, 8
 modes of action (MoA), 7
accelerated solvent extraction (ASE), 77–8
Acceptable daily intake (ADI), 14, 15
accurate mass databases
 automated molecular feature, 223
 environmental samples analysis, 223
 Merck Index database, 223
 molecular feature extraction (MFE), 223–4, 224
 National Institute of Standards and Testing (NIST) pesticide libraries, 222
 pesticides database, 224, 225
 reversed database search, 223, 224
acid-base ionization constants (pKₐ), 3
acute reference dose (ARfD), 15
algicides, 5
amino acid conjugation, 10
antifeedants, 5
APGDI see atmospheric glow-discharge ionization (APGDI)
APPI see atmospheric pressure photoionization (APPI)
ASE see accelerated solvent extraction (ASE)
atmospheric glow-discharge ionization (APGDI), 125, 125
atmospheric pressure chemical ionization (APCI), 98, 98, 162–3
atmospheric pressure GC–MS
 abundant product ions, 99
 atmospheric pressure chemical ionization (APCI) sources, 98, 98
 atmospheric pressure photoionization (APPI), 99
 chloroacetanilides, 99
 λ-cyhalothrin, 99
 organochlorine (OC), 99
 organophosphorus (OP), 99
 product ion scan experiments, 99
 protonated molecule, 98
 pyrethroid insecticides, 98–9
 selected reaction monitoring (SRM) mode, 99
atmospheric pressure ionization techniques
 atmospheric pressure chemical ionization (APCI), 118, 119
 atmospheric pressure interfaces (API), 118, 120
 atmospheric pressure photoionization (APPI), 118, 119, 119
 dopant, 119
 electrospray ionization (ESI), 118, 118
 flow injection analysis (FIA) system, 120
 interface designs, 118
 matrix effect, 120–121
 mobile phase composition, 120
 pesticides, LC–MS analysis, 120, 121
 atmospheric pressure photoionization (APPI), 99, 118, 119, 119, 238
bactericides, 5
Bioterrorism Act, 2002, 40
biotransformation
 absorption, 9
 distribution, 9
 elimination, 9
 metabolites, 9
 pesticide metabolites, categories, 9
 pesticide residues in plants, 9
 phase I and phase II, 9–10
 in plants and animals, 10–13, 11, 12
 processes, 9
 xenobiotic, 9
bird repellents, 5

Chemical Abstracts Service (CAS), 2
chemical ionization (CI)
 GC–CI–MS technique, 98
 in GC–MS instruments, 97
 negative chemical ionization (NCI), 97–8
 positive chemical ionization (PCI), 97
 use, 98
chloroacetanilides, 99
CI see chemical ionization (CI)
Codex Alimentarius Commission (CAC)
 Food and Agriculture Organization (FAO), 36
 pesticide residues analysis, 46–7
 World Health Organization (WHO), 36
Codex Alimentarius Residue Limits (CXLs), 20
Codex Committee on Pesticide Residues (CCPR), 20, 36, 46–7

dispersive liquid-liquid microextraction (DLLME), 72
dissolved organic matter (DOM), 13
DLLME see dispersive liquid-liquid microextraction (DLLME)
dynamic range, LC–MS analysis, 147
ECNI see electron capture negative ionization (ECNI)
ecological risk assessment for pesticides effects, 15
endocrine disruptors, 16–17
predicted environmental concentration (PEC), 16
predicted no-effect concentration (PNEC), 16
electron capture negative ionization (ECNI), 97–8
electron impact ionization (EI), 97
EMRLs see extraneous MRLs (EMRLs)
endocrine disrupter (ED), 16–17
EU Control Programs (EUCPs) on pesticide residues, 38, 40, 41
EU legislation, food safety authorization, 36–7
control-implementation, 37–8
EU Control Programs (EUCPs) on pesticide residues, 38, 40
EUR-Lex website, 36
European Food Safety Authority (EFSA), 36, 38–9
European Proficiency Tests (EUPTs), 38, 39
European Reference Laboratories (EURLs), 38
Food and Veterinary Office (FVO), 38
Food and Agriculture Organization (FAO), 36
European Food Safety Authority (EFSA), 14, 36, 38–9
European Proficiency Tests (EUPTs), 38, 39
European Reference Laboratories (EURLs), 38
EU Water Framework Directive (WFD)
Drinking Water Directive, 44–6
Environmental Quality Standards Directive (EQSD), 45
monitoring requirements, 46
pesticides, 45, 46
surface waters, chemical pollution, 45
extraction and cleanup procedures alternative
coupled-column liquid chromatography, 80–81
direct analysis in real time (DART), 81, 81–2
methods, 73, 74–6
microwave-assisted extraction (MAE), 73, 77
pressurized liquid extraction (PLE), 77–8
supercritical fluid extraction (SFE), 78–80
ultrasound-assisted extraction (UAE), 80
conventional
liquid-liquid extraction (LLE), 54, 61
matrix solid-phase dispersion (MSPD), 63
methods, 54, 55–60
Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS) method, 63–5
solid-phase extraction (SPE), 61–3
extraneous MRLs (EMRLs), 36
fast gas chromatography (GC)
aim, 95
altered stationary phase, 95
carrier gas velocity, 95
daily sample throughput, 94
diffusivity of solute in carrier gas, 95
faster temperature programming, 95
shorter capillary columns, 95
smaller-diameter capillary column, 95
Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA), 42–3
Food and Veterinary Office (FVO), 38
Food Quality Protection Act (FQPA), 18, 43
food safety see also US Food Regulations
Codex Alimentarius Commission (CAC), 36
EU legislation, 36–40
Food and Agriculture Organization (FAO), 36
liquid chromatography–mass spectrometry (LC–MS), 188
maximum residue limits (MRLs), 19–20, 35
multidimensional gas chromatography (MDGC), 92
pesticide residues in see liquid chromatography–mass spectrometry (LC–MS)
US Food Regulations, 40–44
World Health Organization (WHO), 36
Food Safety and Inspection Service (FSIS), 42, 44
fragmentation, LC–MS analysis, 150
fungicides
chemical classes, 5, 6
dithiocarbamate determination, 117
modes of action (MoA), 8
pyrimethanil, 224, 225
gas chromatography–mass spectrometry (GC–MS) methods
GC separation
capillary columns, 91
comprehensive two-dimensional gas chromatography (GC×GC), 92–4
fast GC, 94–5
low-pressure gas chromatography (LPGC), 95–6
multidimensional gas chromatography (MDGC), 92
stationary phases, 91
mass analyzers interfaced to GC, 100–103
mass spectral libraries and software approaches
AMDIS match factor (AMF), 104
automated mass spectral deconvolution software (AMDIS), 104
deconvolution for peak, 104, 105
deconvolution reporting software (DRS), 104
LECO Chroma TOF software, 104
mass spectral peaks, 104
metAlignID, 106
organic contaminants identification, 103
pure spectra, 103
QuEChERS sample preparation, 104
retention times, 106
mass spectrometric ionization techniques, 97–9
matrix effect
analyte protectants, 107, 108
factors, 107
isotopically labeled internal standards, 107
matrix-induced chromatographic response enhancement, 106
matrix-induced suppression, 107
matrix-matched standards, 107–8
standard addition method, 107
trace-level analysis, 106
Global Environment Monitoring System (GEMS), 18
glutathione (GSH), biotransformation, 9
Good agricultural practice (GAP), 35
half-life (T1/2), 4
Henry’s Law Constant (H/KH), 3
herbicides
arylpheoxypropionic acid, 9
chemical classes, 5, 6
modes of action (MoA), 8
sulfonylurea, 13

HF-LPME see hollow fiber liquid-phase microextraction (HF-LPME)
HFME see hollow fiber-protected microextraction (HFME)
high-energy collisional dissociation (HCD) collision cell, 143
high-resolution mass spectrometry (HRMS), 10
hollow fiber liquid-phase microextraction (HF-LPME), 72
hollow fiber-protected microextraction (HFME), 72
HR mass spectrometers (HRMS) instruments, 249
hyphenated MS techniques
atmospheric pressure chemical ionization (APCI), 237–8
atmospheric pressure photoionization (APPI), 238
chemical ionization (CI) technique, 237
electron impact (EI) ionization technique, 237
electrospray ionization (ESI), 237–8
LC–API–MS techniques, 238
low resolution mass spectrometry, 238
National Institute of Standards and Technology (NIST), 237
transformation products (TPs), identification
GC–MS, 238–40
GC–MS and LC–MS, 241
LC–MS, 240–241
Wiley MS databases, 237

IARC see International Agency for Research on Cancer (IARC)
identification points (IPs), in EU Regulation, 49, 49
imidacloprid, 10, 11
infusion profile, 166
insecticides
benzoylurea, 113
classical chemical classes, 5, 6
chlorfenapyr, photocatalytic degradation, 239
imidacloprid, 225
modes of action (MoA), 7, 7
neonicotinoid, 115–16
organophosphorus, 238
pyrethroid, 98–9
sonophotocatalytic degradation, 244

integrated pest management methods (IPMMs), 35
International Agency for Research on Cancer (IARC), 44
International estimated daily intakes (IEDIs), 18
International estimated short-term intakes (IESTIs), 18
International Organization for Standardization (ISO), 2, 4
International Programme on Chemical Safety (IPCS), 15, 44
ion chromatography (IC), 113
ionization techniques, LC–MS
atmospheric glow-discharge ionization (APGD) mechanism, 125, 125
atmospheric pressure ionization techniques, 118–120
desorption electrospray ionization (DESI) mechanism, 122–4, 123
direct analysis in real time (DART), 124, 124–5
direct electron ionization (DEI), 121–2
low-temperature plasma ambient ionization mechanism, 123, 123–4
paper spray ionization, 122–4, 123
Ion Spray, 168, 168
ion suppression mechanism
analytes
coprecipitation, 179
ions, late neutralization, 178
postcolumn infusion, 179
basicity, 180
dual ESI source, 178
full-scan total ion current, 179, 180
inverse chromatograms, 179
ion trap (IT) mass analyzer, 100
isotopic mass defect, 220–221, 221
IT-MS see quadrupole ion trap mass spectrometer (IT-MS)
Jet Stream ESI, 168, 169
Joint FAO/WHO Expert Committee on Food Additives (JECFA), 44
LC–HRMS see liquid chromatography–high-resolution mass spectrometry (LC–HRMS)
LC–MS see liquid chromatography–mass spectrometry (LC–MS)
LC–QqQ–MS/MS see liquid chromatography–quadrupole tandem mass spectrometry (LC–QqQ–MS/MS)
limits of detection (LODs), LC–MS analysis, 148
lipophilic conjugation, 10

strobilurine, 124, 125
thiabendazole, 124
thiram, 123–4
liquid-based microextraction techniques (LPME)
dispersive liquid-liquid microextraction (DLLME), 72
hollow fiber liquid-phase microextraction (HF-LPME), 72
single-drop microextraction (SDME), 66–70, 71–2
solvent based de-emulsification DLLME (SD–DLLME), 72
solvent-terminated dispersive liquid–liquid microextraction (STDLLME), 72, 73
ultrasound-assisted emulsification–microextraction (USAEME), 72
vortex-assisted liquid-liquid microextraction (VALLME), 72
liquid chromatography–electrospray ionization–mass spectrometry (LC–ESI–MS), matrix effect
absolute matrix effect, 162
analyte response, 162
compensation
internal standards, 172–4
matrix compounds, coelution of, 172
matrix-matched standards, 174
postcolumn infusion, 174, 175
standard addition, 176
definitions, 161–2
detection
postcolumn infusion system, 165, 165–6
solvent vs. matrix-matched calibration, 164–5, 165
stable ISTDs, 166
ESI and other API methods, differences, 162–3
in GC and LC methods, differences, 162, 163
interference, 162
ion suppression mechanism, 178–80
loss of sensitivity, 164
mobile phase modifier, 164
and recovery, 162
reduction
cleanup, 169
dilute-and-shoot method, 171–2, 172, 173
LC columns, 170, 170–171, 171
LC conditions, 166, 167
MS conditions, 166–9
relative matrix effect, 162
reversed-phase chromatography, 163
substance classes, 176

tentative mechanisms
droplet surface, 178
ESI droplets, 176–7
excess charges on droplet surface, 178
free analyte ions in gas phase, 176
ion pairing, 178
nonvolatile matrix components, 177
surface-active substances, 178
liquid chromatography–high-resolution mass spectrometry (LC–HRMS), 10–12, 14
detection and identification criteria, 195, 196
false-positive results, 197
full-scan mode, 195
isotopic pattern, analysis, 196–7
LC–(Q)TOF-MS and Orbitrap applications, 197, 198–9
mass accuracy, 197
Orbitrap-MS, 195, 196
linearity, 201, 202
matrix effect, 202
MS/MS identification, 200–201, 201
resolution, 197, 200, 201
sensitivity, 201
liquid chromatography–mass spectrometry (LC–MS), 1, 10, 11, 39, 49
analysis
advantages, 203
automated database searches, 202–3
challenge in food safety, 188
full-scan operation mode, 188
hybrid instrumentations, 203
LC–HRMS, 195–202
LC–QqQ-MS/MS application, 189–195
MS detectors, 187
multiresidue methods, 187, 188
quadrupole time-of-flight (QTOF) instruments, 188
samples screening, 203
electron ionization (EI), 132
full width at half maximum (FWHM), 132
high-resolution mass spectrometers (HRMSs), 132
hydrophilic interaction liquid chromatography (HILIC), 113, 117
ion chromatography (IC), 113
ionization techniques, 118–122, 122–5
liquid chromatographic separation
fused-core columns, 115–16
fused-core silica particles, 115
monolithic HPLC columns, 115
multidimensional achiral-chiral LC, 115
multidimensional chromatography, 114–15
in nano-LC, 114
on-line coupling, 114
maximum residue limit (MRL), 113
orbitrap mass analyzer, 142–7
parameters, mass measurement and identification, 147–152
pesticide monitoring programs, 131
pesticide residue analysis (PRA), 131–2
QTOF, 140–142
quadrupole ion trap, 135–8
quadrupole mass analyzers (Q-MS), 132
reverse phase (RP), 113
selective ion monitoring (SIM) mode, 132
software techniques and spectral libraries, 152–4
TOF mass analyzer, 138–40
triple quadrupole linear ion trap, 135–8
triple quadrupole mass analyzer, 132–5
ultrahigh-performance liquid chromatography (UHPLC), 114, 116–17
use, 113–14
liquid chromatography–triple quadrupole tandem mass spectrometry (LC–QqQ-MS/MS)
atmospheric pressure chemical ionization (APCI), 189
electrospray ionization (ESI) source, 189
linearity, 193, 194
matrix effects, 193–5, 195
in multiple reaction monitoring (MRM) mode, 189, 198
sensitivity, 192, 192, 193
SRM-based multiresidue methods, 189, 190–191
liquid-liquid extraction (LLE)
continuous Soxhlet, 54
extraction solvent, 54
matrix coextractives, 61
in pesticide residue, 61
SE procedures, 55–60, 61
low-pressure gas chromatography (LPGC)
advantages, 96
in large-scale multiresidue analysis, 95–6
megabore column, 96
pesticide residues analysis, 96
low-temperature plasma ambient ionization mechanism, 123, 123–4
LPGC see low-pressure gas chromatography (LPGC)
LPME see liquid-based microextraction techniques (LPME)
MAE see microwave-assisted extraction (MAE)
Mass accuracy, LC–MS analysis, 148–9
mass analyzers
to gas chromatography
ion trap (IT) mass analyzer, 100
QqQ mass spectrometer, 100–102
quadrupole mass analyzer, 100
time-of-flight (TOF), 102–3
ion trap (IT), 100
orbitrap see orbitrap mass analyzer
tandem quadrupole, 100
single see single mass analyzer
tandem MS techniques, 242, 242
triple quadrupole see triple quadrupole
tandem mass analyzer
mass filters, 220–221, 221
Mass Profiler software, 225
mass profiling
description, 224
imidacloprid application, 225
Mass Profiler software, 225
MS/MS experiments, 225, 226
principal component analysis (PCA) plots, 225
mass range, LC–MS analysis, 150
mass spectrometric ionization techniques
atmospheric pressure GC–MS, 98–9
chemical ionization (CI), 96–8
electron impact ionization (EI), 97
matrix effects
atmospheric pressure ionization techniques, 120–121
dilute-and-shoot methods, 171–2, 172, 173
gas chromatography–mass spectrometry (GC–MS) methods, 106–8
LC–ESI–MS see liquid chromatography–electrospray ionization–mass spectrometry (LC–ESI–MS), matrix effect
LC–HRMS, pesticide residues and their metabolites analysis, 202
LC–QqQ-MS/MS, pesticide residues and their metabolites analysis, 193–5, 195
matrix-matched standards, 174
substance classes, 176
matrix solid-phase dispersion (MSPD) advantages, 63
overview, 55–60
in pesticide analysis, 63
maximum contaminant levels (MCL), 46
maximum residue limits (MRLs), 1, 113
calculation procedure, 19
Codex, 36
Codex Committee for Pesticide Residues (CCPR), 20
definition see residue definition (MRL definition)
extraneous maximum residue limit (EMRL), 19
extraneous MRLs (EMRLs), 36
in food commodities, 35
for foodstuff and feed, 19
National Pesticide Information Center (NPIC), 19
for processed food, 19–20
MDGC see multidimensional gas chromatography (MDGC)
Merck Index database, 223
metabolites and transformation products (TPs)
biotransformation, 9–13
definition, 8–9
environment fate, 13–14
relevant metabolites, 8–9
metabolomics, 8
microextraction techniques
liquid-based microextraction techniques, 71–2
methods, 65, 66–70
sorbent-based microextraction techniques, 65, 71
microwave-assisted extraction (MAE)
acetonitrile-hexane, extraction solvent, 73
advantages, 77
cleanup, 77
in combination with GC–MS, 73
pesticide residues determination, 74–6
retention time-locked (RTL), 73, 77
modes of action (MoA)
acaricides, 7
fungicides, 8
herbicides, 8
insecticides, 7, 7
target sites, 5
toxic effects, 5
molecular feature extraction (MFE) software
discrete molecular entity, 215
extracted ion chromatogram, 220, 220
pepper sample, 215, 219
strengths, 220
monolithic HPLC columns, 115
MSPD see matrix solid-phase dispersion (MSPD)
multidimensional achiral-chiral LC, 115
multidimensional gas chromatography (MDGC)
column switching techniques, 92
in complicated food matrices, 92
sample preparation and multistep cleanup, 92
tobacco matrix, 92
volatile and semivolatile organic compounds, 92
multiple reaction monitoring (MRM), 132
multiresidue methods, 35, 48
National Environmental Monitoring Index (NEMI), 50
National Institute of Standards and Testing (NIST) pesticide libraries, 222
National Residue Program (NRP), 44
negative ion chemical ionization (NICI), 97–8
nematicides, 5
NICI see negative ion chemical ionization (NICI)
no-observed-effect levels (NOEL), 14–15
normalized soil sorption coefficient (Koc), 4
octanol-water partition coefficient (Kow, log P), 3–4
Office of Ground Water and Drinking Water (OGWDW), 46
Office of Regulatory Affairs (ORA), 49
Official National Laboratories (OFLs), 38
orbitrap mass analyzer advantages, 143
analytes detection, 144
chromatograms and spectra, 143, 144
C-trap, 143
dielectric barrier discharge ionization (DBDI), 144
dielectric barrier attraction, 143
fragmentation pathways and ion fragments, 144, 145
full-scan, 143
high-energy collisional dissociation (HCD) collision cell, 143
insecticides identification, 146
operational mode, 143
organophosphorus pesticides, 143–4
pseud-MS/MS, 143
qualitative screening method, 147
schematic analyzer scheme, 142
organochlorine (OC), 99
organophosphorus (OP), 99
paper spray ionization, 122–4, 123
PCCAs see polychlorocycloalkanes (PCAs)
PCE see pesticide classification (PCE)
PDE see programmable Dynamic Range Enhancement (PDE)
Pesticide Analytical Manual (PAM), 48
pesticide chemistry
classification, 4, 4–5
dichlorodiphenyltrichloroethane (DDT) synthesis, 2
definition, IUPAC, 2
identity, 2
metabolites and TPs, 8–14
modes of action, 5–8
physicochemical properties, 2–3
Pesticide Data Program (PDP), 44
pesticide monitoring programs, 131
pesticide residue analysis (PRA) approaches, 132
CAC guidelines, 46–7
definition, 35
pressurized liquid extraction (PLE)

predicted no-effect concentration (PNEC), 16

predicted environmental concentration (PEC), 16

predicted no-effect concentration (PNEC), 16

predicted maximum residue limit (MRL), 20

predicted maximum residue limits (MRLs), 19–20

positive chemical ionization (PCI), 97

polychlorocycloalkanes (PCCAs), 7

see pressurized liquid extraction (PLE)

pesticides in environmental samples

pesticides database, 224, 225

pesticides in environmental samples contamination, 207

European Union (EU), 207

food and water samples

accurate mass databases, 222–4

diagnostic ion approach, 221–2, 222

isotopic mass defect, 220–221

mass filters, 220–221, 221

mass profiling, 224–5, 226

molecular features, 215, 220

liquid chromatography–mass spectrometry (LC–MS)

liquid chromatography–tandem mass spectrometry (LC–MS/MS), 207, 208–9

liquid chromatography–time of flight mass spectrometry (LC–TOF–MS), 207–8

maximum residue limit (MRL), 207

time of flight (TOF) techniques, 208

photodegradation, 13

plant growth regulators, as pesticides, 5

PLE see pressurized liquid extraction (PLE)

polychlorocycloalkanes (PCCAs), 7

positive chemical ionization (PCI), 97

postcolumn infusion system, 165, 165–6, 174, 175

predicted environmental concentration (PEC), 16

predicted no-effect concentration (PNEC), 16

pressurized liquid extraction (PLE)

and cleanup operations, 77–8

drying agent, 78

Florisil, 78

hot water as extraction solvent, 78

matrix solid-phase dispersion (MSPD), 78

procyomide chromatographic peak, 78, 79

programmed temperature vaporizer (PTV–LVI), 78

sodium sulfate, 78

programmable Dynamic Range Enhancement (pDRE), 147

pyrethroid insecticides, 98

Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS) method

cleanup procedure, 64

dispersive liquid–liquid microextraction (DLLME), 64

disposable pipette extraction (DPX), 64

dry ice-partitioning, 64–5

in fruits and vegetables, 64

gel permeation chromatography (GPC), 64

modifications, 64

scheme, 64, 64

strategies, 55–60, 63

Rapid Alert System for Food and Feed (RASFF), 40, 41

relative matrix effect, 162

residue definition (MRL definition)

aldircarb, carbamate insecticide, 20, 22

amitraz, 23

bentazone, 28

carbendazim, 28

fenthion, 28, 29

fluroxypyr, 28

food commodities, 23

in foods of plant and animal origin, 23, 24–6

metabolites, 20, 28, 29

OP compounds, 23

parent compound, 28, 29

pesticides and metabolites examples, 21–2

phosmet, 28

spiroxamine, 23, 27–8

total MRLs, 20

resolution, LC–MS analysis, 149

reversed database search, 223, 224

risk assessment

dietary exposure to pesticides, 17–18

dose (concentration)-response (effect) assessment, 14

ecological, 15–17

exposure assessment, 14

in food see pesticide residue analysis (PRA)

hazard identification, 14

integrated approach, 14

Joint Meeting on Pesticide Residues (JMPR), 14

risk characterization, 14

safety factors, 14–15

rodenticides, 5

Safe Drinking Water Act (SDWA), 46

sample preparation techniques

dilute-and-shoot methods, 53

extraction and cleanup see extraction and cleanup procedures

matrix, 54

microextraction techniques

liquid-phase microextraction techniques, 71–2

methods, 65, 66–70

sorptive-based microextraction techniques, 65, 71

multiclass pesticide determination, 53

pesticide residue determination, 53

SANCO document, EU guidelines

analyte, MS spectra, 47

AQC document, 47

chromatographic peaks, 47

in food and feed, 47

INDEX
ion ratios, recommended maximum tolerances, 47, 48
mass spectrometric detectors, 47, 48
multiresidue methods, 48
objectives, 47
sample extracts, extracted ion chromatograms, 47
tolerances, 47–8
water, chemical analysis and monitoring, 48
SBSE see stir-bar sorptive extraction (SBSE)
scan rate, LC–MS analysis, 147–8
SDME see single-drop microextraction (SDME)
selected reaction monitoring (SRM), 132
selectivity, LC–MS analysis, 149–50
single stage quadrupole (Q), 238
single mass analyzer
single-drop microextraction (SDME), 251
solid-phase microextraction (SPME), 65, 66–70, 71–2
single stage quadrupole (Q), 238
solid-phase extraction (SPE), 63
extracted compounds, 62, 62
extraction and cleanup procedures, 61–3
graphitized carbon black (GCB), 63
hydrophilic-lipophilic balance (HLB) reversed-phase sorbents, 62
method, 55–60
molecularly imprinted polymers (MIPs), 62
multiwalled carbon nanotubes (MWCNs), 63
pesticide isolation from water, 61
primary-secondary amine (PSA), 63
principal, 62
solid sorbents, 62
transformation products (TPs), 232
variations, 61
solid-phase microextraction (SPME), 65, 66–70, 71
solvent based de-emulsification DLLME (SD–DLLME), 72
solvent-terminated dispersive liquid–liquid microextraction (STDLLME), 72, 73
solvent vs. matrix-matched calibration, 164, 164–5, 165
sorbent-based microextraction techniques solid-phase microextraction (SPME), 65, 66–70, 71
stir-bar sorptive extraction (SBSE), 66–70, 71
SPE see solid-phase extraction (SPE)
SPME see solid-phase microextraction (SPME)
State Management Plans (SMPs), 46
stir-bar sorptive extraction (SBSE), 66–70, 71
styrene-divinylbenzene (SDB), 232
substance classes, matrix effects, 176
substances of very high concern (SVHCs), 17
sugar conjugates, 9–10
sulfate conjugates, 10
supercritical fluid extraction (SFE) advantages, 79, 80
cleaned up, 80
pesticides determination, 79
principle, 78
total analysis time, 79
tandem MS techniques linear two dimensional ion trap (LIT), 242–3
mass analyzers, 242, 242
multiple reaction monitoring (MRM) mode, 241
product ion (PI) scan, 241–2
transformation products (TPs), identification
quadrupole ion trap mass spectrometer (IT-MS), 244–9
triple quadrupole-mass spectrometer (QqQ-MS), 243–4
TDC see time-to-digital correction (TDC)
time-of-flight (TOF), 8
configurations, 102
dynamic range enhancement (DRE), 103
with exact mass, 102–3
high-speed TOF mass analyzer, 103
mass analyzer
accurate mass measurements, 138
configuration, 138, 139
detectors types, 139
in different configurations, 139
field-free drift zone, 138
full-scan conditions and resolution, 138
instrument, 138
ion sources, 138
mass errors, 139–40
matrix-matched standard calibration, 140
in pesticide multiresidue analysis, 139
reflectron, 138
reflectron arrangement, 139
UHPLC–TOF-MS method, 140
time-to-digital correction (TDC), 147
TOF see time-of-flight (TOF)
tolerances
FSIS Residue Testing, 42
in imported and domestic food, 40–41
for ion ratios, 47, 48, 49, 49
US Food Regulations, 42–3
total ion chromatogram (TIC), 219
TPs see transformation products (TPs)
transformation products (TPs)
advanced oxidation processes (AOPs), 231–2, 233–5
analytical methodologies, 232
degradation product identification, 232, 236
environmental matrices, 231
HR mass spectrometers (HRMS), 255–6
hyphenated MS techniques, 237–241
identification levels, 236, 237
liquid-liquid extraction (LLE), 232
mass fragment and identification points, 237
mass spectrometry (MS) methods, 232
mesotrione, 258
in monitoring programs, 28–9
MS fragmentation, 236
pesticide metabolites and see metabolites and transformation products (TPs)
solid-phase extraction (SPE), 232
transformation products (TPs) (cont’d)
structure elucidation, 1
styrene-divinylbenzene (SDB), 232
sulcotrione, 258
tandem MS see tandem MS techniques
UPLC–ESI–MS–LTQ-Orbitrap chromatographic profiles, 257
traveling wave-based radio-frequencyonly stacked ring ion guide (TWIG), 147
triple quadrupole mass analyzer characteristics, 132–3
collision-induced dissociation (CID), 133
electrospray ionization (ESI), 132–4
hydrophilic interaction liquid chromatography (HILIC) column, 134
instruments, 133
limitation, 135
limits of detection (LODs), 134–5
neutral loss scan, 133
in olive oil and olives, 134
pesticide residues, determination, 134
precursor ion scan, 133
product ion scan, 133
quadrupole (Q), 133
QuEChERS sample preparation, 134
selected reaction monitoring (SRM), 133
specific transitions, pesticide identification, 134, 134
turbulent flow chromatography (TLX), 134
ultrahigh-performance liquid chromatography (UHPLC), 135
Turbo Ion Spray, 168, 168, 169
Turbo V Source, 168, 168
TWIG see traveling wave-based radio-frequencyonly stacked ring ion guide (TWIG)
UAE see ultrasound-assisted extraction (UAE)
ultrahigh-performance liquid chromatography (UHPLC), 10, 114, 116–17
ultrasound-assisted emulsification–microextraction (USAEME), 72
ultrasound-assisted extraction (UAE), 73, 80
USAEME see ultrasound-assisted emulsification–microextraction (USAEME)
US Department of Agriculture (USDA), 42
US EPA Legislation, 46
US Food Regulations
Agricultural Marketing Service (AMS), 42
authorization, 42
Code of Federal Register (CFR), 40, 42
control-implementation, 43
Food Additives Law, 40
Food Emergency Response Network (FERN), 40
Food Safety and Inspection Service (FSIS), 42
Food Safety Modernization Act (FSMA), 40
monitoring programs, 43, 43–4
Pesticide Chemical Amendment, 40
Pesticide Data Program (PDP), 42
pesticides regulation, 40
Pure Food and Drug Act, 40
tolerances, 42–3
US Department of Agriculture (USDA), 42
VALLME see vortex-assisted liquid-liquid microextraction (VALLME)
vapor pressure (Vp), 3
vortex-assisted liquid-liquid microextraction (VALLME), 72
water quality
EU Water Framework Directive (WFD), 44–6
US EPA Legislation, 46
WHO, 44
water solubility, 2–3
World Health Organization (WHO)
Codex Alimentarius Commission (CAC), 36
food safety, 36
water quality, 44
Z-spray, 168, 168, 169