Contents

Preface xi

1 Introduction 1
 References 5

2 Basic Anatomy 7
 2.1 Terminology 7
 2.2 Human Skeleton 8
 2.3 Joints 10
 2.4 Cartilage 10
 2.5 Protein and Collagen 11
 2.6 Human Bone 14
 2.6.1 Structure of Bone 14
 2.6.2 Mechanical Properties of Bone 18
 2.6.3 Bases of Biomechanics of Joints 20
 References 22

3 Anatomy of Joints 25
 3.1 Shoulder 25
 3.1.1 Anatomy of the Shoulder Joint 25
 3.1.2 Biomechanics of the Shoulder Joint 27
 3.2 Elbow 29
 3.2.1 Anatomy of the Elbow Joint 29
 3.2.2 Biomechanics of the Elbow Joint 30
 3.3 Wrist 34
 3.3.1 Anatomy of the Wrist Joint 34
 3.3.2 Biomechanics of the Wrist Joint 36
Contents

3.4 Finger
 3.4.1 Anatomy of the Finger Joints 38
 3.4.2 Biomechanics of the Finger Joints 38
3.5 Hip
 3.5.1 Anatomy of the Hip Joint 39
 3.5.2 Biomechanics of the Hip Joint 41
3.6 Knee
 3.6.1 Anatomy of the Knee Joint 43
 3.6.2 Biomechanics of the Knee Joint 46
3.7 Ankle
 3.7.1 Anatomy of the Ankle Joint 49
 3.7.2 Biomechanics of the Ankle Joint 51
3.8 Foot
 3.8.1 Anatomy of the Foot Joints 52
 3.8.2 Biomechanics of the Foot Joints 52
3.9 Toe
 3.9.1 Anatomy of the Toe Joints 52
 3.9.2 Biomechanics of the Toe Joints 53
3.10 Degradation of Joints
 3.10.1 Introduction 54
 3.10.2 Osteoarthritis (OA) 54
 3.10.3 Rheumatoid Arthritis (RA) 54
 3.10.4 Infection and Trauma 56
 References 56

4 Methods of Inspection for Joint Replacements
 4.1 Introduction 59
 4.2 Gait Analysis 60
 4.3 X-ray 61
 4.4 Tomography and Computed Tomography (CT) 64
 4.5 Radionuclide Scanning 66
 4.6 Ultrasonography 66
 4.7 Magnetic Resonance Imaging (MRI) 67
 References 69

5 Materials in Human Joint Replacement
 5.1 Introduction 71
 5.2 Alloy Metals
 5.2.1 Stainless Steel 72
 5.2.2 Cobalt-Based Alloys 74
5.2.3 Titanium-Based Alloys 76
5.2.4 Tantalum Trabecular Metal 78
5.2.5 Magnesium Alloys 78
5.3 Ceramics 79
 5.3.1 Structure 79
 5.3.2 Mechanical Properties 79
 5.3.3 Applications of Ceramics in Joint Replacements 81
5.4 Polymers 83
 5.4.1 Structure 83
 5.4.2 Ultra-high Molecular Weight Polyethylene (UHMWPE) 84
 5.4.3 Polymer Cement 87
5.5 Joint Replacement Materials in Service 91
 5.5.1 Wear and Friction 91
 5.5.2 Fatigue and Creep 92
 5.5.3 Corrosion 93
5.6 Nanomaterials 95
References 98

6 Methods of Manufacture of Joint Replacements 103
 6.1 Introduction 103
 6.2 Surface Finish 104
 6.3 Tolerance 106
 6.4 Wear and Friction 106
 6.5 Machining 106
 6.5.1 Milling 106
 6.5.2 Grinding 108
 6.5.3 Turning 108
 6.5.4 Electrochemical Machining (ECM) 110
 6.5.5 Electrodischarge Machining (EDM) 111
 6.6 Forging 112
 6.7 Casting 114
 6.7.1 Casting of Metals 114
 6.7.2 Casting of Ceramic Parts 115
 6.8 Manufacture of Polymer Parts 119
 6.9 Surface Treatment 121
 6.9.1 Coatings 121
 6.9.2 Plasma Spraying 121
 6.9.3 Chemical and Physical Vapour Deposition (CVD and PVD) 123
Contents

6.9.4 Diamond-like Carbon (DLC) Coating 124
6.9.5 Ion Implantation 125
6.9.6 Porous Metal Coatings 125
6.10 Surface Finishing of Implants 125
6.10.1 Deburring 125
6.10.2 Electropolishing 126
6.10.3 Mechanical Polishing 126
6.10.4 Lapping 127
6.11 Manufacture of Joint Replacements 127
References 128

7 Computer-Aided Engineering in Joint Replacements 131
7.1 Introduction 131
7.2 Reverse Engineering 132
7.3 Solid Modelling 133
7.4 Finite Element Analysis (FEA) 137
7.5 Rapid Prototyping (RP) in Joint Replacement Manufacture 141
7.6 Computer-Aided Manufacture 145
7.7 Navigation 150
7.7.1 Navigation in Computer-aided Joint Replacement Surgery 150
7.7.2 Navigation in Robotic Surgery 152
7.8 Robotics 153
7.8.1 Robotics-Assisted Total Knee Replacement (TKR) 157
7.8.2 Robotics-Assisted Total Hip Replacement (THR) 159
References 162

8 Joint Replacement 167
8.1 Introduction 167
8.2 Shoulder 171
8.3 Elbow 175
8.4 Wrist 178
8.5 Fingers 181
8.6 Hip 183
8.6.1 Charnley’s Development of Total Hip Replacement (THR) 184
8.6.2 Biomechanics after Hip Joint Replacement 185
8.6.3 Further Developments in THR Engineering 187
8.6.4 Industrial Examples of THR 189
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.7 Knee</td>
<td>191</td>
</tr>
<tr>
<td>8.7.1 Biomechanics in Total Knee Replacement</td>
<td>193</td>
</tr>
<tr>
<td>8.7.2 Industrial Examples of TKR</td>
<td>198</td>
</tr>
<tr>
<td>8.8 Ankle</td>
<td>200</td>
</tr>
<tr>
<td>8.9 Foot and Toe</td>
<td>203</td>
</tr>
<tr>
<td>References</td>
<td>206</td>
</tr>
<tr>
<td>Index</td>
<td>211</td>
</tr>
</tbody>
</table>