INDEX

acceleration, 194
accuracy, adsorption energies, 106, 223
accuracy, cohesive energies, 222
accuracy, molecular systems, 220
accuracy, numerical, 50, 209
accuracy, physical, 50, 209
accuracy, vibrational frequencies, 221
activation energy (ΔE), 137–138, 141
adsorption, 103
adsorption energies, 105, 106, 223
Ag on Cu(100), 137–138, 140, 150–152
ammonia synthesis, 2, 131
amorphous phases, 201
angular momentum, 195
antiferromagnetic state, 188
Arrhenius, Svante, 137
B3LYP functional, 25, 27, 218
Bader decomposition, 188
band gaps, 28, 182
band structure, 186
barrierless process, 156
basis set, 22, 24
Birch–Murnaghan equation of state, 38, 40
bisection method, 66

Bloch’s theorem, 51, 61
Born–Oppenheimer approximation, 8
Brillouin zone (BZ), 53
bulk modulus, 38
canonical ensemble, 196
CCSD calculations, 24
chain of states methods, 143
charges, 188, 191
chemical potential, 165
classical force fields, 230
CO adsorption, 120, 223
CO on Cu(100), 120
conduction band, 182
configurational entropy, 169
conjugate gradient methods, 71, 81
constrained optimization, 78
convergence, 49, 98
correlation energy, definition, 23
crystal structure, predicting, 43, 204
Cu surfaces, 91, 95
Cu, bulk crystal structure, 37–44
Cu$_2$O, oxygen vacancy concentration, 171
Curie temperature, 191

Density Functional Theory: A Practical Introduction. By David S. Sholl and Janice A. Steckel
Copyright © 2009 John Wiley & Sons, Inc.

235
density of states (DOS), 179
DFT+U, 227
DFT-D, 225
diffusion, 132
dipole corrections, 98
dispersion interactions, 225
eigenfunctions, 20
eigenstates, 8
eigenvector, 118
electron correlation energy, 23
electron density, 10
Ellingham diagrams, 164
embrittlement, 4
energy cutoff, 61
entropy, 44, 165, 169
ethylene epoxidation, 172
exact exchange, 27, 218
exchange diffusion, 151, 160
exchange–correlation functional, 12, 14
fcc lattice, 39, 52, 89
Fermi energy, 180
Fermi surface, 59
ferromagnetic state, 188
finite difference approximation, 115, 118
flight delays, 31
fluids, classical thermodynamics, 30
fractional coordinates, 42, 87
functional, 11, 215
functionals, classification of, 215–219
functionals, empirical, 216
functionals, nonempirical, 216, 219
Gaussian quadrature, 54
generalized gradient approximation (GGA), 15, 217
Gibbs free energy, 44
giving talks, guidelines for, 212
grain boundaries, 4
grand potential, 165
ground state, 8
H on Cu(100), 104–109
harmonic approximation, 114
harmonic oscillator, 122
Hartree potential, 13, 21
Hartree product, 9
Hartree–Fock (HF) method, 19, 23, 227
hcp crystal structure, 41, 93
Hessian matrix, 117, 140
Hohenberg–Kohn theorems, 11
holes, 183
hybrid functionals, 27, 219, 228
hyper-GGA functionals, 215, 218
ideal gas, 165
imaginary frequencies, 119, 140
insulators, 182
interstitial sites, 124
irreducible Brillouin zone (IBZ), 57
Jacob’s ladder, 215
jerk, 195
k points, 50–61
Kepler conjecture, 41, 47
kinetic Monte Carlo (kMC), 153, 160, 175, 177
Kohn–Sham equations, 12, 73
Lagrangian, 196, 199
lattice parameter, 37, 78
lattice vectors, 42, 51
Legendre quadrature, 54
level of theory, 24
linear scaling methods, 229
local density approximation (LDA), 15, 216
local density of states (LDOS), 186
magnetism, 188, 191
Maxwell–Boltzmann distribution, 136, 195
meta-GGA functionals, 215, 217
metal oxides, 164, 228
metals, 59, 180
Methfessel Paxton smearing method, 60, 181
microcanonical ensemble, 194
Miller index, 88
minimum energy path (MEP), 134, 143
molecular crystals, 226
molecular dynamics, ab initio, 198
molecular dynamics, Born–Oppenheimer (BOMD), 200
molecular dynamics, Car–Parrinello (CPMD), 199
molecular dynamics, classical, 193, 230
Monkhorst–Pack method, 55, 81
monolayer (ML), 107
Monte Carlo sampling, 230
MP2 calculations, 24, 25
Mulliken analysis, 186

nanoparticle, 3, 9, 205
Newton’s laws, 194
Newton’s method, 67, 69
NO adsorption, 223
nonlocal functionals, 218
normal modes, 118, 140
Nose–Hoover thermostat, 197, 200, 206
nudged elastic band (NEB) method, 143–150, 160
numerical convergence, 49, 209
numerical optimization, 65, 68, 73
numerical optimization, multidimensional, 69
numerical optimization, one dimensional, 65

O₂ on Ag(111), phase diagram, 173
overlayers, 107
ozone hole, 131

Pauli exclusion principle, 10, 21
Perdew–Burke–Ernzerhof (PBE) functional, 15, 217
Perdew–Wang 91 (PW91) functional, 15, 217
periodic boundary conditions, 84
perovskite, 6
phase stability, 164
phase transformations, 44
phonons, 127
plane wave methods, 27, 50
planet formation, 6
potential energy surface, 8, 199
pressure, 45, 165
primitive cell, 36, 52
projector augmented wave (PAW) method, 64
pseudopotentials, 63
Pulay stress, 79

quantum Monte Carlo, 216
quartz, 184, 187
quasi-Newton methods, 71
radial distribution function, 203
reciprocal lattice vectors, 51, 88
reciprocal space, 50
reporting result, guidelines for, 211
rotational modes, 119
RPBE functional, 223

saddle points, 133
scanning tunneling microscopy (STM), 83, 102
Schrödinger equation, 9
scientific judgement, 213
self consistent solution, 14, 23
self diffusion, 150
self interaction, 13, 227
semiconductors, 182
Si(100), dimer reconstruction, 101
Si(111), reconstruction, 102
silicon, 182
silicon surfaces, 84, 100–102
slab models, 84, 98
Slater determinant, 20
smearing methods, 59, 181
solar cells, 183
spin, 9, 19, 188
spin orbitals, 20
Spinal Tap, 213
stratospheric clouds, 131
strongly correlated systems, 227
supercell, 36
surface coverage, 107
surface energy, 96
surface oxides, 172
surface reconstruction, 100
surface relaxation, 94

Tao–Perdew–Staroverov–Scuseria (TPSS) functional, 217
thermodynamic equilibrium, 45, 136, 164
transferability, 64
transition state, 135
transition state theory (TST), multi-dimensional, 139
transition state theory (TST), one dimensional, 135
translational modes, 119
tunneling, 157
ultrasoft pseudopotentials (USPPs), 64
uncertainty principle, 122
vacancies, 131, 169, 176
vacuum space, 85
valence band, 182
van der Waals interactions, 29, 225
van Hove singularities, 183

Verlet algorithm, 196
vibrational frequencies, 113, 221
wave function, 9, 18
Wigner–Seitz cell, 52

Y₂K, 44, 47
zero point energy, 122, 157