SUBJECT INDEX

3

A

additive adjustment, see centering
additive and multiplicative modeling, 128
additive modeling
two-way, 111

agriculture, xviii. 13, 19, 23
AMMI model, 135
biadditive model, 135
double centering, 134
genotype by environment interaction, 111, 135
multivariate, 129
preprocessing, 129
missing data, 123
multi-way factorial data, 36
non-metric multi-way data, 32, 146
peanut example, 5, 6
plant adaptation example, 6
plant breeding example, 5, 111, 471
plant breeding
missing data, 145
phenotypic correlation, 129
preprocessing factorial designs, 129
preprocessing, 140
research questions, 18
three-mode mixture method of clustering, 4, 2
three-way profile data, 403
triadditive modeling, 139
variety trials, 173

air pollution, multi-way modeling, 480
algorithms, see TUCKALS, Tucker, Parasal, etc.

algorithms
definition, 79
reasons for discussing, 77
all-components plot, see plotting
ALSOMP, 42, 74, 96, 321
alternating least-squares, 21, 80
analysis of dependence, 32, 283
analysis of interdependence, 32, 283
analytical chemistry, 13, 17, 22
application FunPack2 model, 64
chromatography time-shift example, 475
analytical chemistry (cont'd)
 component uniqueness, 61, 322
 explicit Parafac models, 61, 344
 fluorescence spectroscopy, 472
 four-way data, 472
 multiway block models, 24
 nonnegative components, 96
 Parafac2 applications, 63
 problems with split-half procedures, 184
 spectroscopy data example, 472
 spectroscopy protein example, 472
 applications, standard format, six aspect ratio, 280, 497
 association models, 42, 434
 anti-regressor model, 380, 385
 external variables, 380–381
 structural part, 380–381
 transition matrix, 381
 anti-regressor process, 379, 383, 402
 core array, 384
 estimation parameters, 390, 383, 391
 first-order, 380, 384, 391–392
 homogeneity, 384
 fast-fourier transformation analysis, 391
 latent covariance matrix, 384
 simulation, 383
 parameter estimation, 386
 second-order, 384, 392
 simplex, 380
 examples, 391
 stability, 384, 386, 392
 state-like, 384
 stationarity, 384, 386
 three-mode PCA, 570
 Simulation, 370
 state-like, 384
 average subject profile, 130, 271, 272, 321, 332, 348

B
 B-splines
 compression, 169
 smoothing, 71, 377
 bad leverage points, 205
 basic data relation (causal, historical), 480
 basic form
 component models, 215
 Parafac model, 60, 215
 PCA, 47
 Tucker models, 215, 225, 325
 Tucker2 model, 66
 Tucker3 model, 65, 140
 basic structure of a matrix, see singular value decomposition
 batch processes
 monitoring, 52
 between-model selection, 173
 deviance plot, 182
 examples, 162, 197, 199, 202, 206
 model hierarchy, 186
 examples, 205
 multiway scree plot, 182
 biadditive model, 135–136
 additive plus multiplicative model, 135
 completely multiplicative model, 135
 degrees of freedom, 137
 factorial design, 135
 hypothesis testing, 137
 rotatable variant, 136
 bibliography
 annotated, 21
 web-based, 21
 bilinear model, 19, 217
 biplot, 332, 492
 aspect ratios, 497
 biplot axis, 495
 calibration, 494
 data markers, 495
 description, 492, 494
 Euclidean distance, 493
 geometry, 499
 graphical, 495
 inner product, 497
 interpretation, 497
 least-squares approximation, 493
 low-dimensional approximation, 493
 principal component analysis, 499
 principal coordinate scaling, 493, 496–497, 498
 row markers, 494
 symmetric scaling, 493, 496–497, 499
 total variability, 493
 variability accounted for, 494
 bipolar scales, 8
 antonym, 9
 centering, 131, 360
 double centering, 131
 multivariate multiway factorial data, 131
 three-way rating scales, 360
 trilinear modeling, 139
 blind beamforming, 22
 blindfolded nonlinear
 model for iterative algorithms, 80–81
 Boolean algebra, 42, 480
 bootstraps, 233, 512, 222, 348, 449, 478
 bootstraps, 188
 dimensionality selection, 170
 examples, 190, 267
 fit measures, 188
multiway analysis, 188
nonstochastic data, 147
optimizing congruences, 334
sample size, 176
sampling residuals, 235
stability estimation, 18, 32, 176, 188, 362
standard deviations, 233
target rotation, 234

C
CANDID, 95, 203
canonical correlation analysis, 401
canonical decomposition, CANDECOMP
also PARAFAC
individual differences scaling, 22
linear constraints, CANDID
seven-way algorithm, 24, 487
Carroll, J. Douglas, 23
centering, see also preprocessing
centering
additive adjustment, 111
additive modeling, 111
appropriate, 112, 119, 142
average subject's profile, 131, 258
blockwise modeling, 135
bipolar scales, 122, 131, 360
center components, 120, 321
correction errors, 120
correlations of, 125
corresponding models, 129
degree of freedom, 190
degrees of freedom, 190
double, 119, 131, 134, 142
definition, 112
designs of, 111, 120
designs, 111, 115, 118, 190, 203, 314
factor, 113, 177, 179, 121, 127–128, 130, 142, 128, 142, 222, 224, 288, 321, 386, 392
effect sizes, 180
effects of, 111, 120
effects, 111, 115, 118, 190, 203, 314
factor, 113, 177, 179, 121, 127–128, 130, 142, 128, 142, 222, 224, 288, 321, 386, 392
advantages, 150
appropriate, 118, 131
combining centerings, 121
corresponding arguments, 113
double, 119
effects, 111, 115, 118, 190, 203, 314
models, 113, 314, 364, 395
model-based arguments, 112
model equivalence, 118
moving centroid, 121
removing offsets, 118, 119
triple, 119
growth data, 115
incompatible normalization, 127
individual differences, 132
interval scales, 117
missing data, 153, 159
model comparison, 121, 142, 204
nonstochastic data, 147, 360
necessary in PCA, 114
nonmetric multidim, 113, 122
normalization combined, 127
offsets, 117
rotation, 118
single overall, 122
PCA, 116, 118, 121, 196
proceeds normalization, 127
proposals, 119
rating scales, 160, 194, 196, 353
relationships, 119
removing offsets, 321
robust alternatives, 113, 123, 298
scaling arrangement, 453
skewness, 114, 347
three-way examples, 386
three-way analysis of variance models, 137
three-way factorial design, 119
three-way rating scale data, 131
triple, 119
two-way analysis of variance, 154
uncentered components, 120
two-way examples, 451
shape structure, 208
chemistry, vvii, 13
batch water example, 184
chromatography example, 190
commercial applications, 13
desalination of water example, 473
early reference three-mode analyses, 24
enzymatic browning example, 23, 473
llabour flow example, 184
improving core consistency, 186
metal desalination example, 73
missing data, 148, 154
multivariate data, 470
multivariate analysis, 17
robust PCA, 300
sugar solution example, 5
theoretical multivariate models, 212
unimodality constraints, 72
chemistry, 12–15, 24, 69
Child's Report of Parent Behavior Inventory (CRPBI), 313, 315, 317, 320
child studies
attachment example, 465, 424
cooping example, 153, 344, 346, 354, 355
child studies (cont'd)
 education example, 4–6
 intelligence example, 6, 59
 learning to read example, 377
 parental behavior example, 313
 perceived-reality example, 36
 physical growth example, 394
 playing with peers example, 434–455
 problem behavior—CBCL, 356
 showing respect example, 73
 three-way questions, 5

Cholesky include study
 content rating scales, 8
 individual differences, 10
 judgment technical aspects, 9
 model selection, 191
 prelude space, 9
 research questions, 8
 sequence space, 6

chromatography
 scattering and normalization, 100
 missing data, 154, 159, 168
 multiple regression, 161
 multivariate, 975
 retention data, 160
 retention rate patterns, 160–167
 single dependent variable, 160

circle of fifths, 11

correlations multiway papers, 13

correlation matrix, 301
 frontal slice core array, 351
 grouping individuals, 404
 k-means, 404
 algorithms, 34
 examples, 406
 starting solutions, 417
 overview techniques, 23
 similarity measures, 404
 simultaneous with component analysis, 404
 three-way profile data, 404, 412

covariance
 definition, 26
 combination-mode, 15
 component
 meaning in PARAFAC, 212, 212
 component analysis, see multivariate analysis
 component analysis, see principal component analysis
 component constraints, see model constraints
 component interpretation, 310, 315, 320, 360
 component matrices
 comparison across models, 220
 comparison coefficients within a mode, 220
 compensatory scaling core array, 219
 comparability of centered and uncentered, 121
 content-based scaling, 220
 examples, 479, 486, 160, 316, 328, 367–368
 first-order component scores, 223
 first-order loading matrix, 222
 functional constraints, 400
 interpretation core array, 219, 220
 latent predictors, 222
 loading interpretation, 219
 metric for plotting, 220
 rotational freedom, 218
 nonsingular transformations, 218
 normalized components, 219–220
 normalized coordinate scaling, 219
 oblique, 218
 orthogonal, 222–223
 orthogonality, 218
 principal coordinate scaling, 219–220
 regression coefficients, 221
 rotations, 226
 scaling of components, 218
 second-order component scores, 223
 second-order loadings, 223
 sign reversals, 219
 standard coordinates, 219
 standardized regression coefficients, 221–222
 structure component scores, 221
 structured loading matrix, 224
 theoretical constraints, 219
 unit-length components, 210
 unit-norm square scaling, 219–220
 component uniqueness, 30
 component versus factor models, xvii
 components analysis, see principal component analysis
 compression, see PARAFAC algorithm, compression
 computer-intensive procedures, 187
 computer programs
 FastMCD, 301
 3WayPack, xviii, xxii, 63, 73, 451, 458
 adle package, 106
 AlSCOMP3, 42, 74, 96, 324
 CANDECOMP, 22, 24, 57, 487
 CANDECOMP INC, 64
 CuScikit, 485
 GEFPCAM, 101, 154, 162, 164
 Latent Gold, 452
 1 BIBA Toolbox, 290
 MICL, 173
 MixClus2, 431
 MixClus3, 431
 multilinear engine, 96, 155, 173, 488
 MultiMix3, 431
 N-way Toolbox, 63, 73, 473, 488
NORM, 174
PTAI, 487–488
SCA, 62–63
Tensor Toolbox, 73, 488
COMSTAT algorithm, see also TUCKALS algorithms
COMSTAT algorithm
Tucker3 model, 21
configurations
sets of, 33, 39
correspondence coefficient, 196, 313, 326
between-model comparison, 196
definition, 196
examples, 196, 323–324, 328
rule of thumb, 196, 328
conjugate gradient, 96
consensus molecular alignment, 40
constrained model, see model constraints
CORCONDIA, see core consistency
core array
anti-diagonal, 246
computation, 98
constraints, 69
diagonal and anti-diagonal slices, 247
diagonality criteria, 248
examples, 253
different variants, 64
examples, 338–340, 367, 369, 390
explained variability of components, 66
matricized, 55
maximal simplicity, 246–247, 255
maximum number of zeroes, 246, 254
miniature data box, 228
Murakami core, 249, 254–255
elements, 255
ParaFrac model, 65
ParaFrac model applied to core array, 256
simplicity, 245–247
per-component plot, 271
slice diagonality, 246, 248
superscriptarity, 60, 65, 185, 245–248, 323
examples, 328–329, 362
orthogonality, 66
theoretical simplicity, 254–255
three-mode models, 64
three-way simplicity, 56, 65, 179
formal proof, 66, 179
Tucker2 model, 64
Tucker3 model, 64
two-mode
simplicity, 245
two-way, 49
types, 246
core consistency, 185
core consistency plot, 186
dimensionality selection ParaFrac, 185
dimensionality selection problem, 185
examples, 205–206, 329–330, 481
core consistency
dimensionality selection ParaFrac, 185
dimensionality selection problem, 185
improving core consistency, 186
normalized, 185
core covariance matrix, see latent covariance matrix
correspondence analysis, see three-way correspondence analysis
correspondence analysis, see two-way correspondence analysis
covariance matrices
sets of, 31, 39, 47
ParaFrac model, 62
covariances vs correlations in multiway, 37, 124–125
covariance chart, 24, 469–470
cross-section regression, 148–149
cross-fitting iterative OLS, 150
covariance chart, 24, 469–470
cross-section regression, 148–149
cross-fitting iterative OLS, 150
local convergence, 149–150
local convergence, 149–150
ParaFrac model, 154
robustness, 300
successive dyadic fitting, 149
two-way generalization, 154
triadic algorithm, 154
triadic algorithm, 154
weighted, 149
cross-sectional data
versus repeated measures data, 31
cross-validation, 32, 341
CubaBach, 488
D
data set
academic suitability data, 463–464
acoustic particle data, 480, 482–485
blue crab data, 409–411, 414–415, 417, 419, 422, 424, 432
chair-style data, 262–263
Chopin prelude data, 8–11, 192–195, 197, 199–207
chromatography data, xxi, 159–160, 162, 164–168
facies data, 296
data set (cont'd) 231
 girls' growth curve data, 115, 268-259, 261
 364-366, 268, 270-272, 274-280, 375,
 384-398, 400-401
 happiness data, xx, 444-447, 456-451,
 453-454
 hospital data, 375, 387-393, 394
 hospital data, 466, 467
 kuize data, 174
 multiple personality data, xx, 350, 361,
 362-371, 471, 476-479
 NICHD data, 368-173
 parental behavior data, 313, 316-319, 323-324,
 325-328, 330-332, 334-335, 337-339,
 341, 343
 peer study data, 454-457
 Strange Situation data, 425, 432
 sugar data, 144, 267, 269
 university staff data, 461-462
 world of woman data, 267
 degeneracy, see Partial model
 degrees of freedom, 182
 bivariate model, 137
 counting free parameters, 177
 deviance plot, 181
 maximum-product rule, 177
 multi-way component models, 176
 multi-way models
difficulties, 177
 Partial model, 177
 rank of multi-way arrays, 178
 three-way interactions, 178
 Tucker2 model, 177
 Tucker2 model, 177
two-way models, 177
demography
 mobility of work force example, 459
derived data, 31
deviance plot, 161, 176, 181
 between-model selection, 182
 convex hull, 181, 184, 334
 examples, 356, 356, 481
 degrees of freedom, 184-185
 examples, 163, 192, 194, 333, 333-334, 335-335,
 362-363, 395-306
 four-way examples, 476-477, 481-482
 a-criterion, 176, 183-183
 algorithm, 182
 comparison DIPM procedure, 183
 convex hull, 183
 examples, 192, 194, 255, 362-363, 396
 four-way examples, 476, 481
 smallest angle, 183
 Tucker2 model
examples, 192
 DIP procedure, 176, 179
 comparison of criterion, 183
 eigenvalue-larger-than-1, 179
 examples, 192, 194
 four-way examples, 477
 multiway screen plot, 179
 salience value, 179
 Tucker2 model
 examples, 193
dimensionality selection, 155
 bootstrap, 176
 examples, 314, 357, 362
 four-way examples, 478
 jackknife, 176
 large Parafac models, 184
 minimum-product rule, 179
 Parafac model, 184, 214
 degree of superimposing, 185
 examples, 192, 194-195, 323
 split-half procedure, 184
 split-half procedures, 323
 Tucker2 model, 184, 203
 examples, 192
 Tucker versus Parafac models, 184, 362
 direct fitting, 61
 model hierarchy, 186
 direction cosines, 352, 483
discrepancy function, see loss function
display models
 joint biplot, 273, 340
 examples, 167, 214, 340, 357, 369, 389, 423
dissimilarity matrices, see similarity matrices
 dot product, 560
double centering, see centring
dynamic factor models, 376, 461

eyology
 preprocessing, 120
 unimodality constraints, 72
 BFG data
 component constraints, 61
 four-way data, 472
 multiway, 470
 six-way data, 472

chromatography, 470
HPLC see expectation-maximization
environmental sciences, see environmental sciences, non-acidic particulate data, 95, 471-472
air pollution, 471-472
environmental stress on birds, 405, 489-491, 424
receptor modelling example, 480
equal average diagonal normalization, 125
equal average diagonal standardization, 17
equilibrium circle, 262
examples, 396, 398
Eshar’s Man with a Cochecido, vi
Euclidean distance, 493
Eye White: Eye Black, and Jane, see psychology
event-related potentials
exploratory Parafac models, 64
exchangeable, 17, 18, 46, 376
expectation-maximization algorithms, 80
estimation, 189
maximum likelihood, 80
missing data estimation, 81
exploratory factor analysis
rotational indeterminacy, 88
exploratory versus confirmatory models, xvii
extended core array, 64
and Tucker3 model, 55
binary, 462
diagonal
Parafac model, 64
two-way, 65
examples, 339, 369, 371
explained variance, 54
nondiagonality, 63
plotting
elements, 394
slice diagonality, 66, 246, 247
Paramac model, 65, 333
symmetric slice, 232
Tucker2 model, 55
two-way orthogonality, 66
extended three-mode models, see triadic/3
external relationship analysis, see analysis of
dependence
external validation, 324, 322
two-way, 324
external variables, 234, 212
factorial design, 234
handling external information, 234
using functional information, 234
using rank order information, 234
using regression on components, 224
F
FANOVA, factor analysis of variance, 135
after centering, see centering
after normalization, see normalization
coefficients, 29
type of, 29
residual ratios, 292, 299, 327
four-way data, 470
fixed configurations, see model constraints,
external constraints
fitting three-way data, 7, 12
GMRI data
four-way, 472
two-way, 473
multicore, 470
four-way core array, 254, 475
four-way data, 16, 481
accelerated particles data, 96, 472, 480
agriculture, 5, 471
analysis techniques, 7
categorical, 455
clustering, 404
EEG example, 472
extinction-emission matrices example, 472
factorial data, 471, 472
FMRI example, 472
longitudinal, 373
modeling, 474
multiple personality data, 350, 361, 471
panel, 469
profile data, 35, 470–472, 474
psychology, 5, 470
rating scale data, 345, 471
stimulus-response data, 470
Tucker3 example, 476
from three-way to two-way data, 45
from two-mode to three-mode data, 44
from slices, 29
full core array, see core array
fully crossed designs, see also three-way data,
fully crossed
fully crossed designs, 28, 31, 33, 35, 38, 43, 308, 470
binary data, 350
common three-mode models for, 45
comparing to multitrait designs, 43
longitudinal data, 373
fuzzy three-mode clustering, 21, 25
G
GRAMOVA, 73, 141, 473
general Euclidean models, 26
general linear model, 52
generalizability, 18, 32
generalized Procrustes analysis, 25, 39, 40, 51,
106, 234
multiple imputation, 111
generalized subjective metrics model, see
INDSCA, model
GEP CAM
description, 102
missing data, 101, 154
H

Harr–Kaiser independent cluster rotation, see concom

HICLAS, see hierarchical classes models

hierarchical classes models, 25, 42, 159, 467

algorithms, 465

association rule, 462

comparative, 465

discriminative, 463

binary component matrices, 463

binary data, 459, 467

binary extended core array, 465

Boolean algebra, 460

component matrices

eas examples, 464

equivalent relationships

eas examples, 462–463

examples, 464

hierarchical relationships

eas examples, 463, 463

identifiability, HICLAS models, 465

model comparisons, 463

Paule–Mandel model, 462–463

redundant

simulation studies, 465

Tucker–HICLAS model, 463, 462

eas examples, 461

Tucker3–HICLAS model, 469, 469, 469

examples, 469–467

Tucker3 vs. Tucker2–HICLAS model, 464

higher-order component models, 22, 231

higher-order singular value decomposition, 50

higher-way analysis

references, 458

higher-way data, 5, 16, 469

analysis techniques, 7

categorical, 473

examples, 471

categorical designs, 473

interactions, 473

interaction, 470

longitudinal, 373

multivariate clustering, 404

origin, 469

potential, 469

categorical, 469

rating scales, 345

Tucker models, 487

history

book by Snaide et al., 12

Carroll, 12

chemistry, 12

Chrysler, 12

cinematic analysis, 12

chromatography, 12

founders, 12

psychometrics, 12

early Tucker3 and Parafac models, 21

evaluation and multiway analysis, 12

factor analysis terminology, 21

Healman, 12

independent component Tucker model, 103

individual differences, 12

Jordan, Hitchcock, and Oldenburger, 20

linear algebra review, 20–21

Osgood, 12

tree–mode analysis, 8, 12

eigenvalue data, 24

Tucker, 12–21

horizontal slices, 29

hormonology

to mimic of cases example, 106

hypothesis testing, 7, 20, 21

subtractive model, 137

complexity, multivariate data, 32

descriptive use, 32

repeated measures, 375

structural equation modeling, 385

three-way interactions, 178

I

idealized subject, see interpretation

IDIOSCAL model, 40

INDSCAL model, 23

implicit theories of personality

three-mode analysis with constraints, 73

INDCLUS, see hierarchical classes models

INPLS, see individual differences clustering

independence of observations, 46

mixture method of clustering, 408, 422

indirect fitting, 26, 39, 64

model hierarchy, 186

individual differences clustering, 23, 26, 40, 404

individual differences scaling, 23, 26, 40, 232

linear constraints, 70

normalization, 134

preprocessing, 132

individual differences

centering, 132

center problem, 349
concept image, 348
dissimilarity data, 41
examples, 359
extended core array, 351–352
extent of, 349
in three-way analysis, 12
many subjects, 351
model selection, 193, 206
multimodal models, 18, 212
number of components, 349
Parafac model, 353
preference rank order data, 49
preprocessing, 133
rating scales, 250
raw versus derived data, 31
response style, 317
scale loadings, 349
scale usage, 348
scaling loadings, 348–350
similarity data, 40
subjective judgements, 350
three-mode models, 350–351
direct-way rating scale data, 346
Tucker2 model, 251
Tucker3 model, 352
types, 386
Venn diagram from populations, 7, 211
PDSDCAL model; see individual differences
scaling
influential points, 281–283
inner product, 494, 500
instrumental variables, 561
intelligence tests:
different age groups, 172
negative covariance, 70, 95
interbattery method of factor analysis, 313
interactive coding, 276, 278, 434, 441, 449, 452, 453, 461, 475
internal relationship analysis; see analysis of
independence
internal validation, six, 322
assessing fit, 315
examples, 342, 487
stability parameters, 233
interpretation
fits for subject mode, 234
samples of vectors, 9
asymmetric treatment of modes, 211
complexity, 459
component models, 209
component uniqueness, 212
components and core array, 229
conditional statements, 233
normalized coordinates, 231
content based, 216
core arrays, 213
complexity, 470
examples, 382, 385, 484, 485
latent covariances, 225
percentages of explained variation, 225, 227
regression weights, 225–227
scaling components, 225
scores of idealized or latent elements, 225
size elements, 236
strength link between components, 225
three-way interaction measures, 225
weight component combination, 225–226
Euclidean distances, 249
extended core array, 225, 231
direction cosines, 225, 233
full data arrays, 228
graphical displays, 216
idealized subject, 213, 228, 229
keeping track of signs, 230, 231
lack of rotational freedom, 214
latent variables, 213
meaning for all components, 229–230
model based, 210
multidimensional point of view, 210–211
low-dimensional subspaces, 211
multivariate point of view, 210
role random samples, 211
Tucker versus Parafac models, 211
Morishita term
extended core array, 214
Parafac component weights, 225
Parafac components, 212
Parafac model, 212, 214, 315
lack of solution, 214
prototype conditions, 213, 228
revisions, 210, 213
effect on core array, 218
scaling of components, 210
scaling of core arrays, 210
statistical meaning parameters, 209
subspace interpretation, 211
symmetric treatment of modes, 211
time trends, 213
transformations, 210
Tucker model, 212, 213, 215
availability solution, 214
Tucker versus Parafac components, 214, 215
Tucker3 model, 217
unimodal axis property, 56, 112
invariant factor analysis, 20
isometry, 272, 274
Iterative algorithms
 convergence, 81
 divergence, 81
 global maximum, 81
 local maxima, 81
 local minima, 82
 monotone convergence, 81
 multiple solutions, 81-82
 nonconvergence, 81
 number of iterations, 82-83
 overrelaxation, 83
 slow convergence, 82-83
 starting solutions, 82
 step size, 82-83
 stopping criterion, 81-82

Iterative ordinary least squares, 150

Iterative proportional fitting, 125

J
jackknife, 186, 176
 bases, 186
 examples, 207
 expectation-maximization estimation, 189
 implementation methods, 189
 multiway analysis, 189
 outliers, 189
 predictive power, 188-189
 stability estimation, 189
 stochastic, 188

joint biplot, see plotting
joint plot, see joint biplot

L
latent class model, 25
 nonnegativity constraints, 70
 latent covariance matrix, 378-381, 382, 384, 401
 assessing change, 392
 assessment stability, 793
 assessment stationarity, 384, 392
 autoregressive process, 493-494
 directional cosines, 393
 examples, 393-394
 homogeneity, 384
 identity matrix, 385
 interpretation, 383
 normalization, 383-391
 null model, 385
 structural equation modeling, 382
 Tucker2 model, 381, 383
 uniform autocorrelation, 383
 latent three-mode path models, 401
 lateral slice, 29
 least-squares loss function, 79-80
level-fit plot, see sum-of-squares plot
levels, definition, 28
LIBRA robustness Toolbox, 299
Likert scales, 346, 360
linked-mode analysis, 177
loadings, see principal component analysis
loadings
 usage term, 48
loglinear analysis, 42, 434
logits, 460
loss function, 19
 minimization, 79

M
marketing
 multiway rating scale data, 346
 preference rank orders, 40
 repetitive advertising, 24
mathematics, 13
MAHA!, xvi, 63, 73, 299, 473, 498
matrices, 7
 Tucker Method I, 98
 matrix-conditioned, 42
maximum product rule, 98, 103, 177
maximum likelihood clustering, 23
maximum likelihood Parafac model, 159
maximum likelihood PCA, 151-152
 missing data, 151
 probabilistic PCA, 151
 two-step procedure, 151
maximum variance components, 211, 212, 218, 321, 325
interpretation, 211

means plot, see mixture method of clustering
medicine, 15
 EEG example, 344
 MRI example, 344
methods and models chart, 25-26
minimization
 difference structural image data, 79
 loss function, 89
minimum product rule, 56, 179
 orthogonality core array, 66
PHSS, 190
minimum spanning tree, see plotting
missing data, 143
 analysis for estimation, 144, 157
 analysis in spite of, 144, 157
 analytical chemistry, 144
 at random, 145
 bootstrap procedures, 183, 159
 comparative Parafac analysis, 154
comparison, 154 and crossections, 155
correlation algorithms, 156, 161, 163–165
completely at random, 145
completely missing data, 145
completely missing values, 145
consistent constraints, 146
computer programs, 154
correlation intervals, 150, 164
correlation regression, 148, 150
equivalence, EM and iterative OLS, 150
estimation, 164, 159
examples, 163, 148
model dependence, 158
multiplicative model, 157
triangular model, 157
with preprocessing, 157
without preprocessing, 157
expectation-maximization methods, 147–148, 150, 158, 170
inclusion variability, 147
full-information methods, 147
impairing stochastic data, 147
iterative OLS and crossections algorithms, 150
Levenberg-Marquardt algorithm, 155
linked mode data, 154
maximal likelihood methods, 147–148, 158
maximum likelihood PCA, 153
missing at random, 147
missing fibers, 146
model comparison, 156
multiple imputation, 147–148, 152, 157, 158
error reduction, 147
examples, 171–173
limited experience multivariate, 148
stochastic data, 147, 157
multivariable-multivariate matrix, 146
multivariate data, 154, 157
necessity of one-step procedure, 153
nonconvergence, 161, 164, 168
examples, 451
not at random, 145
optimal scaling, 148, 152
outlier, 144
planned missing, 145, 173
examples, 451
preprocessing, 148
PCA, 148
random variables, 119
richness multivariate data, 146
single imputation, 130, 156
overfitting, 152, 157
starting values, 146, 147, 148, 150, 181
test equation, 173
two-mode PCA, 147–149
two and three-way patterns, 145
types of missing data
examples, 174
mixed multiplicative model, 146
complexity interpretation, 146
constant components, 146
estimation, 146
identification constraints, 146
Parallel model, 146
Tucker3 model, 146
mixture method of clustering
allocation to groups, 419
categorical response variables, 406
common correlation matrix, 421
examples, 421–422
common covariance matrix, 406, 412
diagonal, 413
examples, 410, 413, 416, 426–427
correspondence programs
Latent Gold, 452
MLWin2, 431
Mplus3, 431
Multivariate, 431
correct allocation rate, 419
examples, 420, 426
covariances, 405
distributional assumptions, 404, 408
examples, 410, 424, 432
exploratory use, 406
group-specific covariance matrices, 406, 412–413, 421, 430
examples, 413, 416, 421, 425, 427–428
independence assumption, 408, 432
lack of hierarchy, 418
likelihood function, 407, 410, 415–416
likelihood ratio test
examples, 416
local independence, 413, 431
local maxima, 407, 415–416
maximum likelihood estimation, 407
means, 408
examples, 410
three-way array, 420
mean plot, 420
examples, 411, 420–421, 427
standard errors, 421
missing data, 430
mixing proportions, 407
multivariate multivariate, 406, 414, 430
examples, 414–415
multivariate normality, 405–406, 413–414, 412
ordering of solutions, 418
examples, 419, 426
mixture method of clustering (cont'd)
 normality, 407
 number of groups, 407, 413, 415
cross-classification, 418, 426
 examples, 416, 418
 likelihood ratio test, 415–417
 measures of agreement, 418
 posterior probabilities, 418
 number of parameters, 412–413
 examples, 413, 417
 posterior probabilities, 408, 419
 examples, 420, 426
 references, 432
sample size, 413
singular covariance matrices, 412
starting allocations, 410, 416
 examples, 416, 425
 hierarchical clustering, 407
k-means, 416
two-mode clustering, 407
two-mode mixture method, 407
 Ward's method, 407, 416
starting solutions, 407
statistical model, 26
 theoretical background, 432
three-mode, 23, 25, 35, 404–405, 411, 415,
 424–425, 432
distributions, 406
group structure, 407
two-mode, 404, 425
validation
discriminant analysis, 422–423, 429
 external information, 424–430
 linear discriminant analysis, 422–423
 ordination, 408, 422–423, 432
 quadratic discriminant analysis, 422–423
model, xvii, 16
definition, 28
model, use of term, 18
model and dimensionality selection, 161, 176, 192,
 314, 323, 333, 354, 362, 387, 395, 446,
 449, 455, 466, 476, 481
model and number-of-clusters selection, 410, 415,
 425
model constraints
c constant components, 72
c equality constraints, 74
c external configurations, 73
c examples, 366–367
 external variables, 72
 factorial regression, 73
 functional constraints, 72
 linear constraints, 70
merging incompatible data sets, 73
missing data, 74
nonnegativity, 70
optimal scaling, 74
order constraints and uncorrelated data, 73
order constraints and clustering, 74
orthogonality, 69
overview, 68–69
smoothness, 71
splines, 71
unimodality, 72
model hierarchy, 21, 186
between-model selection, 66, 186–187
 direct fitting, 186
 examples, 206
 French proposals, 186
 fully crossed data, 67
 indirect fitting, 186
 mathematical details, 186
 three-mode models, 67–68
 Tucker2 model, 186
 Tucker3 model, 186
model matrix, see structural image
model selection, see also between-model selection
model selection, see also model hierarchy
model selection, 66, 175
 chemistry, 173
 content-based arguments, 208, 333
 criteria, 175
 example and model hierarchy, 68
 examples, 190, 208, 333–334
 jackknife, 189
 PRESS criterion, 190–191
 restrictions on core arrays, 67
 Tucker versus Parafac, 334
nonpolar scalescentering, 131, 360
multiway factorial data, 131
preprocessing, 129
 three-way rating scale data, 340, 360
 triadditive modeling, 139
more sets multiway data, 487
multiblock multiple regression, 25
multidimensional point of view, 214, 217, 221, 235
 rotation, 239
multidimensional scaling, 361
 preference rank orders, 40
 type of design, 33
 multilevel latent class model, 405
 multilinear, 15
 multilinear engine, 96, 155, 173, 488
 multitau, 19
multimode analysis, see multiway analysis
multimode covariance matrix, 22, 26, 33, 37, 47,
 376–377, 382, 385
algorithm, 88, 99–100, 299
confirmatory, 238
exploratory analysis, 37
latent covariance matrix, 382
missing data, 155
size for SEM, 379
structural equation modeling, 385
triple-mode methods, 385
multicollineation—multisubject data, 38
multiple imputation, see also missing data
multiple imputation, 152, 156, 168
absence stochastic mode, 152
between-imputation standard errors, 153
between-imputation variance, 152, 171
choice of matricization, 156
comparing PCA bootstrap solutions, 154
comparing PCA solutions, 153
computer programs, 174
MICE, 174
NORM, 174
error estimates, 157
estimate cut of range, 157, 169
estimates missing data, 157
expectation—maximization methods, 172
generalized Procrustes analysis, 171
matricizing three-way data, 156
multiway analysis, 158
NICHD
comparison of solutions, 171–172
fit measures, 170
PCA, 153
tall combination-mode matrix, 156
wide combination-mode matrix, 156, 169
within-imputation standard errors, 153
within-imputation variance, 152, 171
multiplicative adjustment, see also normalization
multiplicative modeling
two-way, 111
multisample data, 33, 38
multiset canonical correlation analysis, 25, 27
multiset data, 33, 38–39
compared to fully crossed data, 43
conversion to three-way data, 43
Parafac2 model, 62
residuals, 286
multisubject—multisample data, 38
multivariate—multisample matrix, 37, 47, 376
multivariate data
heteroscedasticity, 286
multivariate kernel, 414
multivariate longitudinal analysis, see also
repeated measures analysis
multivariate longitudinal analysis, 25
autocorrelation, 378
autoregression, 377
autoregressive models, 376
constraints on components, 377
descriptive modeling, 374
descriptive multimode covariance modeling, 377
dynamic factor analysis, 376
exploratory modeling, 375
functional constraints, 377
latent growth modeling, 377
latent structures, 374
multiway models, 374
role of time, 374
rotation of components, 378
smoothness constraints, 377
splines, 377
stochastic modeling, 374
structural equation modeling, 376
triple-mode component analysis, 378
time as interpretational device, 374, 378
trajectories, 378
variable and serial dependence
confounding, 378
without latent structures, 374
multivariate longitudinal data, 33–34, 36, 373, 385, 401
serial dependence, 378
variable and serial dependence
three-mode PCA, 378
variable dependence, 378
multivariate multiway analysis of variance
profile data, 133
multivariate one-way design, 135
multivariate point of view, 214–215, 221, 224, 235
Parafac model, 212
PCA loadings and scores, 211
rotation, 239
multivariate two-way factorial data, 138
multiway, see also three-way
multiway algorithms, 24
alternating least squares, 80
explicit algebraic solutions, 84
general characteristics, 84
lack of nested solutions, 84
number of components, 84
simultaneous solution for components, 84
multiway analysis, xiii, 3, 16
a scientific necessity, 3
algorithms, 82
analysis of residuals, 283
bootstrap, 233
stochastics, 233
chemometrics, 24
choice of models and dimensionality, 20
component analysis, 25
multiway analysis (cont'd)

confirmatory, 238

counting ways, 4, 488
data-analytic models, 20
dealing with complex questions, 6
design vs subject mode, 70
direct and indirect fitting, 61
distortion component space, 283
effects of outliers, 283

exposure, 281, 283

factor designs, 70

factorial designs, 70

fitting systematic variability, 184
generalizing three-way, 24

generalized-way data, 471

history, 6, 13

hyperbook, 5

hyperbook publications, 13

index-based notation, 488

individual differences, 17, 31

individual differences scaling, 23

interpretation, 18

iterative algorithms, 80

jackknife, 189

lack of sampling framework, 17

lack of sampling framework, 17

models versus methods, 20

notion, 487

outliers, 283

overview data types, 27

preprocessing, 113

presentation of results, 321

quality of solution, 287

rank, 21

reduction in parameters, 18

research questions, 5, 17

robustness, 282

role of physical models, 19

sample size, 176

summarization, 281, 283

multiway arrays, 16

rank, 178

multiway binary data, 33, 41

multiway block models, 24

multiway categorical data, 33, 433

multiway contingency tables, 33, 41-42, 434

interaction terms, 434

multiway data, xvii-xviii, 1, 3, 16-17, 33

multiway data designs, 33

multiway data designs, 17

totally crossed, 470

nonstochastic, 164

origin, 407

multiway factorial data, 33, 25

agricultural example, 36

chromatography, 160

coping data, 33

cross-cultural example, 471

cross-tabulation of hair example, 473

cytogenetic data example, 475

data-linkage fitting, 573

preprocessing, 119-120

preprocessing recommendations, 142

shifted multiplicative model, 122

single observation per cell, 111

eight-way, 473

spectroscopy example, 473

multiway log-linear modeling, 42

multiway longitudinal data, 168

multiway multiblock models, 25, 27, 32, 456, 487

multiway ordinal data, 33

multiway partial least-squares models, 25

multiway profile data, 33, 133, 168, 312, 320, 331

analysis methods, 25

degrees of freedom, 177

examples, 258

individual differences, 132, 311

modeling, 31, 320

preprocessing, 312, 321

preprocessing recommendation, 142

statistical models, 406

statistics, 174, 184, 314-316, 404

trilinear modeling, 139

multiway rating scale data, see also three-way rating scale data

multiway rating scale data, 33, 312, 345

analysis methods, 25

degrees of freedom, 177

fiber normalization, 134

frontal slice normalization, 131-132

lateral slice normalization, 131-132

normalization, 131

preprocessing, 312

profile arrangement, 38

trilinear modeling, 139

multiway scatter plot, 176, 179-180, 355

alternating least squares, 180

between-model selection, 182

comparison to linear plots, 181

convex hull, 180

descriptions, 180, 192-193, 195, 333, 335, 362

descriptions of convex hull, 180

four-way examples, 476-477

Pareto model, 182

elements, 326

Pareto Method I, 180

Marrkam form

correlated data array, 231
Tucker2 model, 222–223
Tucker3 model, 224, 228
music
classical, 8, 191
judging Chopin’s preludes, 7, 191, 346

N
N-way Toolbox, 63, 73, 473, 488
nested designs, 33, 38
nested-mode biplot, see plotting
nested-mode per-component plot, see plotting
Neuenschwander, 470
NICHD data
background black families, 168
preprocessing, 169
relinear canonical correlation analysis, 23
nonsymmetric correspondence analysis, 133
norm of a matrix, 494
normalization, see also preprocessing
normalization, 115–116, 124
appropriate, 112
centering combined, 127
normalization components, see component matrices
definition, 112
degrees of freedom, 190
effects of, 111
equal average diagonal, 125
equalizing range of variables, 113, 127
examples, 116
arguments in favor, 126
model incompatibility, 124
standard scores, 124
tour-way, 474
homoscedasticity of error terms, 116
incompatible centering, 127
latent covariance matrix, 383
missing data, 153
model-based arguments, 116, 123–124
multiplicative adjustment, 111
multiway rating scales, 121
success in PCA, 115
none, advantage, 126
overall, 129
PCA, 110
preceded by centering, 127
ratio scales, 160
recommendations, 142
response scales, 123
robust alternatives, 113, 298
advantage double normalization, 125
examples, 344, 386, 395, 481
incompatibility double normalization, 125
model compatibility, 124
orthogonal, 125
per scale, 131–132
per subject, 131–132
per variable, 133
similarity matrices, 154
simultaneous normalizations, 125
sum-of-squares plot, 292, 316
variables same ranges, 162
normalized coordinates, 441
notation, 27, 490
Figura-like diagrams, 487
index-based, 438
multiway Kautscher, 487
standardization of terminology, 358
numerical uncase bull-based selection method, see deviance plot
meaning
relational communication example, 134

O
object variation, 69, 332
oblique components plot, see plotting
offset(s), see centering
optical physics, 5v
optimal scaling, 42
measurement levels, 42, 291
multiway analysis, 74, 434
optimization algorithms, 80
ordinal multiway data, 42
ordination, see also mixture method of clustering
ordination, see also principal component analysis
ordination, 85, 130–131
cluster means, 420
cluster validation, 412, 421, 432
elements, 423
clustering, 404, 406, 422
outliers, 281–283
accommodation, 282
cause of three-way interactions, 123
component analysis, 284
preprocessing, 283
probability plot, 286
Raw distance, 285
residual sum of squares, 285
testing for discordance, 282

P
parings
multiway analysis, 3
Examples, 328–327
Un Crossing algorithm, 86
Evaluation of algorithms, 86, 88
Example acceleration, 92
Examples, 93
Linear constraints, 94
Local minima, 83
Multimode covariance matrix algorithm, 87
Multiple solutions, 92
Nonconvergence, 61, 83
Nonnegativity constraints, 96
Optimal scaling, 96
Overrelaxation, 96
Sensitivity to local optima, 85
Simultaneous matrix diagonalization, 85
Slow convergence, 86
Starting solutions, 86–87
Successive linear approximations, 86
Tucker cross product algorithm, 86
Uniqueness, 88
Uniqueness and applications, 88
Parafac core array, 65, 127, 232
Calculation, 65
Examples, 205, 329, 332
Tucker structure, 338
Parafac model, 22, 59–60, 85–86
Posterior clusters, 71
Prior clusters, 70
Aerosol particles example, 472
A Tucker3 model, 55, 555
Basic forms, 60, 215, 218
Chemistry, 22
Chemometrics example, 475
Common factor model, 62
Component interpretation, 322
Component uniqueness, 50, 61
Constant components and ANOVA, 75
Constant correlations, 58, 333
Consistency, 58, 59
Contrast components, 95
Definition, 51
degeneracy, 59, 61, 83, 89, 214, 232
Surface, 92
Boundary, 90, 91, 362
Constraints, 90
Divergent, 90, 204
development, 90
interpretation, 90
permanent, 90
three-way rating scale data, 353
triangular product, 90, 204
Tucker variation, 90, 91
degrees of freedom, 177
dimensionality selection, 184, 204
core consistency, 183
degeneracy, 193
core structure, 193
Example, 344
equivalence Tucker3 model, 256
Evaluating fit, 233
Exploratory, 85
Exploratory solution, 86
Exploratory physical models, 61
Fitting minimal dimensionality, 184
Fitting raw data, 62
Facies example, 344, 473
Four-way, 472, 474, 481
algorithms, 96
Component interpretation, 474
MRI example, 475
Orthogonality, 474
Uniqueness, 474
Functional constraints, 72
Generalization singular value decomposition, 61
Harshman's diagonals, 184
HRCLAS variant, 460
INDSCAL, 22
Interdependence technique, 26
Intrinsic axis property, 61, 213
Lack of rotational freedom, 38, 214
Lack of rotational freedom, 38, 214
Less than Tucker3 model, 59
Matrix rotation, 56
Missing data, 148
mixed multiplicative model, 141
model hierarchy, 66
Modeling interactions multiplicatively, 73
Number of components, 60
Components that number, 473, 481
models more restricted than Tucker model, 59, 84
Examples, 481
Multivariate profile data, 313
Multivariate rating scale data, 195
Multivariate uniqueness, 475
Nonnegative components, 70
Nonorthogonality of components, 80
Not a decomposition model, 56
Noncentered Tucker3 model, 57
Number of components, 58, 215, 353
examples, 324
object variation, 60
univariate three-way ANOVA, 73
plotting (cont'd)

- adding explanatory information, 262
 examples, 261–263
- adding external variable, 262
- adding group information, 262
- split-components plot, 266, 322
 examples, 266–269, 387, 398
- auxiliary orthogonal basis, 269
- coordinate spaces, 258
- different modes together, 270
- distance from PCA, 259
- extended core array examples, 391

higher-dimensional spaces, 262

- analysis, 266
- anchoring of points, 265
- dynamic graphics, 262, 266
- examples, 262, 265, 268
- minimum spanning tree, 262, 265
- paired-components plot, 202
- sizes of points, 265
- stereoparallel, 265

- three-dimensional graph, 265

joint biplot, 271, 340, 423

- advantages, 274
- and nested-mode biplot, 449, 278
- construction, 273, 274
- correspondence analysis, 435
- examples, 9.167, 274–276, 33n, 340–341
- 256–359, 360, 370, 389, 416, 423–424
- 428–431

- joint biplot axes, 273
- three-mode CA, 440

- unequal spaced, 434
- minimum spanning tree
 examples, 264, 396

- nested-mode biplot, 276–370, 390, 402
- construction, 276
- correspondence analysis, 435
- covariance form, 277
- distance form, 277
- examples, 277, 279, 399, 447
- origin, 277
- three-mode CA, 440–441
- total dependence, 442
- trajectories, 277–278, 441–442, 447, 457

- nested-mode per-component plot, 278, 269, 390, 402
 examples, 399–400

- normalized versus principal coordinates, 260, 482

- oblique components plot, 269
 examples, 278, 329, 321
- paired-components plot, 113, 167, 290, 321–322

- examples, 19–11, 166, 204, 329, 355–356, 363–365, 397, 430, 483, 484

- origin, 133, 258, 278, 337, 364, 400

- parallel components, 269
- per-component plot, 212, 230, 271, 322
 examples, 271–272, 316–319
- principal coordinates, 482
- principal versus normalized coordinates, 260, 352
 examples, 261
- single modes, 260
- three-dimensional spaces
 minimum spanning tree, 263
 two-mode biplot, 271, 273

- polyhedra, 26
- predictive power, 188

- basics, 180
 examples, 181, 207–208
- jackknife, 188
- model selection, 190
- preprocessing, 190

- PKISS, 190

- W-statistic, 190

- predictive validity, 176
- preference data
 analysis methods, 36
 preference mapping, 361
 preferences rank orders, 33, 46
- preprocessing, see also centering
 preprocessing, see also normalization

- preprocessing
 arbitrary means and variances, 128
 arbitrary variances, 128
 centering plus normalization, 127
 centering precedes normalization, 127
 comparable means and variances per condition, 129

- comparing different preprocessing, 129
- computation between datasets, 116
- content-based arguments, 116, 117
- definition, 106
- filter normalization, 129
- growth curves, 115
- incompatible means and variances, 129
- interpretable means and variances, 136
- interval scales, 111, 128
- iterative centering and normalization, 127
- longitudinal example, 116
- missing data, 128
- model-based arguments, 116–117
- monotonic scales, 129
- multivariate data, 113
- multivariate factorial data, 111, 129
- objectivity, 114
neural midpoints scale, 128
one-step procedure, 118, 128
overall normalization, 129
perpendicular centering and normalization, 127
profile preprocessing, 113. 130, 142, 283, 312,
314, 321, 332
recommendations, 141
similarity matrices, 144
slice centering, 129
summary recommendations, 112, 117
three-way data
number of means, 112
number of normalizations, 112
three-way profile data, 130
two-step procedure, 117, 118, 128
two-way data, 110
two-way profile data, 110
type of arguments, 112
PRLSS, see predictive power
principal component analysis, xvii–19
bilinear model, 217
containing, 110
coefficients as generic term, 217
component loadings, 216
correlation scores, 216
coordinates as generic term, 217
covariance form, 215, 216, 222, 241, 259
distance form, 216, 259
examples, 410
Hotelling’s geometrical view, 44
loadings, 19
multiplicative vs additive terms, 48
normalization, 110
normalized coordinates, 216, 259
Pearson’s statistical view, 44
preprocessing * model fitting, 110
preservation Euclidean distances, 260
principal coordinates, 216, 259
principal component analysis
principal coordinates, 411
principal component analysis
projecting into a lower-dimensional space, 44
reduction to a limited number of components, 44
robustness, 322
tabular multivariate, 88
scores, 19
standardized regression coefficients, 216
sum of rank one matrices, 49
symmetric view of coefficients, 217
variable component coefficients, 216
principal component residuals, see residuals
principal coordinates, see principal component analysis
probabilistic PCA, 151
profile arrangement, see multiway rating scale data
profile preprocessing, see preprocessing
profile preprocessing, 382
examples, 395
projection, 509
proportional profiles principle, 22
psychology, 21
Eve White, Eve Black, and lane, 361, 471, 476, 479
happiness example, 444
hedonic reactions to frustration, 466
implicit theory of personality example, 73, 199
multiway rating data, 35
perceived reality study, 36
showing respect example, 471
stimulus-response data, 345
unimodality constraints, 72
psychometrics, 12
PTAI, 437–488
Q
quadrilinear, 16, 229–230
quasi three-mode PCA, 26, 37, 100
R
R, xvii, 106, 487–498
rank, 49
core array, 178
core slice, 273
covariance matrix, 299
degrees of freedom, 178
matrix, 436
MCD estimator, 298
minimum-product rule, 179
multiway arrays, 21, 178–179, 240, 244
Parafac model, 255
triple cosine matrix, 90
rank-one array, 85–86, 87, 69, 141, 243
rank one matrices, pen, 49
Rao distance
see residuals
RL-association modeling, 42
RCYMD-association modeling, 42
receptor modeling, 96, 480
reference model, 186, 274
biplot, 167
examples, 167
joint biplot, 273, 274, 448
examples, 340, 356, 389, 399, 423, 454
score-mode biplot, 276, 399, 441–442
score-mode per-component plot, 399
relative fit, 227, 242
relative residual
definition, 199
relative residual (continued)
 plot size versus levels, 201
 size and overall variability, 199, 203
 Tucker3 versus Tucker2 models, 200–201
relative residual sum of squares, 227, 289
repeated measures analysis, see also multivariate
 longitudinal analysis
repeated measures analysis, 26, 31, 37, 46
 between-subjects design, 375
 doubly multivariate, 375
 individual differences, 375
 multivariate, 25, 312, 403
 multivariate analysis of variance, 375
repeated measures data
 versus cross-sectional data, 31
replicated PCA, 86
resampling, see bootstrap
residuals
 distribution, standardized residuals
 examples, 342, 343
 gamma probability plot, 286
 examples, 283–286
 goals for examination, 285
 inspection distributions, 285
 least squares fitting, 285
 multivariate, 286
 principal component analysis, 284
 probability plot, 286, 288, 289
 Rado distance, 286–288
 residual plot, 289, 293
 examples, 293, 294, 342–343
 structured approach, 287
 structured sample, 286
 decision scheme, 287–289
 partitioning of variability, 287
 superimposition, 286, 293
 examples, 293–294
 unmodeled systematic trends, 284
 unstructured sample, 286, 292
 decision scheme, 287, 289
 response style, 133, 154, 318–320, 332, 340, 347
 individual differences, 348
 scale usage, 347
 social desirability, 347
 three-way using scale data, 346
 restrictions on time components, 30
robustness
 accommodation, 284, 299
 bad leverage points, 308
 bases, 285
 creation of outliers, 301–302
 cross-regression, 300
 decontamination, 297
 diagnostic distance plot, 305
 examples, 303, 305
 full-rank covariance matrix, 298
 gamma Q–J plot
 examples, 365–366
 goals, 284
 good leverage points, 305
 identification, 284
 minimum covariance determinant estimator, 298–299
 examples, 301–303
 missing data, 304, 305
 multivariate covariance matrix, 298–299, 301
 multivariate analysis of variance, 375
 orthogonal outliers, 295
 examples, 303
 outlying fibras, 295, 297
 examples, 306
 outlying individual data points, 295, 298, 300
 examples, 306
 outlying slopes, 295, 297
 examples, 296
 PCA per slice, 297
 penalty functions, 209
 penalization, 209
 penalization, 209
 principal component analysis, 295, 297
 projection pursuit
 component analysis, 297, 299
 multivariate analysis, 300
 quick-and-dirty, 300
 RA-PCA, 299, 305
 examples, 303–304
 regular points, 295
 RobPCA, 299, 305–306
 examples, 303–305
 robust covariance matrices, 297
 robust PCA
 examples, 304, 305
 robust preprocessing, 297–298
 robust regression algorithms, 297, 300
 role of different models, 306
 three-mode common factor analysis, 306
 two-mode procedures, 301
rotation, 249
 components and core array, 237, 249, 256, 339
 examples, 250–254, 339
 components
 simplification, 238
 content-based arguments, 239, 241, 249
 core array, 244
 maximal slice diagonality, 252–253
 maximal superdiagonality, 253–254
maximum variance, 248, 253
oblique, 246, 245
orthogonal, 248
reducing model complexity, 244
simplification, 244, 245
simplification, 248
slimplan, 248
eigenvalue diagonality, 248
superdiagonality, 247, 248
factor rotation, 247
counterrotation, 238, 242
effect on model fit, 240
enabling substantive development, 240
centralizing variances, 230
finding useful directions for interpretation, 239
Harris-Kaiser independent cluster rotation, 249, 243–244
examples, 367, 484
joint bipolar
examples, 423
model-based arguments, 239, 240
multidimensional point of view, 243
non-singular transformation, 238
normalized versus principal coordinates, 242, 246–250
oblimin, 241
oblique versus orthogonal rotation, 243
orthogonal and non-orthogonal axis, 238
orthogonal polynomials, 241
examples, 267, 387
orthomax family, 245, 249, 250
orthomax simplification function, 249
examples, 250–253
natural weights, 250
weights, 249
orthonormal, 248
Paradiso model, 237
promax, 241, 243
quartimax, 249
refinements, 240
simplification components and core array, 237
simplification components versus complexity core array, 239, 254, 238
examples, 268
simplification core array versus complexity components, 236
simplification versus complexity, 235
tau-mode components, 244
examples, 267, 387
transformations, 228
Tucker models, 237, 243
Tucker toward Paradiso, 247
Tucker2 model, 242
Tucker3 model, 243
tau-mode core array, complexity, 245
tau-way non-mutually exclusive, 239
variances, 240, 241, 243–244, 246–250
versus variance parameters, 237
rotational indeterminacy, PCA, 22, 88
rows
definition, 29
S
sample size
considerations, 176
outliers, 176
stability estimates, 176
stochastics, 176
SAS, 30
wide data arrangement, 46
scalar product, 494, 500
scaling arrangement, use multiway rating scale data
scores, use principal component analysis
scores
usage term, 18
second-order component models, use higher-order component models
semantic differential scales, 8–9, 72, 231, 346, 347, 160, 361
bipolar, 362
centering, 362
examples, 191
individual differences, 352
music appreciation, 191
normalization, 362
three-mode component analysis, 350
sensory perception, 39–40
example, 106
serial dependence, 384
shifted multiplicative model, 122, 123
advantages, 122
disadvantages, 122
signal processing, 13, 23, 96
cell phone example, 5
component uniqueness, 61
explicit Paradox models, 61
theoretical multiway models, 21
significance tests, see hypothesis testing
similarity
judgement of, 40
similarity data
analysis methods, 26
similarity matrices, 23, 40
double-centering, 134
frONTAL-Slice normalization, 134
preprocessing, 134
similarity matrices (cont'd)
sets of, 33
simplex
correlation matrix, 379-380
level and gain components, 381
Markov structures, 379
origin of, 379
quasi-79
standard PCA, 379
Werner, 380
simultaneous clustering and data reduction, 25
simultaneous component analysis, 26, 55, 37, 36, 400
Parrafac2 model, 62
simultaneous factor analysis, 26, 39
singular value decomposition, 48, 130, 148, 149,
160, 196, 227, 245, 271, 273, 436, 492,
494, 499
hans for multiway generalizations, 50
generalized
two-way correspondence analysis, 43
in multidimensional scaling, 139
modeling interaction, 138
multiway analogue, 227
PCA, 49
per frontalslice, 51
per slice of three-way array, 51
separate and generalized Procrustes analysis, 51
subspace uniqueness, 50
six-way data, 470, 472
slices, 8 slices
dice normalization, tac normalization
slices
notation, 29
types of, 29
social and behavioral sciences, xxiv, 13, 18-19,
238-239, 242, 311, 321, 344
sensing, 120
social studies
missing data, 145
interpretation components, 249
interval data, 128
missing values, 161
Parrafac2 applications, 63
sociology
organizational example, 385
narcissistic monetary example, 471
spatial evolution analysis, 25
spectroscopy
eliminating nonlinear Rayleigh scatter, 155
fluorescence excitation-emission data, 144, 155
multiway, 150
negative components, 70
negative estimation, 281
protein example, 472
undesired signals as missing data, 144
split-half procedures, see also dimensionality
selection
split-half procedure
examples, 325
orthogonal splits, 185, 325
Parrafac model, 184
examples, 326, 328
test sample size, 184
stochastic, 177, 184, 325
SPSS, 30
Categories, 42
wide data arrangement, 46
description, see descriptive plot
stages in examples
Stage 1: Objectives, xix
Stage 2: Data description and design, xix
Stage 3: Model and dimensionality selection, xix
Stage 4: Results and their interpretation, xix
Stage 5: Validations, xix
standard reduction equation, 138
standardization, see centering
standardization, see normalization
standardization
definition, 113
standardized component weights, 204, 267
STATIS, 20, 25, 37, 29, 78, 105-106, 375
add-on package, 106
companion, 106
interstructure, 106, 390
infrastructure, 106, 137
R, 106
sensory perception example, 106
taxonomy of norms, 106
statistical models, models, 20, 22, 25
statistical stability, 233, 322, 478
fit measures, 187
parametric estimation, 187
parameter estimates, 187, 188
predictive data, 312
stimulus-response data, 476
stimulus response three-way data, 39
stochastic longitudinal three-mode modeling, 36
Strange Situation
attachment research, 425
clinical classification, 425, 426
data set, 425
procedure, 425
strapping out three-way arrays, 7
structured basis, see structured image
structured equation modeling, 25, 37, 39, 47, 100,
124, 224, 374, 382, 383, 404
structure matrix, 120, 215, 321
structured component scores, 211, 222, 399
structured component, 382–383, 393, 401
algorithm interpretation, 212, 321
examples, 369
subspace uniqueness, 59, 243
SIMPLICA model, 53, 185
examples, 207
model hierarchy, 68
sum-of-squares plot, 287, 290
examples, 202–203, 290–291, 328, 331
multivariate ratio, 202
unbalanced growth, 291
standardization, 292
superdiagonality see core array
superidentity array, 185
superrarity, overall combination-mode matrix
system variation, 60, 392

T

total combination-mode matrix, 7, 15, 16, 30, 68, 98, 277, 297, 301, 304, 375
tensor, 16, 20, 86
Tensor Toolbox, 73, 458
terminology, basic reference, 29
test-retest reliability, 362
test equating
missing data, 173
The Three-Mode Company, xx, 238, 394, 451
three-order component models, see higher-order component models
three-dimensional blocks, see three-way array
three-dimensional graphs, see plotting
three-mode, see also three-way three-mode, see also three-way three-mode, see also three-way three-mode
preferred over three-way terminology, even three-way analysis
bath of, 7
dawn of, 24
exploratory, 7
history, 12
leading case for multivariate analysis, 44
multivariate analysis, 16
not necessarily, 7
when necessary, 7
three-mode books, 76
three-mode common factor analysis, 21–22, 26, 37, 223, 397, 494
interpretation, 224
longitudinal models, 377
missing data, 155
multivariate longitudinal data, 385
multivariate profile data, 312
three-mode component analysis, see also Tucker2 model
three-mode component analysis, see also Tucker3 model
three-mode component analysis
comparative data, 433
three-mode component models
generalization of two-mode PCA, 44
generalizations of SVD, 45
MCLAS variance, 460
model hierarchy, 67–68
three-mode components analysis, see three-mode component analysis
three-mode core array
rotation, 226
three-mode distances, 33
three-mode mixture method of clustering, see mixture method of clustering
three-mode model tree, 66–68
three-mode models
multivariate models, 16
three-mode partitioning, 23, 25, 35
three-mode path models, 379
three-mode principal component analysis, see three-mode component analysis
three-mode rank-order data, 41
three-mode scaling, 134
three-mode unfolding, 41
three-mode analysis of variance, see univariate three-mode analysis of variance
three-way binary data, see hierarchical classes models
three-way conjoint analysis, 76
three-way contingency tables, see also three-way correspondence analysis
three-way contingency tables, 220, 433–434, 437, 458
examples, 441
independence model, 434
inertia, 437
interactions, 437
marginal dependence, 437–438
marginal totals, 438
measuring dependence, 434, 437
one-way marginal totals, 436
partial dependence, 437
partitioning dependence, 438–439
degrees of freedom, 450
examples, 448, 449, 450
partitioning inertia, 438
examples, 448, 455–456
three-way contingency tables (cont’d) 457
three-way dependence 457
three-way independence model 457
three-way interaction 444
three-way plus error 459
total dependence 454, 457
unmeasured 457
two-way design interaction 444
examples 446
three-way correspondence analysis 444
three-way contingency tables 438–435, 437–458
three-way correspondence analysis 25, 42,
433–435, 437–458
summary axes 452
design variables 449
distributional equivalence 449
eliminating design margins 440
examples 455
examples 444
goals 448
interactions 439
interactive coding 449
interpretation of two-mode CA 442
interpretation
examples 447, 456–457
plot bipartition 440, 443, 452
examples 454
marginal dependence 445
model selection 451
examples 451
modeling dependence 435, 439, 458
examples 446, 455
modeling marginal dependence 439–440
modeling partial dependence 440
modeling total dependence 439
nested-mode bipartition 440–442, 452
examples 441, 452, 456
marginal dependence 445, 452
marginal dependence 445, 452
multifrequency data 449
partitioning dependence
examples 451
plotting all dependences 442, 452
plotting dependence 443, 440, 458
plotting marginal dependence 444
examples 452–454
reference mode 453
plotting partial dependence 442
plotting total dependence 441
sampling size 449
Tucker’s model 442
examples 449, 450
types of data 448
weighted least squares 430
three-way, see also three-mode
three-way array 16, 28, 34
three-way data array 16, 28, 34
three-way data analysis of dependence 32
three-way orthogonality 34, 36
Tucker2 model 351
Tucker3 model 352
Tucker3 model 352
three-way, see also three-mode
three-way data 16, 21, 38, 40
three-way data array 16, 28, 34
Tucker2 model 351
Tucker3 model 352
examples, 354
three-way ranging scales, 41
model comparison, 369
no individual differences, 347
two-way matching data, 41
two-way ultrasonic tree models, 25, 26
two-way unfolding, 26
time as an interpretational device, 36
time series data, 17
topographic component model, see Parallel model
topographic component model
explicit Parallel models, 61
trajectories, 46, 402
restat-mode biplot
examples, 441, 457
restat-mode biplots, 277, 442, 447
transformation, see rotation
multidimensional model, 112, 137-138
ANOVA decompositions, 148
common decomposition interactions, 140
complete Parallel model, 141
complete Tucker model, 140
constant component, 140
Cowan proposals, 138, 140
individual differences, 140
missing data, 257
offsets, 118
quadratic decompositions interactions, 140
types of, 138
analysis, 16, 58, 155, 221
mixtures
definition, 20
TUCKALS algorithms, 97-98
accuracy, 335
alternating least squares, 84
best approximate decomposition, 99
computation with Eplines, 103
covariance properties, 99, 103
decomposition, 100
EM algorithm, 99
global optimum, 85
guaranteed solution, 85
missing data, 99
missing data example, 103-104
multimode covariance matrix, 100
non-linear data, 100
quadratic two-mode PCA, 160
structural equation models, 160
quality solutions, 164
Tucker Method 1 as starting solution, 86, 304
Tucker2 model, 99
Tucker
references, 21
interview, 12
Tucker Method 1 algorithm, 97
dimensionality selection, 98
starting solution TUCKALS, 98
Tucker model
multiway analogues, singular value decomposition, 227
basic form, 215
cross-linking of components, 90
decomposition model, 84
dimensionality selection, 176
estimation, 101
evaluating fit, 231, 334-336
exploratory, 85, 333
fitting systematics, variability, 184
flexibility, 215
four-way, 474
functional constraints, 72
higher-order component models, 223
maximum product rule, 98, 102
multidimensional, 66
multiway profile data, 312
orthogonality, 90
overidentification, 90
partitioning of variability, 215
practical aspects, 334
projection into lower-dimensional space, 60, 211
rotational freedom, 213, 334
subcomponent interpretation model, 213
smoothness constraints, 71
subspace interpretation, 323
subspace uniqueness, 70, 211
transformational freedom, 96
Tucker structure, see Parallel model
Tucker0 model, see SimPCA model
Tucker1 model, 52, 180, 350
longitudinal data, 52
model hierarchy, 68
solved by two mode PCA, 52
Tucker2 model, see also extended core array
Tucker2 model, 53-54, 97, 99-102
asymmetry, 99
average correlation matrix, 223
basic form, 217
changes in scores and loadings, 223
decomposition model, 59
definition, 53
degrees of freedom, 177
extended core array, 231, 247
MTCLAS variant, 460
higher-order scores and loadings, 223
higher-order structure matrix, 223
INDSCAL relative, 23
joint biplot, 23-234, 226
lack of component uniqueness, 54
Tucker2 model (cont'd)
 lack of nesting, 54
 linear constraints, 95
 longitudinal example, 401
 model hierarchy, 68, 186
 Multikami form, 222–228
 preprocessing, 224
 orthogonality core array, 66
 Parafac variant, 231
 partitioning of variability, 54
 stochastic formulation, 382
 subspace uniqueness, 54
 full combination-mode matrix, 278
 Tucker3 algorithms
 comparison, 191
 GEPCAM and TUCKALS, 1st
 starting values, 161, 164
 missing data estimates, 164
 missing data
 convergence, 161, 164, 168
 Tucker3 model, see also core array
 Tucker3 model, 55, 97
 Appell's notation, 21
 basic form, 218
 complexity, 96
 component uniqueness, 56
 covariance form, 224
 decomposition model, 56
 definition, 54
 degree of freedom, 177
 Dull's procedure, 180
 distance form, 224, 228
 equivalence Parafac model, 158, 256
 examples, 8, 258, 469, 427
 external information, 53, 224
 generalization of SVD, 56
 HITCLAS variant, 460
 higher order components, 223
 higher-order SVD, 90
 joint blast, 273–274
 lack of nesting, 56
 linear constraints, 95
 loadings, principal coordinates, 55
 minimum-product rule, 56
 mixing data estimation, 159
 nested multiplicative model, 140
 model hierarchy, 68, 186
 more error than Parafac model, 59
 Mukaihara form, 224–228
 nested linear combinations, 228, 228
 partitioning of variability, 56
 per-component plot, 271
 precursor, 21
 rank-one array, 55
 restrictions on number of components, 86
 scores and loadings, 224
 tensor: standard coordinates, 55
 single component in a model, 56, 170, 333
 split-half procedures, 185
 structural image, 230
 symmetric, 96
 tensor, 56
 three-mode singular value decomposition, 439
 three-way orthogonal core array, 53
 two-component equivalence Parafac model, 197, 348
 used for compression, 103
 versus Parafac model, 213
 Tucker4 model, 475, 487
 compared to Tucker3 model, 480, 487
 examples, 481
 minimum-product rule, 95, 170
 model symmetry, 475
 multiple personality data, 471
 nec notation, 475
 Tucker6 model
 HMR example, 472
 Tuckerate model, 475–487
 algorithm, 24
 two-way and three-way data, 4, 30
 two-way contingency tables, see also two-way correspondence analysis
 two-way contingency tables
 chi-term, 438
 examples, 452–453
 dependence, 435
 independence model, 435
 inertia, 435
 measuring dependence, 435
 standardized residual, 435
 two-way correspondence analysis, see also two-way contingency tables
 two-way correspondence analysis, 435
 attraction between categories, 436
 bivariate, 437
 generalized singular value decomposition, 436, 479
 modeling dependence, 436
 partitioning inertia, 436
 pooling dependence, 437, 440
 principal coordinates, 220
 repulsion between categories, 436

U
 unfolding
 used for matricization in chemistry, 46
 uniqueness, see Parafac model
univariate multiway analysis of variance
profile data, 133
univariate three-way analysis of variance, 36, 229
examples, 133
univariate three-way factorial data, 138
decomposition, 138
univariate two-way analysis of variance, 111
univariate two-way factorial data, 125
Mandel contribution, 136
Lacke-Gellot discussion, 136–137

V
validating multiway analyses, 235, 486
validation, see also external validation
validation, see also internal validation
validation, 207, 322, 342, 422, 427, 486
variability, variance, sum of squares, 220
variable-component correlations, 48, 55, 130, 210,
216, 221–222, 225, 241–242, 244, 315,
320–321, 454
variable dependence, 284
varimax rotation, 240, 241, 243, 244, 249–250
examples, 196, 249, 254, 274, 338, 339,
364–367, 396–397
vector
angle, 500
collinear, 500
cosines and correlations, 500
length, 500
orthogonal, 500
projection, 500
vectors, 499

W
way, xvii, 16
definition, 28
weighted PCA, 57
wide combination-mode matrix, 7, 15–16, 30, 55,
98, 297–298, 301, 303, 378