Contents

Preface to the First Edition xv
Preface to the Second Edition xvii
Acknowledgements xix
Abbreviations .. xxi

1 An introduction to drugs, their action and discovery 1

1.1 Introduction 1
1.2 What are drugs and why do we need new ones? 1
1.3 Drug discovery and design: a historical outline 3
 1.3.1 The general stages in modern-day drug discovery and design 7
1.4 Leads and analogues: some desirable properties 9
 1.4.1 Bioavailability 9
 1.4.2 Solubility 10
 1.4.3 Structure 10
 1.4.4 Stability 11
1.5 Sources of leads and drugs 14
 1.5.1 Ethnopharmaceutical sources 15
 1.5.2 Plant sources 15
 1.5.3 Marine sources 17
 1.5.4 Microorganisms 18
 1.5.5 Animal sources 20
 1.5.6 Compound collections, data bases and synthesis 20
 1.5.7 The pathology of the diseased state 21
 1.5.8 Market forces and ‘me-too drugs’ 21
1.6 Methods and routes of administration: the pharmaceutical phase 21
1.7 Introduction to drug action 24
 1.7.1 The pharmacokinetic phase (ADME) 25
 1.7.2 The pharmacodynamic phase 32
1.8 Classification of drugs .. 33
 1.8.1 Chemical structure 33
 1.8.2 Pharmacological action 34
 1.8.3 Physiological classification 34
 1.8.4 Prodrugs 35
1.9 Questions ... 35
2 Drug structure and solubility

2.1 Introduction
2.2 Structure
2.3 Stereochemistry and drug design
 2.3.1 Structurally rigid groups
 2.3.2 Conformation
 2.3.3 Configuration
2.4 Solubility
 2.4.1 Solubility and the physical nature of the solute
2.5 Solutions
2.6 The importance of water solubility
2.7 Solubility and the structure of the solute
2.8 Salt formation
2.9 The incorporation of water solubilising groups in a structure
 2.9.1 The type of group
 2.9.2 Reversible and irreversible groups
 2.9.3 The position of the water solubilising group
 2.9.4 Methods of introduction
 2.9.5 Improving lipid solubility
2.10 Formulation methods of improving water solubility
 2.10.1 Cosolvents
 2.10.2 Colloidal solutions
 2.10.3 Emulsions
2.11 The effect of pH on the solubility of acidic and basic drugs
2.12 Partition
 2.12.1 Practical determination of partition coefficients
 2.12.2 Theoretical determination of partition coefficients
2.13 Surfactants and amphiphiles
 2.13.1 Drug solubilisation
 2.13.2 Mixed micelles as drug delivery systems
 2.13.3 Vesicles and liposomes
2.14 Questions

3 Structure–activity and quantitative structure relationships

3.1 Introduction
3.2 Structure–activity relationship (SAR)
3.3 Changing size and shape
 3.3.1 Changing the number of methylene groups in chains and rings
 3.3.2 Changing the degree of unsaturation
 3.3.3 Introduction or removal of a ring system
3.4 Introduction of new substituents
 3.4.1 Methyl groups
 3.4.2 Halogen groups
 3.4.3 Hydroxy groups
 3.4.4 Basic groups
 3.4.5 Carboxylic and sulphonic acid groups
 3.4.6 Thiols, sulphides and other sulphur groups
3.5 Changing the existing substituents of a lead
3.6 Case study: a SAR investigation to discover potent geminal bisphosphonates
3.7 Quantitative structure–activity relationship (QSAR)
 3.7.1 Regression analysis
 3.7.2 The lipophilic parameters
4 Computer-aided drug design
 4.1 Introduction
 4.1.1 Models
 4.1.2 Molecular modelling methods
 4.1.3 Computer graphics
 4.2 Molecular mechanics
 4.2.1 Creating a molecular model using molecular mechanics
 4.3 Molecular dynamics
 4.3.1 Conformational analysis
 4.4 Quantum mechanics
 4.5 Docking
 4.5.1 De novo design
 4.6 Comparing three-dimensional structures by the use of overlays
 4.6.1 An example of the use of overlays
 4.7 Pharmacophores and some of their uses
 4.7.1 High-resolution X-ray crystallography or NMR
 4.7.2 Analysis of the structures of different ligands
 4.8 Modelling protein structures
 4.9 Three-dimensional QSAR
 4.9.1 Advantages and disadvantages
 4.10 Other uses of computers in drug discovery
 4.11 Questions

5 Combinatorial chemistry
 5.1 Introduction
 5.1.1 The design of combinatorial syntheses
 5.1.2 The general techniques used in combinatorial synthesis
 5.2 The solid support method
 5.2.1 General methods in solid support combinatorial chemistry
 5.2.2 Parallel synthesis
 5.2.3 Furka’s mix and split technique
 5.3 Encoding methods
 5.3.1 Sequential chemical tagging
 5.3.2 Still’s binary code tag system
 5.3.3 Computerised tagging
 5.4 Combinatorial synthesis in solution
 5.4.1 Parallel synthesis in solution
 5.4.2 The formation of libraries of mixtures
 5.4.3 Libraries formed using monomethyl polyethylene glycol (OMe-PEG)
 5.4.4 Libraries produced using dendrimers as soluble supports
 5.4.5 Libraries formed using fluorocarbon reagents
 5.4.6 Libraries produced using resin-bound scavenging agents
 5.4.7 Libraries produced using resin-bound reagents
 5.4.8 Resin capture of products
 5.5 Deconvolution
 5.6 High-throughput screening (HTS)
 5.6.1 Biochemical assays
 5.6.2 Whole cell assays
 5.6.3 Hits and hit rates
6 Drugs from natural sources 177
6.1 Introduction 177
6.2 Bioassays 179
6.2.1 Screening tests 180
6.2.2 Monitoring tests 183
6.3 Dereplication 185
6.4 Structural analysis of the isolated substance 186
6.5 Active compound development 188
6.6 Extraction procedures 189
6.6.1 General considerations 190
6.6.2 Commonly used methods of extraction 191
6.6.3 Cleaning up procedures 195
6.7 Fractionation methods 195
6.7.1 Liquid–liquid partition 196
6.7.2 Chromatographic methods 199
6.7.3 Precipitation 200
6.7.4 Distillation 200
6.7.5 Dialysis 202
6.7.6 Electrophoresis 202
6.8 Case history: the story of Taxol 202
6.9 Questions 206

7 Biological membranes 207
7.1 Introduction 207
7.2 The plasma membrane 208
7.2.1 Lipid components 209
7.2.2 Protein components 211
7.2.3 The carbohydrate component 213
7.2.4 Similarities and differences between plasma membranes in different cells 213
7.2.5 Cell walls 214
7.2.6 Bacterial cell exterior surfaces 217
7.2.7 Animal cell exterior surfaces 218
7.2.8 Virus 218
7.2.9 Tissue 219
7.2.10 Human skin 219
7.3 The transfer of species through cell membranes 220
7.3.1 Osmosis 220
7.3.2 Filtration 221
7.3.3 Passive diffusion 221
7.3.4 Facilitated diffusion 223
7.3.5 Active transport 223
7.3.6 Endocytosis 224
7.3.7 Exocytosis 225
7.4 Drug action that affects the structure of cell membranes and walls 225
7.4.1 Antifungal agents 226
7.4.2 Antibacterial agents (antibiotics) 230
7.4.3 Local anaesthetics 244
7.5 Questions 249
8 Receptors and messengers

8.1 Introduction 251
8.2 The chemical nature of the binding of ligands to receptors 252
8.3 Structure and classification of receptors 254
8.4 General mode of operation 256
 8.4.1 Superfamily Type 1 259
 8.4.2 Superfamily Type 2 260
 8.4.3 Superfamily Type 3 263
 8.4.4 Superfamily Type 4 264
8.5 Ligand–response relationships 265
 8.5.1 Experimental determination of ligand concentration–response curves 266
 8.5.2 Agonist concentration–response relationships 267
 8.5.3 Antagonist concentration–receptor relationships 268
 8.5.4 Partial agonists 271
 8.5.5 Desensitisation 272
8.6 Ligand–receptor theories 272
 8.6.1 Clark's occupancy theory 272
 8.6.2 The rate theory 277
 8.6.3 The two-state model 278
8.7 Drug action and design 279
 8.7.1 Agonists 279
 8.7.2 Antagonists 281
 8.7.3 Citalopram, an antagonist antidepressant discovered by a rational approach 282
 8.7.4 β-Blockers 285
8.8 Questions 289

9 Enzymes

9.1 Introduction 291
9.2 Classification and nomenclature 293
9.3 Active sites and catalytic action 295
 9.3.1 Allosteric activation 297
9.4 Regulation of enzyme activity 298
 9.4.1 Covalent modification 298
 9.4.2 Allosteric control 298
 9.4.3 Proenzyme control 300
9.5 The specific nature of enzyme action 300
9.6 The mechanisms of enzyme action 302
9.7 The general physical factors affecting enzyme action 302
9.8 Enzyme kinetics 303
 9.8.1 Single substrate reactions 303
 9.8.2 Multiple substrate reactions 305
9.9 Enzyme inhibitors 306
 9.9.1 Reversible inhibitors 307
 9.9.2 Irreversible inhibition 312
9.10 Transition state inhibitors 318
9.11 Enzymes and drug design: some general considerations 320
9.12 Examples of drugs used as enzyme inhibitors 321
 9.12.1 Sulphonamides 321
 9.12.2 Captopril and related drugs 323
 9.12.3 Statins 326
9.13 Enzymes and drug resistance 329
 9.13.1 Changes in enzyme concentration 330
9.13.2 An increase in the production of the substrate
9.13.3 Changes in the structure of the enzyme
9.13.4 The use of an alternative metabolic pathway
9.14 Ribozymes
9.15 Questions

10 Nucleic acids
10.1 Introduction
10.2 Deoxyribonucleic acid (DNA)
 10.2.1 Structure
10.3 The general functions of DNA
10.4 Genes
10.5 Replication
10.6 Ribonucleic acid (RNA)
10.7 Messenger RNA (mRNA)
10.8 Transfer RNA (tRNA)
10.9 Ribosomal RNA (rRNA)
10.10 Protein synthesis
 10.10.1 Activation
 10.10.2 Initiation
 10.10.3 Elongation
 10.10.4 Termination
10.11 Protein synthesis in prokaryotic and eukaryotic cells
 10.11.1 Prokaryotic cells
 10.11.2 Eukaryotic cells
10.12 Bacterial protein synthesis inhibitors (antimicrobials)
 12.12.1 Aminoglycosides
 10.12.2 Chloramphenicol
 10.12.3 Tetracyclines
 10.12.4 Macrolides
 10.12.5 Lincomycins
10.13 Drugs that target nucleic acids
 10.13.1 Antimetabolites
 10.13.2 Enzyme inhibitors
 10.13.3 Intercalating agents
 10.13.4 Alkylating agents
 10.13.5 Antisense drugs
 10.13.6 Chain cleaving agents
10.14 Viruses
 10.14.1 Structure and replication
 10.14.2 Classification
 10.14.3 Viral diseases
 10.14.4 Antiviral drugs
10.15 Recombinant DNA technology (genetic engineering)
 10.15.1 Gene cloning
 10.15.2 Medical applications
10.16 Questions

11 Pharmacokinetics
11.1 Introduction
 11.1.1 General classification of pharmacokinetic properties
 11.1.2 Drug regimens
 11.1.3 The importance of pharmacokinetics in drug discovery
11.2 Drug concentration analysis and its therapeutic significance
11.3 Pharmacokinetic models 409
11.4 Intravascular administration 411
 11.4.1 Distribution 412
11.5 Extravascular administration 425
 11.5.1 Dissolution 428
 11.5.2 Absorption 429
 11.5.3 Single oral dose 430
 11.5.4 The calculation of t_{max} and C_{max} 433
 11.5.5 Repeated oral doses 434
11.6 The use of pharmacokinetics in drug design 435
11.7 Extrapolation of animal experiments to humans 435
11.8 Questions 436

12 Drug metabolism 439
12.1 Introduction 439
 12.1.1 The stereochemistry of drug metabolism 439
 12.1.2 Biological factors affecting metabolism 440
 12.1.3 Environmental factors affecting metabolism 443
 12.1.4 Species and metabolism 443
 12.1.5 Enzymes and metabolism 443
12.2 Secondary pharmacological implications of metabolism 443
 12.2.1 Inactive metabolites 444
 12.2.2 Metabolites with a similar activity to the drug 444
 12.2.3 Metabolites with a dissimilar activity to the drug 444
 12.2.4 Toxic metabolites 445
12.3 Sites of action 445
12.4 Phase I metabolic reactions 446
 12.4.1 Oxidation 446
 12.4.2 Reduction 448
 12.4.3 Hydrolysis 448
 12.4.4 Hydration 449
 12.4.5 Other Phase I reactions 449
12.5 Examples of Phase I metabolic reactions 449
12.6 Phase II metabolic routes 454
12.7 Pharmacokinetics of metabolites 457
12.8 Drug metabolism and drug design 458
12.9 Prodrugs 460
 12.9.1 Bioprecursor prodrugs 461
 12.9.2 Carrier prodrugs 462
 12.9.3 Photoactivated prodrugs 464
 12.9.4 The design of carrier prodrug systems for specific purposes 465
12.10 Questions 475

13 Complexes and chelating agents 477
13.1 Introduction 477
13.2 The shapes and structures of complexes 478
 13.2.1 Ligands 479
 13.2.2 Bridging ligands 483
 13.2.3 Metal–metal bonds 483
 13.2.4 Metal clusters 483
13.3 Metal–ligand affinities 485
 13.3.1 Affinity and equilibrium constants 485
 13.3.2 Hard and soft acids and bases 487
13.3.3 The general medical significance of complex stability 488
13.4 The general roles of metal complexes in biological processes 488
13.5 Therapeutic uses 491
 13.5.1 Metal poisoning 491
 13.5.2 Anticancer agents 494
 13.5.3 Antiarthritics 497
 13.5.4 Antimicrobial complexes 498
 13.5.5 Photoactivated metal complexes 499
13.6 Drug action and metal chelation 501
13.7 Questions 501

14 Nitric oxide 503
 14.1 Introduction 503
 14.2 The structure of nitric oxide 503
 14.3 The chemical properties of nitric oxide 504
 14.3.1 Oxidation 505
 14.3.2 Salt formation 506
 14.3.3 Reaction as an electrophile 507
 14.3.4 Reaction as an oxidising agent 507
 14.3.5 Complex formation 508
 14.3.6 Nitric oxide complexes with iron 508
 14.3.7 The chemical properties of nitric oxide complexes 510
 14.3.8 The chemistry of related compounds 512
 14.4 The cellular production and role of nitric oxide 514
 14.4.1 General mode of action 516
 14.4.2 Suitability of nitric oxide as a chemical messenger 518
 14.4.3 Metabolism 518
 14.5 The role of nitric oxide in physiological and pathophysiological states 519
 14.5.1 The role of nitric oxide in the cardiovascular system 519
 14.5.2 The role of nitric oxide in the nervous system 520
 14.5.3 Nitric oxide and diabetes 522
 14.5.4 Nitric oxide and impotence 522
 14.5.5 Nitric oxide and the immune system 523
 14.6 Therapeutic possibilities 524
 14.6.1 Compounds that reduce nitric oxide generation 524
 14.6.2 Compounds that supply nitric oxide 526
 14.6.3 The genetic approach 529
 14.7 Questions 529

15 An introduction to drug and analogue synthesis 531
 15.1 Introduction 531
 15.2 Some general considerations 532
 15.2.1 Starting materials 532
 15.2.2 Practical considerations 532
 15.2.3 The overall design 532
 15.2.4 The use of protecting groups 533
 15.3 Asymmetry in syntheses 534
 15.3.1 The use of non-stereoselective reactions to produce stereospecific centres 535
 15.3.2 The use of stereoselective reactions to produce stereoegenetic centres 535
 15.3.3 General methods of asymmetric synthesis 541
 15.3.4 Methods of assessing the purity of stereoisomers 547
 15.4 Designing organic syntheses 548
 15.4.1 An introduction to the disconnection approach 548