Contents

Notes on Contributors xv
Acknowledgements xxi
About the Companion Website xxiii

Part I APPROACHES

1 The Toolkit 3
 Alan G. Wilson

Part II ESTIMATING MISSING DATA: BI-PROPORTIONAL FITTING AND PRINCIPAL COMPONENTS ANALYSIS

2 The Effects of Economic and Labour Market Inequalities on Interregional Migration in Europe 9
 Adam Dennett
 2.1 Introduction 9
 2.2 The Approach 12
 2.3 Data 12
 2.4 Preliminary Analysis 13
 2.5 Multinomial Logit Regression Analysis 15
 2.6 Discussion 22
 2.7 Conclusions 24
 References 25

3 Test of Bi-Proportional Fitting Procedure Applied to International Trade 26
 Simone Caschili and Alan G. Wilson
 3.1 Introduction 26
 3.2 Model 27
 3.3 Notes of Implementation 28
4 Estimating Services Flows

Robert G. Levy

4.1 Introduction

4.2 Estimation Via Iterative Proportional Fitting
 4.2.1 The Method
 4.2.2 With All Initial Values Equal
 4.2.3 Equivalence to Entropy Maximisation
 4.2.4 Estimation with Some Known Flows
 4.2.5 Drawbacks to Estimating Services Flows with IPF

4.3 Estimating Services Flows Using Commodities Flows
 4.3.1 The Gravity Model
 4.3.2 Splitting Up Value Added

4.4 A Comparison of The Methods
 4.4.1 Unbalanced Row and Column Margins
 4.4.2 Iterative Proportional Fitting
 4.4.3 Gravity Model
 4.4.4 Gravity Model Followed by IPF

4.5 Results
 4.5.1 Selecting a Representative Sector
 4.5.2 Estimated in-Sample Flows
 4.5.3 Estimated Export Totals

4.6 Conclusion

References

Thomas P. Oléron Evans and Robert G. Levy

5.1 Motivation and Aims

5.2 Obstacles to The Estimation of National Input–Output Tables

5.3 Vector Representation of Input–Output Tables

5.4 Method
 5.4.1 Concept
 5.4.2 Estimation Procedure
 5.4.3 Cross-Validation

5.5 In-Sample Assessment of The Estimates
 5.5.1 Summary Statistics
 5.5.2 Visual Comparison

5.6 Out-of-Sample Discussion of The Estimates
 5.6.1 Final Demand Closeness
 5.6.2 Technical Coefficient Clustering

5.7 Conclusion

References
Part III DYNAMICS IN ACCOUNT-BASED MODELS

6 A Dynamic Global Trade Model With Four Sectors: Food, Natural Resources, Manufactured Goods and Labour
Hannah M. Fry, Alan G. Wilson and Frank T. Smith
6.1 Introduction 71
6.2 Definition of Variables for System Description 73
6.3 The Pricing and Trade Flows Algorithm 73
6.4 Initial Setup 75
6.5 The Algorithm to Determine Farming Trade Flows 77
 6.5.1 The Accounts for the Farming Industry 79
 6.5.2 A Final Point on The Farming Flows 79
6.6 The Algorithm to Determine The Natural Resources Trade Flows 80
 6.6.1 The Accounts for The Natural Resources Sector 80
6.7 The Algorithm to Determine Manufacturing Trade Flows 81
 6.7.1 The Accounts for The Manufacturing Industry 82
6.8 The Dynamics 83
6.9 Experimental Results 84
 6.9.1 Concluding Comments 88
References 90

7 Global Dynamical Input–Output Modelling
Anthony P. Korte and Alan G. Wilson
7.1 Towards a Fully Dynamic Inter-country Input–Output Model 91
7.2 National Accounts 92
 7.2.1 Definitions 92
 7.2.2 The Production Account 94
 7.2.3 The Commodity Markets Account 94
 7.2.4 The Household Account 94
 7.2.5 The Capital Markets Account 94
 7.2.6 The Rest of the World (RoW) Account 94
 7.2.7 The Government Account 95
 7.2.8 The Net Worth of an Economy and Revaluations 95
 7.2.9 Overview of the National Accounts 95
 7.2.10 Closing the Model: Making Final Demand Endogenous 96
7.3 The Dynamical International Model 97
 7.3.1 Supply and Demand 97
 7.3.2 The National Accounts Revisited 99
7.4 Investment: Modelling Production Capacity: The Capacity Planning Model 100
 7.4.1 The Multi-region, Multi-sector Capacity Planning Model 100
7.5 Modelling Production Capacity: The Investment Growth Approach 103
 7.5.1 Multi-region, multi-sector Investment Growth Models with Reversibility 103
 7.5.2 One-country, One-sector Investment Growth Model with Reversibility 104
 7.5.3 Two-country, Two-sector Investment Growth Model with Reversibility 106
7.5.4 A Multi-region, Multi-sector, Investment Growth Model without Reversibility 108
7.5.5 A Multi-region, Multi-sector, Investment Growth Model without Reversibility, with Variable Trade Coefficients 111
7.5.6 Dynamical Final Demand 114
7.5.7 Labour 115
7.5.8 The Price Model 118
7.6 Conclusions 121
References 122
Appendix 123
A.1 Proof of Linearity of the Static Model and the Equivalence of Two Modelling Approaches 123

Part IV SPACE–TIME STATISTICAL ANALYSIS

8 Space–Time Analysis of Point Patterns in Crime and Security Events 127
Toby P. Davies, Shane D. Johnson, Alex Braithwaite and Elio Marchione
8.1 Introduction 127
8.1.1 Clustering 127
8.1.2 Clustering of Urban Crime 129
8.1.3 The Knox Test 130
8.2 Application in Novel Areas 132
8.2.1 Maritime Piracy 132
8.2.2 Space–Time Clustering of Piracy 134
8.2.3 Insurgency and Counterinsurgency in Iraq 136
8.3 Motif Analysis 138
8.3.1 Introduction 138
8.3.2 Event Networks 140
8.3.3 Network Motifs 140
8.3.4 Statistical Analysis 141
8.3.5 Random Network Generation 142
8.3.6 Results 143
8.4 Discussion 147
References 148

Part V REAL-TIME RESPONSE MODELS

9 The London Riots –1: Epidemiology, Spatial Interaction and Probability of Arrest 153
Toby P. Davies, Hannah M. Fry, Alan G. Wilson and Steven R. Bishop
9.1 Introduction 153
Contents

9.2 Characteristics of Disorder 156
9.3 The Model 158
 9.3.1 Outline 158
 9.3.2 General Concepts 158
 9.3.3 Riot Participation 159
 9.3.4 Spatial Assignment 160
 9.3.5 Interaction between Police and Rioters 162
9.4 Demonstration Case 162
9.5 Concluding Comments 166
 References 166
 Appendix 168
A.1 Note on Methods: Data 168
A.2 Numerical Simulations 169

10 The London Riots –2: A Discrete Choice Model 170
 Peter Baudains, Alex Braithwaite and Shane D. Johnson
 10.1 Introduction 170
 10.2 Model Setup 170
 10.3 Modelling the Observed Utility 172
 10.4 Results 176
 10.5 Simulating the 2011 London Riots: Towards a Policy Tool 181
 10.6 Modelling Optimal Police Deployment 187
 References 190

Part VI THE MATHEMATICS OF WAR

11 Richardson Models with Space 195
 Peter Baudains
 11.1 Introduction 195
 11.2 The Richardson Model 196
 11.3 Empirical Applications of Richardson’s Model 202
 11.4 A Global Arms Race Model 204
 11.5 Relationship to a Spatial Conflict Model 206
 11.6 An Empirical Application 207
 11.6.1 Two Models of Global Military Expenditure 207
 11.6.2 The Alliance Measure C_{ij} 208
 11.6.3 A Spatial Richardson Model of Global Military Expenditure 210
 11.6.4 Results 211
 11.7 Conclusion 212
 References 213
Part VII AGENT-BASED MODELS

12 Agent-based Models of Piracy

Elio Marchione, Shane D. Johnson and Alan G. Wilson

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1 Introduction</td>
<td>217</td>
</tr>
<tr>
<td>12.2 Data</td>
<td>219</td>
</tr>
<tr>
<td>12.3 An Agent-based Model</td>
<td>221</td>
</tr>
<tr>
<td>12.3.1 Defining Maritime Piracy Maps</td>
<td>221</td>
</tr>
<tr>
<td>12.3.2 Defining Vessel Route Maps</td>
<td>222</td>
</tr>
<tr>
<td>12.3.3 Defining Pirates’, Naval Units’ and Vessels’ Behaviours</td>
<td>224</td>
</tr>
<tr>
<td>12.3.4 Comparing Risk Maps</td>
<td>227</td>
</tr>
<tr>
<td>12.4 Model Calibration</td>
<td>232</td>
</tr>
<tr>
<td>12.5 Discussion</td>
<td>232</td>
</tr>
<tr>
<td>References</td>
<td>235</td>
</tr>
</tbody>
</table>

13 A Simple Approach for the Prediction of Extinction Events in Multi-agent Models

Thomas P. Oléron Evans, Steven R. Bishop and Frank T. Smith

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.1 Introduction</td>
<td>237</td>
</tr>
<tr>
<td>13.2 Key Concepts</td>
<td>238</td>
</tr>
<tr>
<td>13.2.1 Binary Classification</td>
<td>238</td>
</tr>
<tr>
<td>13.2.2 Measures of Classifier Performance</td>
<td>238</td>
</tr>
<tr>
<td>13.2.3 Stochastic Processes</td>
<td>240</td>
</tr>
<tr>
<td>13.3 The NANIA Predator–prey Model</td>
<td>241</td>
</tr>
<tr>
<td>13.3.1 Background</td>
<td>241</td>
</tr>
<tr>
<td>13.3.2 An ODD Description of the NANIA Model</td>
<td>241</td>
</tr>
<tr>
<td>13.3.3 Behaviour of the NANIA Model</td>
<td>245</td>
</tr>
<tr>
<td>13.3.4 Extinctions in the NANIA Model</td>
<td>246</td>
</tr>
<tr>
<td>13.4 Computer Simulation</td>
<td>247</td>
</tr>
<tr>
<td>13.4.1 Data Generation</td>
<td>247</td>
</tr>
<tr>
<td>13.4.2 Categorisation of the Data</td>
<td>249</td>
</tr>
<tr>
<td>13.5 Period Detection</td>
<td>249</td>
</tr>
<tr>
<td>13.6 A Monte Carlo Approach to Prediction</td>
<td>252</td>
</tr>
<tr>
<td>13.6.1 Binned Data</td>
<td>252</td>
</tr>
<tr>
<td>13.6.2 Confidence Intervals</td>
<td>257</td>
</tr>
<tr>
<td>13.6.3 Predicting Extinctions using Binned Population Data</td>
<td>257</td>
</tr>
<tr>
<td>13.6.4 ROC and Precision-recall Curves for Monte Carlo Prediction of Predator Extinctions</td>
<td>260</td>
</tr>
<tr>
<td>13.7 Conclusions</td>
<td>263</td>
</tr>
<tr>
<td>References</td>
<td>264</td>
</tr>
</tbody>
</table>
Part VIII DIFFUSION MODELS

14 Urban Agglomeration Through the Diffusion of Investment Impacts 269
 Minette D’Lima, Francesca R. Medda and Alan G. Wilson

 14.1 Introduction 269
 14.2 The Model 270
 14.3 Mathematical Analysis for Agglomeration Conditions 272
 14.3.1 Introduction 272
 14.3.2 Case: $r < c$ 274
 14.3.3 Case: $r \geq c$ 274
 14.4 Simulation Results 275
 14.5 Conclusions 279
 References 279

Part IX GAME THEORY

15 From Colonel Blotto to Field Marshall Blotto 283
 Peter Baudains, Toby P. Davies, Hannah M. Fry and Alan G. Wilson

 15.1 Introduction 283
 15.2 The Colonel Blotto Game and its Extensions 285
 15.3 Incorporating a Spatial Interaction Model of Threat 286
 15.4 Two-front Battles 288
 15.5 Comparing Even and Uneven Allocations in a Scenario with Five Fronts 289
 15.6 Conclusion 292
 References 292

16 Modelling Strategic Interactions in a Global Context 293
 Janina Beiser

 16.1 Introduction 293
 16.2 The Theoretical Model 294
 16.3 Strategic Estimation 295
 16.4 International Sources of Uncertainty in the Context of Repression and Rebellion 297
 16.4.1 International Sources of Uncertainty Related to Actions 297
 16.5 International Sources of Uncertainty Related to Outcomes 299
 16.6 Empirical Analysis 301
 16.6.1 Data and Operationalisation 301
 16.7 Results 303
 16.8 Additional Considerations Related to International Uncertainty 304
Part X NETWORKS

18 Network Evolution: A Transport Example
Francesca Pagliara, Alan G. Wilson and Valerio de Martinis

18.1 Introduction 343
18.2 A Hierarchical Retail Structure Model as a Building Block 344
18.3 Extensions to Transport Networks 345
18.4 An Application in Transport Planning 347
18.5 A Case Study: Bagnoli in Naples 350
18.6 Conclusion 360
References 361
19 The Structure of Global Transportation Networks 363
Sean Hanna, Joan Serras and Tasos Varoudis
19.1 Introduction 363
19.2 Method 364
19.3 Analysis of the European Map 366
19.4 Towards a Global Spatial Economic Map: Economic Analysis by Country 368
19.5 An East-west Divide and Natural Economic Behaviour 373
19.6 Conclusion 376
References 377

20 Trade Networks and Optimal Consumption 378
Robert J. Downes and Robert G. Levy
20.1 Introduction 378
20.2 The Global Economic Model 379
 20.2.1 Introduction 379
 20.2.2 Data Sources 380
 20.2.3 Model Overview 380
20.3 Perturbing Final Demand Vectors 380
 20.3.1 Introduction 380
 20.3.2 Perturbation Process 382
20.4 Analysis 384
 20.4.1 Introduction 384
 20.4.2 A Directed Network Representation 384
 20.4.3 A Weighted Directed Network Representation 389
 20.4.4 Communities in the Network of Improvements 390
20.5 Conclusions 393
Acknowledgements 394
References 394
Appendix 396

Part XI INTEGRATION

21 Research Priorities 399
Alan G. Wilson

Index 403