Contents

List of Contributors
xi

Preface

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Overview</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>A Bird’s-Eye View of Finance</td>
<td>2</td>
</tr>
<tr>
<td>1.2.1</td>
<td>Trading and Exchanges</td>
<td>4</td>
</tr>
<tr>
<td>1.2.2</td>
<td>Technical Themes in the Book</td>
<td>5</td>
</tr>
<tr>
<td>1.3</td>
<td>Overview of the Chapters</td>
<td>6</td>
</tr>
<tr>
<td>1.3.1</td>
<td>Chapter 2: “Sparse Markowitz Portfolios” by Christine De Mol</td>
<td>6</td>
</tr>
<tr>
<td>1.3.2</td>
<td>Chapter 3: “Mean-Reverting Portfolios: Tradeoffs between Sparsity and Volatility” by Marco Cuturi and Alexandre d’Aspremont</td>
<td>7</td>
</tr>
<tr>
<td>1.3.3</td>
<td>Chapter 4: “Temporal Causal Modeling” by Prabhanjan Kambadur, Aurélie C. Lozano, and Ronny Luss</td>
<td>7</td>
</tr>
<tr>
<td>1.3.4</td>
<td>Chapter 5: “Explicit Kernel and Sparsity of Eigen Subspace for the AR(1) Process” by Mustafa U. Torun, Onur Yilmaz and Ali N. Akansu</td>
<td>7</td>
</tr>
<tr>
<td>1.3.5</td>
<td>Chapter 6: “Approaches to High-Dimensional Covariance and Precision Matrix Estimation” by Jianqing Fan, Yuan Liao, and Han Liu</td>
<td>7</td>
</tr>
<tr>
<td>1.3.6</td>
<td>Chapter 7: “Stochastic Volatility: Modeling and Asymptotic Approaches to Option Pricing and Portfolio Selection” by Matthew Lorig and Ronnie Sircar</td>
<td>7</td>
</tr>
<tr>
<td>1.3.7</td>
<td>Chapter 8: “Statistical Measures of Dependence for Financial Data” by David S. Matteson, Nicholas A. James, and William B. Nicholson</td>
<td>8</td>
</tr>
<tr>
<td>1.3.8</td>
<td>Chapter 9: “Correlated Poisson Processes and Their Applications in Financial Modeling” by Alexander Kreinin</td>
<td>8</td>
</tr>
<tr>
<td>1.3.9</td>
<td>Chapter 10: “CVaR Minimizations in Support Vector Machines” by Junya Gotoh and Akiko Takeda</td>
<td>8</td>
</tr>
<tr>
<td>1.3.10</td>
<td>Chapter 11: “Regression Models in Risk Management” by Stan Uryasev</td>
<td>8</td>
</tr>
<tr>
<td>1.4</td>
<td>Other Topics in Financial Signal Processing and Machine Learning</td>
<td>9</td>
</tr>
</tbody>
</table>

References

xv
2 Sparse Markowitz Portfolios

Christine De Mol

2.1 Markowitz Portfolios
2.2 Portfolio Optimization as an Inverse Problem: The Need for Regularization
2.3 Sparse Portfolios
2.4 Empirical Validation
2.5 Variations on the Theme
 2.5.1 Portfolio Rebalancing
 2.5.2 Portfolio Replication or Index Tracking
 2.5.3 Other Penalties and Portfolio Norms
2.6 Optimal Forecast Combination
Acknowledgments
References

3 Mean-Reverting Portfolios

Marco Cuturi and Alexandre d’Aspremont

3.1 Introduction
 3.1.1 Synthetic Mean-Reverting Baskets
 3.1.2 Mean-Reverting Baskets with Sufficient Volatility and Sparsity
3.2 Proxies for Mean Reversion
 3.2.1 Related Work and Problem Setting
 3.2.2 Predictability
 3.2.3 Portmanteau Criterion
 3.2.4 Crossing Statistics
3.3 Optimal Baskets
 3.3.1 Minimizing Predictability
 3.3.2 Minimizing the Portmanteau Statistic
 3.3.3 Minimizing the Crossing Statistic
3.4 Semidefinite Relaxations and Sparse Components
 3.4.1 A Semidefinite Programming Approach to Basket Estimation
 3.4.2 Predictability
 3.4.3 Portmanteau
 3.4.4 Crossing Stats
3.5 Numerical Experiments
 3.5.1 Historical Data
 3.5.2 Mean-reverting Basket Estimators
 3.5.3 Jurek and Yang (2007) Trading Strategy
 3.5.4 Transaction Costs
 3.5.5 Experimental Setup
 3.5.6 Results
3.6 Conclusion
References
4 Temporal Causal Modeling 41
Prabhanjan Kambadur, Aurélie C. Lozano, and Ronny Luss

4.1 Introduction 41
4.2 TCM 46
 4.2.1 Granger Causality and Temporal Causal Modeling 46
 4.2.2 Grouped Temporal Causal Modeling Method 47
 4.2.3 Synthetic Experiments 49
4.3 Causal Strength Modeling 51
4.4 Quantile TCM (Q-TCM) 52
 4.4.1 Modifying Group OMP for Quantile Loss 52
 4.4.2 Experiments 53
4.5 TCM with Regime Change Identification 55
 4.5.1 Model 56
 4.5.2 Algorithm 58
 4.5.3 Synthetic Experiments 60
 4.5.4 Application: Analyzing Stock Returns 62
4.6 Conclusions 63
References 64

5 Explicit Kernel and Sparsity of Eigen Subspace for the AR(1) Process 67
Mustafa U. Torun, Onur Yılmaz, and Ali N. Akansu

5.1 Introduction 67
5.2 Mathematical Definitions 68
 5.2.1 Discrete AR(1) Stochastic Signal Model 68
 5.2.2 Orthogonal Subspace 69
5.3 Derivation of Explicit KLT Kernel for a Discrete AR(1) Process 72
 5.3.1 A Simple Method for Explicit Solution of a Transcendental Equation 73
 5.3.2 Continuous Process with Exponential Autocorrelation 74
 5.3.3 Eigenanalysis of a Discrete AR(1) Process 76
 5.3.4 Fast Derivation of KLT Kernel for an AR(1) Process 79
5.4 Sparsity of Eigen Subspace 82
 5.4.1 Overview of Sparsity Methods 83
 5.4.2 pdf-Optimized Midtread Quantizer 84
 5.4.3 Quantization of Eigen Subspace 86
 5.4.4 pdf of Eigenvector 87
 5.4.5 Sparse KLT Method 89
 5.4.6 Sparsity Performance 91
5.5 Conclusions 97
References 97
6 Approaches to High-Dimensional Covariance and Precision Matrix Estimations

Jianqing Fan, Yuan Liao, and Han Liu

6.1 Introduction 100

6.2 Covariance Estimation via Factor Analysis 101

6.2.1 Known Factors 103

6.2.2 Unknown Factors 104

6.2.3 Choosing the Threshold 105

6.2.4 Asymptotic Results 105

6.2.5 A Numerical Illustration 107

6.3 Precision Matrix Estimation and Graphical Models 109

6.3.1 Column-wise Precision Matrix Estimation 110

6.3.2 The Need for Tuning-insensitive Procedures 111

6.3.3 TIGER: A Tuning-insensitive Approach for Optimal Precision Matrix Estimation 112

6.3.4 Computation 114

6.3.5 Theoretical Properties of TIGER 114

6.3.6 Applications to Modeling Stock Returns 115

6.3.7 Applications to Genomic Network 118

6.4 Financial Applications 119

6.4.1 Estimating Risks of Large Portfolios 119

6.4.2 Large Panel Test of Factor Pricing Models 121

6.5 Statistical Inference in Panel Data Models 126

6.5.1 Efficient Estimation in Pure Factor Models 126

6.5.2 Panel Data Model with Interactive Effects 127

6.5.3 Numerical Illustrations 130

6.6 Conclusions 131

References 131

7 Stochastic Volatility

Matthew Lorig and Ronnie Sircar

7.1 Introduction 135

7.1.1 Options and Implied Volatility 136

7.1.2 Volatility Modeling 137

7.2 Asymptotic Regimes and Approximations 141

7.2.1 Contract Asymptotics 142

7.2.2 Model Asymptotics 142

7.2.3 Implied Volatility Asymptotics 143

7.2.4 Tractable Models 145

7.2.5 Model Coefficient Polynomial Expansions 146

7.2.6 Small “Vol of Vol” Expansion 152

7.2.7 Separation of Timescales Approach 152

7.2.8 Comparison of the Expansion Schemes 154

7.3 Merton Problem with Stochastic Volatility: Model Coefficient Polynomial Expansions 155
7.3.1 Models and Dynamic Programming Equation 155
7.3.2 Asymptotic Approximation 157
7.3.3 Power Utility 159
7.4 Conclusions 160
Acknowledgements 160
References 160

8 Statistical Measures of Dependence for Financial Data 162
David S. Matteson, Nicholas A. James, and William B. Nicholson
8.1 Introduction 162
8.2 Robust Measures of Correlation and Autocorrelation 164
8.2.1 Transformations and Rank-Based Methods 166
8.2.2 Inference 169
8.2.3 Misspecification Testing 171
8.3 Multivariate Extensions 174
8.3.1 Multivariate Volatility 175
8.3.2 Multivariate Misspecification Testing 176
8.3.3 Granger Causality 176
8.3.4 Nonlinear Granger Causality 177
8.4 Copulas 179
8.4.1 Fitting Copula Models 180
8.4.2 Parametric Copulas 181
8.4.3 Extending beyond Two Random Variables 183
8.4.4 Software 185
8.5 Types of Dependence 185
8.5.1 Positive and Negative Dependence 185
8.5.2 Tail Dependence 187
References 188

9 Correlated Poisson Processes and Their Applications in Financial Modeling 191
Alexander Kreinin
9.1 Introduction 191
9.2 Poisson Processes and Financial Scenarios 193
9.2.1 Integrated Market—Credit Risk Modeling 193
9.2.2 Market Risk and Derivatives Pricing 194
9.2.3 Operational Risk Modeling 194
9.2.4 Correlation of Operational Events 195
9.3 Common Shock Model and Randomization of Intensities 196
9.3.1 Common Shock Model 196
9.3.2 Randomization of Intensities 196
9.4 Simulation of Poisson Processes 197
9.4.1 Forward Simulation 197
9.4.2 Backward Simulation 200
9.5 Extreme Joint Distribution 207
9.5.1 Reduction to Optimization Problem
9.5.2 Monotone Distributions
9.5.3 Computation of the Joint Distribution
9.5.4 On the Frechet–Hoeffding Theorem
9.5.5 Approximation of the Extreme Distributions

9.6 Numerical Results
9.6.1 Examples of the Support
9.6.2 Correlation Boundaries

9.7 Backward Simulation of the Poisson–Wiener Process

9.8 Concluding Remarks
Acknowledgments

Appendix A
A.1 Proof of Lemmas 9.2 and 9.3
A.1.1 Proof of Lemma 9.2
A.1.2 Proof of Lemma 9.3

References

10 CVaR Minimizations in Support Vector Machines
Jun-ya Gotoh and Akiko Takeda

10.1 What Is CVaR?
10.1.1 Definition and Interpretations
10.1.2 Basic Properties of CVaR
10.1.3 Minimization of CVaR

10.2 Support Vector Machines
10.2.1 Classification
10.2.2 Regression

10.3 v-SVMs as CVaR Minimizations
10.3.1 v-SVMs as CVaR Minimizations with Homogeneous Loss
10.3.2 v-SVMs as CVaR Minimizations with Nonhomogeneous Loss
10.3.3 Refining the v-Property

10.4 Duality
10.4.1 Binary Classification
10.4.2 Geometric Interpretation of v-SVM
10.4.3 Geometric Interpretation of the Range of v for v-SVC
10.4.4 Regression
10.4.5 One-class Classification and SVDD

10.5 Extensions to Robust Optimization Modelings
10.5.1 Distributionally Robust Formulation
10.5.2 Measurement-wise Robust Formulation

10.6 Literature Review
10.6.1 CVaR as a Risk Measure
10.6.2 From CVaR Minimization to SVM
10.6.3 From SVM to CVaR Minimization
10.6.4 Beyond CVaR

References
Contents

11 Regression Models in Risk Management

Stan Uryasev

1. Introduction ... 267
2. Error and Deviation Measures 268
3. Risk Envelopes and Risk Identifiers 271
 11.3.1 Examples of Deviation Measures \mathcal{D}, Corresponding Risk Envelopes \mathcal{Q}, and Sets of Risk Identifiers $\mathcal{QD}(X)$ 272
4. Error Decomposition in Regression 273
5. Least-Squares Linear Regression 275
6. Median Regression 277
7. Quantile Regression and Mixed Quantile Regression 281
8. Special Types of Linear Regression 283
9. Robust Regression 284
 References, Further Reading, and Bibliography 287

Index

289