Index

Note: Page numbers in italics refer to Figures; those in bold to Tables.

accelerometer, 194, 195, 197
activity induced energy expenditure (AEE)
 accelerometers, 194, 195
 and diet-induced energy expenditure (DEE), 193
 physical activity, 196
 and total energy expenditure (TEE), 194, 195
 water method, 194
acute phase response, 5
adaptation
 balance, 9
 definition, 8
 excess macronutrient intake, 9
 expansive, 9
 fat accumulation, 9
 metabolic control, 9
 to questionnaires, 135
 reductive, 9
 weight loss, 8
adenomatous colon polyps, 38
adenosine triphosphate (ATP), 177, 178, 186, 194, 212
adherent cell culture systems
 biological matrix, 287–8, 289
 co-culture, types, 289
 culture under flow, 290–291, 291
 membrane inserts, 289, 289, 290
 microcarrier beads, 288
 nutrition research, monolayer, 287, 288
 three-dimensional (3D), 291
ad libitum diet, 178
adverse event (AE), 42–3
AEE see activity induced energy expenditure (AEE)
air displacement plethysmography (ADP), 171–2
ampholytes, 206
analytical methods, cellular models
 confocal microscopy, 296
 electron microscopy, 296
 flow cytometry, 299
 fluorescence microscopy, 296
 immunocytochemistry and immunohistochemistry, 296–7
 light microscopy, 295, 295–6
 live cell imaging, 297–9
 polymerase chain reaction (PCR), 295
 small interfering RNA (siRNA), 295
 western blotting, 295
animal models in nutrition research
atherosclerotic cardiovascular disease
 cholesterol distribution, different species, 270, 270
 cholesterol-fed guinea pigs, 271
 Cynomolgus and African green monkeys, 271
 definition, 270
 description, 269
 genetically manipulated animal, 271–2, 272
 Golden Syrian hamsters, 271
 high-density lipoprotein (HDL), 270–271
 low-density lipoprotein (LDL), 270, 271
 morbidity and mortality, 270
 rats, 271
 Rhesus monkeys, 271
 cancer, 274–5
 dietary fat intake, 269
 and energetics, 268–9
 environment, 276
 essential nutrients, 269
 ethics, 266, 266–7
 genetic and lifestyle factors, 276
 lifestyle
 ageing, 276, 276
 developed countries, 275
 developmental origins of health and disease (DOHaD), 275–6
 extended life span, 275
 macro- and micronutrients, 276–7
 non-communicable diseases (NCDs), 269, 277
 obesity and diabetes
 cafeteria diet, 273
 diet-induced models, 273–4
 energy consumption and expenditure, 273
 excessive accumulation, adipose tissue, 273
 insulin actions, 273
 monogenic model, 274
 non-alcoholic fatty liver disease (NAFLD), 273
 ob/ob and wild-type mouse, 273, 273
 pathophysiological consequences, 274
 pigs, 274
 reduction, food intake, 273
 regulation, 265–6
 seventeenth century, 268
 species selection, 267, 267–8
 anthropometric indicators, adiposity and nutritional status
 body mass, height and age, 180
 body mass index, 178–9
 fat mass regression against body mass index, 179, 180
 mid upper-arm circumference, 180
 neck circumference, 179–80
 skinfold measurements, 180–181
 waist and hip circumference, 179
 weight classification, 178
 aperitif effect, 314
 apolipoprotein E (apoE)
 genotype, 230
 isoform amino acid differences and lipoprotein preferences, 230, 230
 kinetics, 257–8
 lipoprotein metabolism, 230
 plasma lipids, 230
 ATP see adenosine triphosphate (ATP)
basal metabolic rate (BMR)
daily energy expenditure, 192
individual’s energy needs, 4
in-patient protocol, 193
ratio of energy intake (EI), 197
respiration chamber, 193
and sleeping metabolic rate (SMR), 193
and total energy expenditure (TEE), 195
ventilated hood, 193

Beadchip technologies, 199

behavioural observations
behaviour change mechanisms, 167, 167
mixed-methods study, 157
’shopping with consumers’, 157
shop technique, 158
strengths and weaknesses, 157
think-aloud protocols, 158

biobanks, in nutrition research
BBMRI-ERIC, 142
Biobanking and Biomolecular Resources (BBMRI), 142
biomarkers, 143–5
data management infrastructure, 143
ethical and legal requirements, 148
European Research Infrastructure Consortium (ERIC), 142
governance, 147
human formalin-fixed paraffin-embedded tissues, 142
multinational study designs, 143
OECD biobank definition, 142
research infrastructures, for nutrition and health research, 147–8
responsibilities, 141
samples
collection, 145–6
knowledge, 149
pre-analytics, 146–7
storage, 147
standardisation and harmonisation, 142
bioimpedance analysis (BIA), population groups, 138
biomarkers
advantages and disadvantages, specimen, 100–101, 101
analytical methods
comparability, validation and quality control, 104
sensitivity and selectivity, 103
throughput, 103–4
carotenoids, 98–99
concentration, 43–5, 91–92, 143–5
correlation, 106
cryopreserved tissues, 144
definition, 145
development, 104
discovery-driven strategy, 104, 104
disease progression, 90
environmental protection, 143
fibre and wholegrain, 94
flavonoids, 99–100
fruit and vegetables, 98
functional, 92
indicators, 143
limitations, 105–106
macronutrient and energy intake, 92–4
measurement, 106
meat and fish, 100
micronutrient see micronutrient intake
monitor compliance, 106–7
nutrigenomics approach, 145
nutritional, 90
plasma vitamin C, 100
predictive, 90, 92
randomised controlled trials, 143
recovery, 90, 91, 143–5
research, 107
sample
advantages and disadvantages, 100–101, 101
blood, 101–2
collection and storage, 102–3
different dietary assessment methods, 100, 101
faeces, 102
hair, 102
nail, 102
stability, 103
tissue, 102
urine, 102
susceptibility, 143
types, 90, 91
validation
free-living individuals, 105
interpret outcomes, 104–5
relationship with intake, 105
without intervention studies, 105

BMR see basal metabolic rate (BMR)
body composition see also anthropometric indicators, adiposity
and nutritional status
accuracy, precision and limits of agreement, 170
bio-electrical impedance methods, 182
body mass, 170–171
body volume
air displacement plethysmography (ADP), 171–2
photonic scanning, 172
underwater weighing (UWW), 171

characteristics of methods, 183
compartment(s), 169–70
computed tomography (CT), 177–8
dual-energy X-ray absorptiometry (DXA)
ionising radiation, 174
principle of measurement, 173–4
individuals assessment, 182, 182
*K counting, intra-cellular water, 173
magnetic resonance
glycogen measurement by natural abundance (13C MRS), 177
magnetic resonance imaging (MRI), 176
magnetic resonance spectroscopy (MRS), 177

quantitative magnetic resonance (QMR), 176
multicomponent models, body mass (BM)
body volume, 175–6
bone mass, 175–6
tissue compartments, characteristics, 175
total body water, 175–6

muscle mass, 178
muscle strength, 178
sodium bromide dilution, extra-cellular water, 173

stature, 170
total body water, deuterium dilution, 172–3

body mass index (BMI), 10, 20, 109, 178, 178, 179
body size and composition measures
anthropometry
bioimpedance analysis (BIA), population groups, 138
children, 137
elderly, 137–8
ethnic groups, 137
pregnancy, 137
dual-energy X-ray absorptiometry (DXA), 136–7
buffy coat, 101, 103, 145
Caffeine and Reproductive Health (CARE) study, 26
calibration factor, 145
candidate gene approach
 APOE genotype, 230
 case–control design, 229
 disease risk indicators, 229
genotype approach, 230
 human randomised controlled trials (RCTs), 230
identification, 200
 methylenetetrahydrofolate reductase (MTHFR), 230–231
 canonical correlation analysis (CCA), 239–40
 carbohydrate metabolism, 81–2, 262
 case–control studies
description, 18
dietary exposure, 20–21, 57
dietary measurement error, 21
epidemiological settings, 56–7
 INTERHEART, 19
 nested, 21
 odds ratio (OR), 21
 prevalent/fatal cases, 20
 selection of controls, 20
 specificity of diagnosis, 20
CCA see canonical correlation analysis (CCA)
cellular models, nutrition research
 bioavailability, 302
 cell functions, 282
 chick chorioallantoic membrane assay, 294
 chronic degenerative diseases, 304–5
 cultured cells
 immortalised cell lines, 280–281, 281
 nutrient effects, 299
 primary cells, 280
 types, 280, 280
 definition, 279
 experimental systems, ex vivo and in vitro, 279–80
 genetics and molecular biology, 279
 infectious disease, 303
 isolated perfused organs, 280, 281–2, 291–2
 liver lipid metabolism, 302
 mechanisms of action, vitamin D, 302
 metabolic diseases, 303–4
 optimal nutritional status, 278
 physiological responses, 278
 retinoids, 302
 tissue explants, 280, 281
 tissue segments, explants and microstructures, 292–4
CF see cystic fibrosis (CF)
 chick chorioallantoic membrane assay, 279, 294, 294
 chip-on-chip, 222
chi-squared tests, 44
cholesterol
 absorption and synthesis, 255, 258–9
 concentrations, 32
 diet-induced atherosclerosis model, 271
 distribution, 270
 food composition, 73
 hepatic, 267
 high, 319
 normal animal models, 270–271
 serum, 86
chromatin immunoprecipitation (ChiP), 222
chronic degenerative diseases
 cancer, 305
 heart disease, 304–5
 neurodegenerative diseases, 305
cluster sampling, 23
computed tomography (CT), 169, 177–8
conformability, 159
confounding
 Caffeine and Reproductive Health (CARE) study, 26
 factors, 16, 21
 randomised controlled trials (RCTs), 26
 variables, 26
Consolidated Standards of Reporting Trials (CONSORT), 32, 40, 41, 42
copy number variation (CNV), 200
credibility, 159
cross-sectional survey
 data, 18
 Demographic and Health Surveys (DHS), 18
 description, 16
 disadvantage, 18
 migrant studies, 18
 National Diet and Nutrition Survey (NDNS), 17, 17–18
 Singapore Longitudinal Ageing Study, 17
cystic fibrosis (CF), 228, 229
daily energy expenditure
 AEE, 194–6, 195
 BMR, 193–4
 description, 192–3
 diet-induced energy expenditure (DEE), 192, 193, 194
 energy expenditure and physical activity, 192, 192
 sleeping metabolic rate (SMR), 193–4
data analytical methods, system biology
 biological processes, 246
 databases, 244–5
 environmental variables, 245
 functional subnetworks, 246
 gene set analysis (GSA), 236–7
 human nutritional genomics, 245
 liver tissue transcriptomes, 245
 molecular networks, 241–2
 multivariate analysis, 237–40
 network inference, 240–241
 simulation, network, 242–4
 topological properties, 246
data compilation, 73, 86
data dissemination, 72, 86, 87
data generation
 analytical methods, macronutrients, 73, 74–8
 definition, 71
 food components, 73, 79–85
 sampling, 73
decision tree analysis, 66
Deoxyribonucleic acid (DNA) and genetic variation
DNA codon table, 226, 227
mutations, 227
nucleotide structure, 226, 226
single nucleotide polymorphisms (SNPs), 227, 228
structural variants, 228
hypermethylation, 200
methylation
array-based approaches, 221
cancer, 219
candidate genes, 220
CpG sites, 220–221
effect, bisulphite treatment, 218, 219
hydroxymethylcytosine (5hmC), 221
interpretation, 219
isoschizomers, 219
luminometric methylation assay (LUMA), 219
next-generation sequencing (NGS), 219, 221
PCR
polymerase chain reaction (PCR)
Pyrosequencing®, 219
quantification, 5mC, 218
restriction endonucleases, 219
dependability, 159
developmental origins of health and disease (DOHaD), 275
diet
cancer and, 274
demand, 5
ergetic efficiency, 6
energetic need, 4
indispensable nutrients, 7
individual nutrient, lack of, 7
inorganic ions/molecules, 7
loss of appetite, 6
margin quality, 4, 5
protein, 5
quality, 4, 10
quality indices, 65
dietary energy misreporting
ethnic minority groups, 135–6
life course, 136
in low-and middle-income countries (LMICs), 136
dietary intake
assessment and monitor, 48–9
food composition tables and food matching, 69
food frequency questionnaire (FFQ), 66–8
innovative assessment methods and technologies
clinical settings, 58
epidemiological settings, 58, 61
groups, 58, 59–60
public health settings, 61
validity and reproducibility, 58
international epidemiological studies, 68
measurement errors
measurement, 64–5
evaluation, 63–4
random between-person error, 61–2
reduction, 63
systematic between-person errors, 62–3
multivariate analyses see multivariate analysis
traditional assessment methods see traditional dietary assessment methods
dietary patterns
definition, 65
derivation methods, 65
exploratory (a posteriori) methods, 66
hybrid methods, 66
hypothesis-oriented (a priori) methods, 65–6
strengths and limitations, 66, 67
Dietary Reference Values (DRVs), 7
direct calorimetry
airflow, 188
vs. indirect calorimetry, 191, 192
melted water, 187
suit, 188, 188
water-flow, 188
directed acyclic graphs (DAGs), 25
DNA methyltransferase (DNMT), 213, 215
DOHaD see developmental origins of health and disease (DOHaD)
dossier, 319
DRVs see Dietary Reference Values (DRVs)
dual-energy X-ray absorptiometry (DXA)
body size and composition measurement, 136–7
ionising radiation, 174
principle of measurement, 173–4
soft tissue, whole-body images, 174
Duchenne muscular dystrophy, 229
eating patterns see dietary patterns
ecogenericity, 182
ecological studies
analysis, data, 15–16
coronary heart disease (CHD) rates, 14, 15
dietary intake indices, 14
health outcome indices, 14
household budget surveys, 14
individual survey data, 14
national food supply, 14
ECW see extra-cellular water (ECW)
energy expenditure
body energy, 187
daily energy expenditure see daily energy expenditure
diet-induced, 195
direct calorimetry, 187–8
endurance athletes, 196
energy metabolism, 187
homeothermic organism, 187
indirect calorimetry see indirect calorimetry
intake methods, evaluation, 196–7, 197
macronutrients, 186
oxidation, nutrients, 186–7
physical activity, 192, 196
sleeping metabolic rate (SMR), 195, 196
water, 187
EPIC see European Prospective Investigation into Cancer (EPIC)
epigenetics
agouti mice, 216, 217
animal models, 223, 223–4
applications, 224
CpG dinucleotides, 217, 218
cytosine, 213, 213
definition, 200, 213
DNA methylation see Deoxyribonucleic acid (DNA)
embryogenesis, 215
gene expression see gene expression
heterochromatin, 217
histone H3 modification, 218, 218
histone modifications, 221–2
histones, 213
house-keeping genes, 217
Human Epigenome Project (HEP), 214
microRNA molecule, 214, 214
nutrition, 214–5
post-translational modification, 218
pregnancy, 215, 217
quantification, microRNA, 222–3
ethnicity and research methods
health research and conducting ethnicity, 125
Leeds Consensus principles, 125
measurement, 124–5
study design, 125–6
UK and US ethnicity/race census questions and response categories, 124
ethnic minority diets
acculturation, 126–7
culture, 126
dietary intake assessment, 127
religion, 126
ethnography, 153
European Food Information Resource Network (EuroFIR), 127, 147, 148
European Prospective Investigation into Cancer (EPIC), 14, 23, 24, 51, 54, 103, 148
European Prospective Investigation into Cancer and Nutrition (EPIC) cohort, 23, 24
European Research Infrastructure Consortium (ERIC), 142, 148
European Strategy Forum on Research Infrastructures (ESFRI), 142, 150
extra-cellular water (ECW), 138, 173
fat-free mass (FFM), 170, 175, 263
fatty acid(s)
biomarker
adipose tissue and blood, 93
analytical methods, 93–4
composition, 93
measures, 94
polyunsaturated fatty acids (PUFA), 93 saturated fatty acids (SFA), 93
transport, 93
metabolism
adipose tissue fatty acid uptake, 259
desaturation, 261
hepatic fatty acid synthesis, 259–60
hepatic partitioning, 261–2
lipolysis, adipose tissue, 259
FCDBs see food composition databases (FCDBs)
FFQs see food frequency questionnaires (FFQs)
flow cytometry, 284, 299, 301
food composition
clinical care and clinical research trials, 86
consumers’ awareness, 87
data compilation, 73, 86
data dissemination, 86
data generation
analytical methods, macronutrients, 73, 74–8
definition, 71
food components, 73, 79–85
sampling, 73
data uses
agriculture, 87
environment/biodiversity, 87–8
health, 86–7
trade, 88
limitations, 88
organizational elements
international level, 72
national level, 72
regional level, 72
sectors, 71–2
food composition databases (FCDBs), 127, 147
food fortification, 32
food frequency questionnaires (FFQs)
Belgian FFQ, 54, 55
components, 53
non-quantitative, 67
portion sizes and food preparation methods, 127
self-administered, 54, 54
strengths, 54
types, 54
food information to consumers
allergen labelling, 320
back-of-pack nutrient declaration, 320
food-consumption behaviour, 321
food labelling, 319
front-of-pack nutrition labelling, 320–321
herbal medicinal products, 321
food record/food diary
energy intake, 197
24-hour recall, 52, 54, 57, 64, 67, 68
methods, 51, 52
traditional dietary assessment methods, 50
under-eating, 197
under-report energy, 136
food-related behaviour
data types, 152–3
food and health, relationship, 152
food-choice behaviour, 152
qualitative approaches
behavioural observations, 157–8
case studies, 153
conformability, 159
credibility, 159
data analysis, 158–9
dependability, 159
ethnography, 153
grounded theory, 153
group discussions, 155
individual interviews, 153–5
interviewer, 158
laddering, 155–6
narrative research, 153
phenomenological research, 153
promotion strategies, 159–60
sample recruitment, 153, 154
transferability, 159
quantitative approaches
closed survey questions types, 164
cross-sectional surveys, 161–2
experimental studies, 160–161
factorial design, 161
open/partially open-ended survey questions types, 163
psycho-social and other intervening variables, 162, 165
reliability, 166
sample recruitment, 165–6
food-related behaviour (cont’d)

- satisfaction with food-related life, 166
- scales, in food-choice research, 165
- socio-demographic variables, 162
- specific survey methods, strengths and weaknesses, 162
- strengths and weaknesses, 160
- validity, 166

food security elements, 4

fortification studies, 32

gdAs see guideline daily amounts (GDAs)

gene expression

- antigen and hepatocytes, 213
- chromatin, 214
- dietary intake/chemical hazards, 212
- endothelial cell/enterocyte, 214
- human egg, 214
- mitochondrion, 212
- neurones/hepatocytes, 212

gene–nutrient interactions

- candidate gene approach, 200
- gene association studies, limitations, 200–201
- genome-wide association studies (GWAS), 201
- linkage and linkage disequilibrium (LD) analysis, 201
- next-generation sequencing (NGS), 201
- nutrigenetics, 200
- personalised nutrition approaches, 200
- positional cloning, 201

gene ontology (GO) classifications, 204

gene set analysis (GSA)

- algorithm, 236
- differential expression, 236
- dynamic system behaviour, 237
- ECS approaches, 237
- gene–gene expression correlations, 237
- Gene Ontology (GO), 237
- high-throughput gene expression, 236
- leading-edge approach, 237
- miRNA/transcription factors, 236
- pathway topology (PT)-based approaches, 237
- statistical approaches, 236–237

Gene-set enrichment analysis (GSEA), 204, 236

gene polymorphisms, 199

gene-wide association studies (GWAS)

- ARMD, 231
- diet composition, 232
- gene–nutrient interactions, 201
- linkage disequilibrium (LD), 232
- next-generation sequencing, 232–3
- research tool, 231
- single-nucleotide changes/structural variants, 232
- tagging single nucleotide polymorphisms (SNPs) approach, 231

genomics

- copy number variation (CNV), 200
- definition, 199
- DNA hypermethylation, 200
- DNA variants, 199–200
- epigenetics, 200
- gene–nutrient interactions, 200–201
- genetic polymorphisms, 199
- genotyping arrays, 199
- hypomethylation, 200
- nutrient and non-nutrient food components, health effects, 199
- single nucleotide polymorphisms (SNPs), 199
- terminology, 199
- genotyping arrays, 199

group discussions

- strengths and weaknesses, 155
- study using, 156
- topic, 155

growth

- acquisition of energy, 3
- description, 8
- failure, 8
- monitoring, in children, 137
- reference charts, 137

World Health Organization (WHO) growth standards, 8

GSA see gene set analysis (GSA)

GSEA see Gene-set enrichment analysis (GSEA)

guideline daily amounts (GDAs), 321

GWAS see genome-wide association studies (GWAS)

health promotion activities, 86

Healthy Eating Index (HEI), 65

healthy lifestyle indices, 65

hierarchical clustering, 208, 238, 239

high-density lipoprotein (HDL), 230, 258, 270–271, 273

histone modifications

- acetylation, 221, 222
- ChiP-on-chip approach, 222
- gene silencing, 221, 222

24-hour dietary recall method, 52, 53, 58, 61, 64, 65

Human Epigenome Project (HEP), 214

human nutritional genomics, 245

hydroxymethylcytosine (5hmC), 221

hypomethylation, 200, 219

immortalised cell lines, 280–82, 281

immunocytochemistry, 297, 298

immunohistochemistry, 296, 297

indirect calorimetry

- CO₂ production, 190–191
- energy production, 188
- oxygen and carbon dioxide concentrations, 189
- oxygen and hydrogen isotope, 190
- premature infants/endurance athletes, 191
- protein correction, 189
- protocols, 191
- respiration chamber, 189, 190, 190
- ventilated hood, 189, 189

Weir and Brouwer equation, 188, 189

innovative dietary assessment methods and technologies

- clinical settings, 58
- description, 57–8
- epidemiological settings, 58, 61
- groups, 58, 59–60
- internet and telecommunication, 57
- public health settings, 61
- validity and reproducibility, 58
- ‘intention to treat’ (ITT) principle, 45

The International Network of Food Data Systems (INFOODS), 71–3, 79, 87–8

intervention studies

- compliance
- acceptable levels, 43
- low levels, 43
- controlled dietary, 104

- data collection
- adverse event (AE), 42–3
- diet, 42
- health status and lifestyle behaviours, 42
- duration, study, 33
eligibility criteria, 39
epidemiological research and, 145
ethical approval and study registration, 40–41
factors and recommended standard, 32, 33
human epidemiology and, 232
hypothesis, 32–3, 34–7
interpretation, 45
metabolomics application, 210
nutrient, food or diet
 amount consumed, 38
 control group, 38
 test foods, 33, 38
outcome measures
 analytical variability, 39
 biologically meaningful changes, 39
 biological variability, 39
 methodological aspects, 38–9
 subjective measures, 38
predictive biomarker, 94
recruitment and participant flow, 41, 41
research team, roles and responsibilities, 45
statistical analysis
 analysis of nutrition, 44
 contingency table methods, 44–5
 hypothesis tests, 44
 'intention to treat' (ITT) principle, 45
 non-parametric methods, 44
 parametric methods, 44
 steps, data analysis, 44
statistical considerations
 blinding, 40
 concealment, 40
 power calculation, 40
 randomisation, 39–40
types, 28–32
usual/habitual dietary intake, 56
validation without, 105
interviews
 children, 155
 guide, 154
 participants and, 154–5
 preparation, 154
 questions types, 154
 semi-structured, 154
types, 153–4

40 K counting, intra-cellular water, 173
Kleiber’s law, 6
k-means, 238, 239
Kruskal–Wallis one-way analysis of variance, 44
Kyoto Encyclopaedia of Genes and Genomes (KEGG), 204, 237, 245
laddering, 155–6
LDL see low-density lipoprotein (LDL)
lean body mass (LBM), 170
life course stages
 childhood and adolescence, 129–30
choice of methods
 data quality issues, 135
 food frequency questionnaires (FFQs), 134–5
 information and communication technology, 135
 Novel Assessment of Nutrition in Ageing (NANA) project, 135
 nutrition screening tools, 135
 skilled interview techniques, 134
dietary assessment, 129
dietary assessment among children
 computerised methods, 131–3
 intake assessment, 130, 131–3
 portion size assessment, 130
 ethical and safety concerns, 129
 older ages, 130, 134
lignans, 92, 94
limiting nutrients
 identification, 6
 individual nutrient, 6
 nutrient–energy interactions, 6–7
linkage and linkage disequilibrium (LD) analysis, 201
lipoprotein metabolism
 apolipoprotein (apo) kinetics, 257–8
 atherosclerosis and, 271, 272
 human, 271
 modulators, 232
 rat and mouse model, 271
TAG kinetics, 258
live cell imaging
 chemical fluorescent probes, 297
 green fluorescent protein (GFP), 299, 300
 quantum dots, 299
low-and middle-income countries (LMICs), research in
 developing
 awareness, 128
 confidentiality, 128
 gross national income (GNI), 128
 logistical issues, 128
 malnutrition and micronutrient deficiency, 128
 study materials/data translation, 128
low-density lipoprotein (LDL), 270, 271, 274, 302, 320, 322
macronutrient and energy intake
 definition, 186
 fat, 93–94
 urinary
 protein, 92–93
 sugars, 94
magnetic resonance
 glycogen measurement by natural abundance (13C MRS), 177
 magnetic resonance imaging (MRI), 176
 magnetic resonance spectroscopy (MRS), 177
 quantitative magnetic resonance (QMR), 176
 Malnutrition Universal Screening Tool (MUST), 135
measurement errors, dietary intake
 categories, 61
 correction
 energy adjustment, 64
 linear regression calibration, 64
 removing within-person variation, 64–5
 evaluation, 63
 random between-person error, 61–2, 62
 reduction
 random errors, 63
 systematic errors, 63
 systematic between-person errors, 62–3
metabolomics and lipidomics
 biomarker identification, 209
 definition, 208
 human metabolic profile, 209–10
 LC-based techniques, 209
 mass spectroscopy (MS), 208
 nuclear magnetic resonance (NMR) spectroscopy, 208
 in nutrition research, 210
 orthogonal partial least squares discriminant analysis (O-PLS-DA), 210
metabolomics and lipidomics (cont’d)
 partial least squares discriminant analysis (PLS-DA), 210
 permutation testing, 210
 principal component analysis (PCA), 210
 sample preparation, 209
 statistical tools, 210
 steps, 209
methylenetetrahydrofolate reductase (MTHFR)
 folate/homocysteine metabolism, 230
 physiological impact, 231
microbiome, 7–8
micronutrient intake
 B vitamins, 95
 calcium, 96
 chromium, 96–7
 consumption, 98
 copper, 97
 effect, absorption and metabolism, 98, 99
 iodine, 97
 iron, 97
 magnesium, 97
 manganese, 97
 molybdenum, 97
 potassium, 97
 selenium, 97
 sodium, 97–8
 status, 94
 vitamin A, 94–5
 vitamin C, 95
 vitamin D, 95–6, 96
 vitamin E, 96
 vitamin K, 96
 zinc, 98
Mini Nutritional Assessment–Short Form (MNA–SF), 135
mitochondrion, 212
mixed-methods research
 concurrent mixed methods, 167
 sequential mixed methods, 166–7
 transformative mixed-methods, 167
monogenic autosomal-dominant disorders, 228, 229
multi-centre migration studies, 129
multiple linear regression, 24, 114, 118
multivariate analysis
 bioinformatics and systems biology, 238
 canonical correlation analysis (CCA), 239–40
 cluster analysis, 238–9
 data sets, 237
 dietary patterns, 65–6
 exome sequencing/RNAseq, 237
 partial least squares (PLS), 240
 principal component analysis (PCA), 239
 phenotype response variable, 238
 proteomics and metabolomics, 238
 single nucleotide polymorphisms (SNPs) arrays, 237
 statistical approaches, high-throughput data analysis, 238, 238
 muscle mass, body composition, 178
 muscle strength, body composition, 178
NAFLD see non-alcoholic fatty liver disease (NAFLD)
NAIDS see nutritionally acquired immunodeficiency syndrome
(NAIDS)
National Diet and Nutrition Survey (NDNS), 17, 17–18
NEFA see non-esterified fatty acids (NEFA)
network analysis
 active subnetworks identification methods, 242, 243
 biological system, 241–2
 edge-based scoring, 242
 heuristic approach, simulated annealing, 242
 high-quality interaction networks, 242
 jActiveModules algorithm, 242
 pathway analysis, 242
network inference
 biochemical reactions, 243
 Boolean networks, 243
 classifier algorithm, 240
 component-centric approach, 240
 data analysis and influence/association, 242
 equation based modelling, 243
 gradient-based methods, 244
 influence/association networks, 240
 metabolic and protein–protein interaction, 241
 non-linear optimisation techniques, 244
 parameter-estimation methods, 244
 parameter software tools, 244, 244
 reverse-engineering algorithms, 240
 software tools, 241, 241
 statistical measures, 241
next-generation sequencing (NGS), 201, 219, 221
non-alcoholic fatty liver disease (NAFLD), 273
non-communicable diseases (NCDs), 269, 277
non-esterified fatty acids (NEFA), 259
nutrigenetics
 candidate gene approach, 229–31
 disease prevention and therapeutics, 233, 233
 DNA and genetic variation, 226–9
 epigenetic modifications, 200
 genotype–phenotype associations, 232
 genome-wide association studies (GWAS), 231–2
 human genome sequence, 225
 next-generation sequencing, 232
 nutritional assessment, 86
 population-based dietary recommendations, 233
 research tools, 229, 229
nutrition
 animal model, 265–76
 cancers and, 129
 cardiovascular disease, 129
 claims, 318
 constant internal environment, 2
 demand
 diet, 4, 5
 energy, 4
 food security, 4
 illness/stress, 5
 inadequate and excess intake, 6
 individual nutrients, 6
 ongoing cellular replication, 4
 and physical activity, 4
 protein, 5
 structure, body, 5
 and supply, 5
 economics, 324
 endogenous environment, 2
 endogenous formation, 7
 epidemiology, 86
 health, 2
 individual as organised system, 3–4
 integrated system
 adaptation, 8–9
 growth and development, 8
 society as organised system, 9–10
 intervention studies, 45–6, 86–7
isotopes see stable isotopes
limiting nutrients, 6–7
in low-income countries, 128
microbiome, 7–8
minority ethnic groups, 125–6
nutritional science, 2
research, 10–11
science of nutrition, 2–3
screening tools, 135
structured organisation, 3
nutritional data analysis
analysis of variance (ANOVA)
baseline value as covariate, 116, 116
construction, 117
degrees of freedom, 115
diet effect, 116
standard errors, 116
systolic blood pressure (SBP), 116, 116
Bayesian statistics, 121–2
collection, 108
dietary intake and life factors, 117, 117–18
food composition, 108
morbidity/mortality
categorical explanatory variable, 118
generalised linear models, 118
logistic regression, 118, 119
long-term, 118
survival data, 118–19
principal component analysis (PCA)
assessment, dietary patterns, 120
butter and cheese consumption, 120, 120
factors, 121
food intake data, 120
loadings, different foods, 120–121, 121
multivariate methods, 121
standardising variables, 120
regression modelling
body fat and triceps skinfold thickness, 112–14, 113
calibration, 115
explanatory variable, 112
measurement error, 115
multiple, 114, 114–15, 115
outcomes, 112
statistics
biological and measurement variability, 109
distributions, transformations and outliers, 109–10, 110
populations and sampling, 109
quantiles, 110–111, 111
scientific disciplines, 108
standard error and confidence interval, 111
tests and p-values, 111–12
variables types, 109
nutritionally acquired immunodeficiency syndrome (NAIDS), 302
Nutrition and Health Claims (NHC) Regulation
children’s health and development claims, 319
description, 317
health claims, 318
nutrient profile, 317
nutrition claims, 318
scientific evidence claim, 319
wording and communication, 319
nutrition science translation
ageing, healthy
life expectancy, birth, 312, 313
national media coverage, 314
behaviour change wheel, 323, 324
cardiocvascular disease (CVD), 307
communication channels, 307, 308
eyear development, 311
economics, 324
folic acid, 311–12, 312
food supply sustainability, 310–311
healthy eating, 315–16
hydration, 315
internet usage
age groups, 309, 309
in Britain, 309, 309
penetration rates, 307, 308
satiation and satiety, 314–15
social media, 310, 310
'omics' technologies
genomics, 199–201
metabolomics and lipidomics, 208–10
nutrition and human genome interaction, 198
proteomics see proteomics
transcriptomics, 201–4
Parkinson's disease, 303, 305
partial least squares (PLS) regression, 240
PCA see principal component analysis (PCA)
PCR see polymerase chain reaction (PCR)
personalised nutrition approaches, 200
photonic scanning, 172, 183
polymerase chain reaction (PCR), 218
population-based studies
case-control studies, 18–21
confounding, 25–6
cross-sectional survey, 16–18
ecological, 14–16
prospective longitudinal study, 21–5
positional cloning, 201
prevalence surveys see cross-sectional survey
principal component analysis (PCA), 239
prospective longitudinal study
caffeine intake, pregnancy, 22–3
vs. case-control studies, 22
cluster sampling, 23
cohort studies, 25
vs. cross-sectional studies, 22
data analysis, 24–5
description, 21
dietary exposure measurement, 24
European Prospective Investigation into Cancer and Nutrition (EPIC) cohort, 23
follow-up periods, 25
sample size calculations, 25
sampling frame, 23
time and cost, 25
UK Women's Cohort Study (UKWCS), 23
World Cancer Research Fund (WCRF) survey, 23
protein metabolism
muscle protein synthesis, 256
plasma proteins, 257
whole-body protein turnover, 256–7
proteomics
advantage, 205
definition, 204
enzymes, structural proteins and cell signalling proteins, 205
extracellular proteins, 204–5
human proteome, 206
in nutrition studies
proteomics (cont’d)

design and execution, 208
isotope-coded affinity tags (ICAT), 207
lysate, 206
mass spectrometers, quality and sensitivity, 208
proteins identification method, 206–7, 207
SDS-PAGE, 206–7
‘shotgun proteomics’, 207
phosphorylation, 206
post-translational modifications, 206
proteins, 204
proteome, 204
structural proteins, 204
ubiquitination, 206

public health communications

nutrition and health, 321
sodium, 322
vitamin D, 322

qualitative interviewer, 158
qualitative research methods see food-related behaviour
quantitative magnetic resonance (QMR), 176
quartiles, 24, 110, 111, 119
quasi-experimental studies
designs, 31–2
public health, 31
quota sampling, 126, 166

randomised controlled trial (RCT) study
cluster randomised design, 31
factorial design, 31
Latin square design, 31
parallel and cross-over, 29, 30, 31
‘placebo effect’, 29
run-in period, 31

RCT study see randomised controlled trial (RCT) study

recommended dietary intakes (RDI), 86
retinol equivalents (RE), 73, 86

sampling and recruitment, 153, 154
saturates, 322–3
screeners/brief dietary assessment methods, 56
Seniors in the Community: Risk Evaluation for Eating and Nutrition-II (Screen II), 135
Singapore Longitudinal Ageing Study, 17
single nucleotide polymorphisms (SNPs), 199, 227, 228
sleeping metabolic rate (SMR), 192, 193–194
stable isotopes
application, 251
body composition, 263
carbohydrate metabolism, 262
carbon natural abundance, 251, 251
cellular models, nutrition, 263
cholesterol absorption and synthesis, 258–9

13C-labelled metabolite, 254
deuterium-labelled fatty acids, 250
dual isotope method, 254–5
fatty acid metabolism, 259–62
habitual nutrition, 251
isotope dilution, 253–4
lipoprotein metabolism, 257–8
mathematical modelling techniques, 263
measurement techniques, biological matrix
animal-derived macronutrients, 253
GCMS, 252
Isotope Ratio Mass Spectrometer (IRMS), 252

mass analyser, 252
muscle protein synthetic response, 253
protein digestion and absorption kinetics, 253
tracers of minerals and trace elements, 253
metabolism and nutrition, humans, 250
natural abundance, 251
precursor product methods, 255
protein metabolism, 256–7
total energy expenditure (TEE), doubly labelled water, 262, 263
tracer:tracee ratio (TTR), 250
triacylglycerol (TAG) kinetics, 255
vitamin absorption and metabolism, 255

stature, body composition, 170
total body potassium (TBK), 173
total body water (TBW), 138, 172–3
total energy expenditure (TEE)
basal metabolic rate, 194, 262
body size and physical activity, 195, 196
body weight, 262
decay curves, 262, 263
energy balance, 262
respiratory quotient (RQ), 262
thermic effect of food and physical activity, 262
traditional dietary assessment methods
characteristics, errors and potential for standardisation, 49, 50

observation method
clinical setting, 56
dietary supplements, 56
diet history methods, 53
epidemiological setting, 56–7
food frequency questionnaire (FFQ), 53–6
food record/food diary, 51, 52
24-hour dietary recall method, 52, 53
objective assessment, 49
public health settings, 57
screeners/brief dietary assessment methods, 56

transcriptomics
data analysis, 203–4
DNA microarrays, 201–2
genes within single gene lists, 204
microarrays, 202–3, 203
northern blotting, 201
PPARγ co-activator 1a (PGC-1α), 202
reverse transcription polymerase chain reaction (RT-PCR), 201
trans fatty acids, 323
transferability, 159
treeclet transform method, 66

UK Women’s Cohort Study (UKWCS), 23, 24
ultrasound, 181, 181–2
underwater weighing (UWW), 171
United States Department of Agriculture (USDA), 71

World Cancer Research Fund (WCRF) survey, 23
World Medical Association’s Helsinki Declaration, 40

xenobiotics, 214
xenografts, 275
xerophthalmia, 269
X-linked disorder, 229

z-scores, 19, 137, 182, 242