CONTENTS

Foreword xxiii
Acknowledgments xxv
Contributors xxvii

1. INTRODUCTION

Mircea Eremia and Mohammad Shahidehpour

PART I POWER SYSTEM MODELING AND CONTROL

2. SYNCHRONOUS GENERATOR AND INDUCTION MOTOR

Mircea Eremia and Constantin Bulac

2.1. Theory and Modeling of Synchronous Generator

2.1.1. Design and Operation Principles 9

2.1.2. Electromechanical Model of Synchronous Generator: Swing Equation 13

2.1.3. Electromagnetic Model of Synchronous Generator 17

2.1.3.1. Basic Equations 17

2.1.3.2. Park Transformation 24

2.1.3.3. Park Equations of Synchronous Generator 27

2.1.3.4. Representation of Synchronous Generator Equations in Per Unit 33

2.1.3.5. Equivalent Circuits for the d- and q-Axes 38

2.1.3.6. Steady-State Operation of the Synchronous Generator 41

2.1.3.7. Synchronous Generator Behavior on Terminal Short Circuit 46

2.1.4. Synchronous Generator Parameters 55

2.1.4.1. Operational Parameters 55

2.1.4.2. Standard Parameters 59

2.1.5. Magnetic Saturation 66

2.1.5.1. Open-Circuit and Short-Circuit Characteristics 67

2.1.5.2. Considering the Saturation in Stability Studies 69

2.1.6. Modeling in Dynamic State 73

2.1.6.1. Simplified Electromagnetic Models 73

2.1.6.2. Detailed Model in Dynamic State 82

2.1.7. Reactive Capability Limits 90
3. MODELING THE MAIN COMPONENTS OF THE CLASSICAL POWER PLANTS 137
Mohammad Shahidehpour, Mircea Eremia, and Lucian Toma

3.1. Introduction 137

3.2. Types of Turbines 138
3.2.1. Steam Turbines 138
3.2.2. Gas Turbines 139
3.2.3. Hydraulic Turbines 140

3.3. Thermal Power Plants 143
3.3.1. Generalities 143
3.3.2. Boiler and Steam Chest Models 145
3.3.3. Steam System Configurations 148
3.3.4. General Steam System Model 151
3.3.5. Governing Systems for Steam Turbines 152
3.3.5.1. Mechanical Hydraulic Control (MHC) 153
3.3.5.2. Electrohydraulic Control (EHC) 155
3.3.5.3. Digital Electrohydraulic Control (DEHC) 157
3.3.5.4. General Model for Speed Governing Systems 157

3.4. Combined-Cycle Power Plants 158
3.4.1. Generalities 158
3.4.2. Configurations of Combined-Cycle Power Plants 159
3.4.3. Model Block Diagrams of Combined-Cycle Power Plant 160
4.5. Fault Ride-Through Capability
 4.5.1. Generalities 223
 4.5.2. Blade Pitch Angle Control for Fault Ride-Through 225
 References 226

5. SHORT-CIRCUIT CURRENTS CALCULATION 229

Nouredine Hadjsaid, Ion Triștiu, and Lucian Toma

5.1. Introduction 229
 5.1.1. The Main Types of Short Circuits 230
 5.1.2. Consequences of Short Circuits 231
5.2. Characteristics of Short-Circuit Currents 232
5.3. Methods of Short-Circuit Currents Calculation 236
 5.3.1. Basic Assumptions 236
 5.3.2. Method of Equivalent Voltage Source 237
 5.3.3. Method of Symmetrical Components 239
 5.3.3.1. General Principles 239
 5.3.3.2. The Symmetrical Components of Unsymmetrical Phasors 241
 5.3.3.3. Sequence Impedance of Network Components 247
 5.3.3.4. Unsymmetrical Fault Calculations 253
5.4. Calculation of Short-Circuit Current Components 264
 5.4.1. Initial Symmetrical Short-Circuit Current I_0' 264
 5.4.1.1. Three-Phase Short Circuit 264
 5.4.1.2. Phase-to-Phase Short Circuit 267
 5.4.1.3. Phase-to-Phase Short Circuit with Earth Connection 268
 5.4.1.4. Phase-to-Earth Short Circuit 268
 5.4.2. Peak Short-Circuit Current i_p 269
 5.4.2.1. Three-Phase Short Circuit 269
 5.4.2.2. Phase-to-Phase Short Circuit 271
 5.4.2.3. Phase-to-Phase Short Circuit with Earth Connection 271
 5.4.2.4. Phase-to-Earth Short Circuit 271
 5.4.3. DC Component of the Short-Circuit Current 271
 5.4.4. Symmetrical Short-Circuit Breaking Current I_b 272
 5.4.4.1. Far-from-Generator Short Circuit 272
 5.4.4.2. Near-to-Generator Short Circuit 272
 5.4.5. Steady-State Short-Circuit Current I_k 273
 5.4.5.1. Three-Phase Short Circuit of One Generator or One Power Station Unit 273
 5.4.5.2. Three-Phase Short Circuit in Nonmeshed Networks 276
 5.4.5.3. Three-Phase Short Circuit in Meshed Networks 276
 5.4.5.4. Unbalanced Short Circuits 277
 5.4.6. Applications 277
 References 289
6. ACTIVE POWER AND FREQUENCY CONTROL

Les Pereira

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1. Introduction</td>
<td>291</td>
</tr>
<tr>
<td>6.2. Frequency Deviations in Practice</td>
<td>293</td>
</tr>
<tr>
<td>6.2.1. Small Disturbances and Deviations</td>
<td>293</td>
</tr>
<tr>
<td>6.2.2. Large Disturbances and Deviations</td>
<td>293</td>
</tr>
<tr>
<td>6.3. Typical Standards and Policies for “Active Power and Frequency</td>
<td>294</td>
</tr>
<tr>
<td>Control” or “Load Frequency Control”</td>
<td></td>
</tr>
<tr>
<td>6.3.1. UCTE Load Frequency Control</td>
<td>294</td>
</tr>
<tr>
<td>6.3.1.1. Primary Control is by Governors</td>
<td>295</td>
</tr>
<tr>
<td>6.3.1.2. Secondary Control by Automatic Generation Controls (AGCs)</td>
<td>295</td>
</tr>
<tr>
<td>6.3.1.3. Tertiary Control</td>
<td>296</td>
</tr>
<tr>
<td>6.3.1.4. Self-Regulation of the Load</td>
<td>296</td>
</tr>
<tr>
<td>6.3.2. NERC (U.S.) Standards</td>
<td>296</td>
</tr>
<tr>
<td>6.3.3. Other Countries’ Standards</td>
<td>297</td>
</tr>
<tr>
<td>6.4. System Modeling, Inertia, Droop, Regulation, and Dynamic</td>
<td>297</td>
</tr>
<tr>
<td>Frequency Response</td>
<td></td>
</tr>
<tr>
<td>6.4.1. Block Diagram of the System Dynamics and Load Damping</td>
<td>297</td>
</tr>
<tr>
<td>6.4.2. Effect of Governor Droop on Regulation</td>
<td>298</td>
</tr>
<tr>
<td>6.4.3. Increasing Load by Adjusting Prime Mover Power</td>
<td>298</td>
</tr>
<tr>
<td>6.4.4. Parallel Operation of Several Generators</td>
<td>298</td>
</tr>
<tr>
<td>6.4.5. Isolated Area Modeling and Response</td>
<td>301</td>
</tr>
<tr>
<td>6.5. Governor Modeling</td>
<td>302</td>
</tr>
<tr>
<td>6.5.1. Response of a Simple Governor Model with Droop</td>
<td>303</td>
</tr>
<tr>
<td>6.5.2. Hydraulic Governor Modeling</td>
<td>304</td>
</tr>
<tr>
<td>6.5.2.1. Hydraulic Turbines</td>
<td>304</td>
</tr>
<tr>
<td>6.5.2.2. Hydraulic Governors</td>
<td>305</td>
</tr>
<tr>
<td>6.5.2.3. Hydraulic Turbine Model</td>
<td>306</td>
</tr>
<tr>
<td>6.5.2.4. PID Governor</td>
<td>306</td>
</tr>
<tr>
<td>6.5.3. Performance of Hydrogovernors with Parameters Variation</td>
<td>307</td>
</tr>
<tr>
<td>6.5.3.1. Isolated System Governor Simulations</td>
<td>307</td>
</tr>
<tr>
<td>6.5.3.2. Interconnected System Governor Simulations</td>
<td>309</td>
</tr>
<tr>
<td>6.5.4. Thermal Governor Modeling</td>
<td>311</td>
</tr>
<tr>
<td>6.5.4.1. General Steam System Model</td>
<td>311</td>
</tr>
<tr>
<td>6.5.4.2. Gas Turbine Model</td>
<td>312</td>
</tr>
<tr>
<td>6.5.5. Development of a New Thermal Governor Model in the WECC</td>
<td>315</td>
</tr>
<tr>
<td>6.5.5.1. The New Thermal Governor Model</td>
<td>315</td>
</tr>
<tr>
<td>6.5.5.2. Analysis of Test Data: Thermal Versus Hydro Units</td>
<td>318</td>
</tr>
<tr>
<td>6.6. AGC Principles and Modeling</td>
<td>328</td>
</tr>
<tr>
<td>6.6.1. AGC in a Single-Area (Isolated) System</td>
<td>329</td>
</tr>
<tr>
<td>6.6.2. AGC in a Two-Area System, Tie-Line Control, Frequency Bias</td>
<td>329</td>
</tr>
<tr>
<td>6.6.3. AGC in Multiarea Systems</td>
<td>332</td>
</tr>
</tbody>
</table>
6.7. Other Topics of Interest Related to Load Frequency Control
6.7.1. Spinning Reserves
6.7.2. Underfrequency Load Shedding and Operation in Islanding Conditions
References

7. VOLTAGE AND REACTIVE POWER CONTROL

Sandro Corsi and Mircea Eremia

7.1. Relationship Between Active and Reactive Powers and Voltage
7.1.1. Short Lines
7.1.2. Taking into Account the Shunt Admittance
7.1.3. Sensitivity Coefficients

7.2. Equipments for Voltage and Reactive Power Control
7.2.1. Reactive Power Compensation Devices
7.2.1.1. Shunt Capacitors
7.2.1.2. ShuntReactors
7.2.2. Voltage and Reactive Power Continuous Control Devices
7.2.2.1. Synchronous Generators
7.2.2.2. Synchronous Compensators
7.2.2.3. Static VAr Controllers and FACTS
7.2.3. On-Load Tap Changing Transformers
7.2.3.1. Generalities
7.2.3.2. Switching Technologies
7.2.3.3. Determination of the Current Operating Tap
7.2.3.4. Static Characteristic of the Transformer
7.2.3.5. Various Applications of the OLTC Transformers for Voltage and Reactive Power Control
7.2.4. Regulating Transformers
7.2.4.1. In-Phase Regulating Transformer (IPRT)
7.2.4.2. Phase Shifting Transformers

7.3. Grid Voltage and Reactive Power Control Methods
7.3.1. General Considerations
7.3.2. Voltage–Reactive Power Manual Control
7.3.2.1. Manual Voltage Control by Reactive Power Flow
7.3.2.2. Manual Voltage Control by Network Topology Modification
7.3.3. Voltage–Reactive Power Automatic Control
7.3.3.1. Automatic Voltage Control of the Generator Stator Terminals
7.3.3.2. Automatic Voltage Control by Generator Line Drop Compensation
7.3.3.3. Automatic High-Side Voltage Control at a Power Plant
7.4. Grid Hierarchical Voltage Regulation
7.4.1. Structure of the Hierarchy
7.4.1.1. Generalities
7.4.1.2. Basic SVR and TVR Concepts
7.4.1.3. Primary Voltage Regulation
7.4.1.4. Secondary Voltage Regulation: Architecture and Modeling
7.4.1.5. Tertiary Voltage Regulation
7.4.2. SVR Control Areas
7.4.2.1. Procedure to Select the Pilot Nodes and to Define the Control Areas
7.4.2.2. Procedure to Select the Control Generators
7.4.3. Power Flow Computation in the Presence of the Secondary Voltage Regulation
7.5. Implementation Study of the Secondary Voltage Regulation in Romania
7.5.1. Characteristics of the Study System
7.5.2. SVR Areas Selection
7.6. Examples of Hierarchical Voltage Control in the World
7.6.1. The French Power System Hierarchical Voltage Control
7.6.1.1. General Overview
7.6.1.2. Original Secondary Voltage Regulation
7.6.1.3. Coordinated Secondary Voltage Regulation
7.6.1.4. Performances and Results of Simulations
7.6.1.5. Conclusion on the French Hierarchical Voltage Control System
7.6.2. The Italian Hierarchical Voltage Control System
7.6.2.1. General Overview
7.6.2.2. Improvements in the Power System Operation
7.6.2.3. Conclusions on the Italian Hierarchical Voltage Control System
7.6.3. The Brazilian Hierarchical Voltage Control System
7.6.3.1. General Overview
7.6.3.2. Results of the Study Simulations
7.6.3.3. Conclusions on the Brazilian Voltage Control System

References

PART II POWER SYSTEM STABILITY AND PROTECTION

8. BACKGROUND OF POWER SYSTEM STABILITY
S.S. (Mani) Venkata, Mircea Eremia, and Lucian Toma

8.1. Introduction
8.2. Classification of Power Systems Stability
8.2.1. Rotor Angle Stability
8.2.1.1. Small-Disturbance (or Small-Signal) Rotor Angle Stability 460
8.2.1.2. Large-Disturbance Rotor Angle Stability or Transient Stability 461
8.2.2. Voltage Stability 462
8.2.3. Frequency Stability 467
8.3. Parallelism Between Voltage Stability and Angular Stability 469
8.4. Importance of Security for Power System Stability 469
8.4.1. Power System States 470
8.4.2. Power Flow Security Limits 472
8.4.3. Services to Meet Power System Security Constraints 473
8.4.4. Dynamic Security Assessment 474
References 475

9. SMALL-DISTURBANCE ANGLE STABILITY AND ELECTROMECHANICAL OSCILLATION DAMPING 477
Roberto Marconato and Alberto Berizzi

9.1. Introduction 477
9.2. The Dynamic Matrix 478
9.2.1. Linearized Equations 478
9.2.2. Building the Dynamic Matrix 481
9.3. A General Simplified Approach 482
9.3.1. Inertia and Synchronizing Power Coefficients 483
9.3.2. Electromechanical Oscillations 486
9.3.2.1. Oscillation Modes 486
9.3.2.2. Oscillation Amplitudes and Participation Factors 489
9.3.3. Numerical Examples 493
9.3.3.1. Application 1: Two-Area Test System 494
9.3.3.2. Application 2: Three-Area Test System 497
9.4. Major Factors Affecting the Damping of Electromechanical Oscillations 501
9.4.1. Introduction 501
9.4.3.1. Introduction 507
9.4.3.2. Contribution to Damping Due to Generator Structure 512
9.4.3.3. Contribution of the Primary Voltage Control 514
9.4.3.4. Effect of Primary Frequency Control 537
9.4.3.5. Outline of Other Contributions 544
9.4.4. Summary of the Major Factors Affecting the Damping of Electromechanical Oscillations 545
9.5. Damping Improvement 546
9.5.1. Introduction 546
9.5.2. Modal Synthesis Based on the Theory of Small Shift Poles 550
10. TRANSIENT STABILITY

Nikolai Voropai and Constantin Bulac

10.1. General Aspects 570
10.2. Direct Methods for Transient Stability Assessment 572
 10.2.1. Equal Area Criterion 572
 10.2.1.1. Fundamentals of Equal Area Criterion 572
 10.2.1.2. Calculation of the Fault Clearing Time 575
 10.2.1.3. Two Finite Power Synchronous Generators 579
 10.2.2. Extended Equal Area Criterion–EEAC 580
 10.2.3. The SIME (SIngle - Machine Equivalent) Method 582
 10.2.3.1. Method Formulation 583
 10.2.3.2. Criteria and Degree of Instability 585
 10.2.3.3. Criteria and Corresponding Stability Reserve 585
 10.2.3.4. Identification of the OMIB Equivalent 586
 10.2.4. Direct Methods Based on Lyapunov’s Theory 587
 10.2.4.1. Lyapunov’s Method 587
 10.2.4.2. Designing the Lyapunov Function 590
 10.2.4.3. Determination of Equilibrium 594
 10.2.4.4. Extension of the Direct Lyapunov’s Method 596
 10.2.4.5. New Approaches 601
10.3. Integration Methods for Transient Stability Assessment 603
 10.3.1. General Considerations 603
 10.3.2. Runge–Kutta Methods 608
 10.3.3. Implicit Trapezoidal Rule 609
 10.3.4. Mixed Adams-BDF Method 611
10.4. Dynamic Equivalents 614
 10.4.1. Generalities 614
 10.4.2. Simplification of Mathematical Description of a System 617
 10.4.2.1. The Disturbance Impact Index 617
 10.4.2.2. The Study of the Disturbance Impact Index 617
 10.4.3. Estimating the System Element Significance 621
 10.4.3.1. Index of the System Structural Connectivity 621
 10.4.3.2. Significance of a System Element 622
10.4.4. Coherency Estimation 623
 10.4.4.1. Equation of the Mutual Motion of a Pair of Machines 623
 10.4.4.2. Coherency Indices 625
 10.4.4.3. Clustering of Coherency Indices 628
10.4.5. Equivalencing Criteria 631
10.4.6. Center of Inertia. Parameters of the Equivalent 634

10.5. Transient Stability Assessment of Large Electric Power Systems 638
 10.5.1. Characteristics of Large Electric Power System 638
 10.5.2. Initial Conditions 639
 10.5.3. Standard Conditions for Transient Stability Studies 639
 10.5.3.1. Studied Conditions and Disturbances 639
 10.5.3.2. Stability Margins 641
 10.5.3.3. System Stability Requirements 642
 10.5.4. Reducing the Studied Conditions by Structural Analysis 643
 10.5.5. Using the Simplified Models and Direct Methods 644

10.6. Application 645

References 651

11. VOLTAGE STABILITY 657

Mircea Eremia and Constantin Bulac

11.1. Introduction 657

11.2. System Characteristics and Load Modeling 658
 11.2.1. System Characteristics 658
 11.2.2. Load Modeling 660
 11.2.2.1. Load Characteristics 660
 11.2.2.2. Static Models 662
 11.2.2.3. Dynamic Models 664

11.3. Static Aspects of Voltage Stability 667
 11.3.1. Existence of Steady-State Solutions 667
 11.3.2. Operating Points and Zones 670

 11.4.1. Interaction between Electrical Network and Load 674
 11.4.2. Influence of the On-Load Tap Changer 676
 11.4.2.1. Modeling the On-Load Tap Changing Dynamics 676
 11.4.2.2. The Effect of Automatic Tap Changing on the Possible Operating Points 678
 11.4.2.3. Influence of On-Load Tap Changing on the Voltage Stability 679
 11.4.3. Effect of the Generated Reactive Power Limitation 683
 11.4.4. The Minimum Voltage Criteria 686
11.5. Voltage Stability Assessment Methods

11.5.1. Overview of Voltage Collapse Criteria

11.5.2. Sensitivities Analysis Method: Local Indices

11.5.3. Loading Margin as Global Index

11.5.4. Some Aspects of the Bifurcations Theory

11.5.4.1. Generalities

11.5.4.2. Hopf Bifurcation

11.5.4.3. Saddle-node Bifurcation

11.5.4.4. Singularity Induced Bifurcation

11.5.4.5. Global Bifurcations

11.5.5. The Smallest Singular Value Technique. VSI Global Index

11.5.6. Modal Analysis of the Reduced Jacobian Matrix

12. POWER SYSTEM PROTECTION

Klaus-Peter Brand and Ivan De Mesmaeker

12.1. Introduction

12.1.1. Motivation

12.1.2. The Task of Protection

12.1.3. Basic Protection Properties and Resulting Requirements

12.1.4. From System Supervision to Circuit Breaker Trip

12.1.5. Main Operative Requirements

12.1.5.1. Selectivity

12.1.5.2. Reliability

12.1.5.3. Speed and Performance

12.1.5.4. Adaptation

12.1.5.5. Adaptive Protection

12.1.5.6. Backup Protection
12.1.5.7. General Remarks About Features Like Performance, Reliability, and Availability 742

12.1.6. Advantages of State-of-the-Art Protection 742

12.2. Summary of IEC 61850 744

12.3. The Protection Chain in Details 746

12.3.1. Copper Wires vs. Serial Links 746

12.3.2. Supervision 746

12.3.3. Values Measured for Protection 748

12.3.3.1. Nonelectrical Values 748

12.3.3.2. Electrical Values 748

12.3.4. Data Acquisition from Sensors 748

12.3.4.1. Sensors 748

12.3.4.2. A/D Conversion and Merging Unit 750

12.3.4.3. Time Synchronization 750

12.3.5. Protection Data Processing 751

12.3.5.1. General 751

12.3.5.2. Trip Decision and Related Information 751

12.3.5.3. Other Data Handling Features 751

12.3.6. Data Sending to the Actuators 751

12.3.7. Process Interface 752

12.3.8. Circuit Breaker 752

12.3.9. Power Supply 753

12.4. Transmission and Distribution Power System Structures 753

12.5. Properties of the Three-Phase Systems Relevant for Protection 755

12.5.1. Symmetries 755

12.5.2. Unbalance 756

12.5.3. Symmetrical Components 758

12.6. Protection Functions Sorted According to the Objects Protected 759

12.6.1. Protection Based on Limits of Locally Measured Values 759

12.6.1.1. Overcurrent and Time Overcurrent Protection 760

12.6.1.2. Overload Protection 760

12.6.1.3. Frequency Protection 761

12.6.1.4. Voltage Protection 761

12.6.1.5. Limit Supervision and Protection 761

12.6.1.6. Protection with Improvement of Selection by Time Delays 762

12.6.1.7. Protection with Improvement of Selection by Communication 763

12.6.2. Protection with Fault Direction Detection 764

12.6.2.1. Directional Protection 764

12.6.2.2. Improvement of Directional Protection by Communication 765
12.6.3. Impedance Protection 766
 12.6.3.1. Distance Protection 766
 12.6.3.2. Special Impedance-Based Functions 768
12.6.4. Current Differential Functions 768
 12.6.4.1. Differential Protection 768
 12.6.4.2. Application Issues for Busbar Protection 770
 12.6.4.3. Application Issues for Line Differential Protection 771
 12.6.4.4. Comparative Protection as Simplified Differential Protection 771
12.6.5. Protection-Related Functions 772
 12.6.5.1. Breaker Failure Protection 772
 12.6.5.2. Autoreclosing 772
 12.6.5.3. Synchrocheck 773
12.7. From Single Protection Functions to System Protection 773
 12.7.1. Single Function and Multifunctional Relays 773
 12.7.2. Adaptive Protection 774
 12.7.3. Distributed Protection 774
 12.7.3.1. Differential Object Protection Functions 774
 12.7.3.2. Directional Object Protection Functions 775
 12.7.4. Wide Area Protection 775
 12.7.5. General Guide 776
 12.7.5.1. General Recommendations for Protection Application 776
 12.7.6. Security and Dependability 779
 12.7.7. Summary 780
12.8. Conclusions 780
Annex 12.1. Identification of Protection Functions 780
 A.12.1. General Remarks 780
 A.12.1.1. IEEE Device Numbers 780
 A.12.1.2. IEC Designation 781
 A.12.1.3. Logical Nodes Names 781
 A.12.2. Identification List 781
References 785

PART III GRID BLACKOUTS AND RESTORATION PROCESS 787

13. MAJOR GRID BLACKOUTS: ANALYSIS, CLASSIFICATION, AND PREVENTION 789
 Yvon Besanger, Mircea Eremia, and Nikolai Voropai
13.1. Introduction 789
13.2. Description of Some Previous Blackouts 792
 13.2.1. August 14, 2003 Northeast United States and Canada Blackout 793
 13.2.1.1. Precondition 793
13.2.1.2. Initiating Events
13.2.1.3. Cascading Events
13.2.1.4. Final State
13.2.1.5. What Stopped the Cascade Spreading?
13.2.1.6. Causes of Blackout
13.2.1.7. Recommendations to Prevent Blackouts

13.2.2. September 28, 2003 Italy Blackout
13.2.2.1. Precondition
13.2.2.2. Initiating Events
13.2.2.3. Cascading Events
13.2.2.4. Final State
13.2.2.5. Restoration
13.2.2.6. Root Causes of the Blackout
13.2.2.7. Recommendations to Prevent Blackouts

13.2.3. September 23, 2003 Eastern Denmark and Southern Sweden Blackout
13.2.3.1. Precondition
13.2.3.2. Initiating Events
13.2.3.3. Cascading Events
13.2.3.4. Final State

13.2.4. January 12, 2003 Blackout in Croatia
13.2.4.1. Precondition
13.2.4.2. Initiating Events
13.2.4.3. Cascading Events
13.2.4.4. Final State

13.2.5. May 25, 2005 Blackout in Moscow
13.2.5.1. Precondition
13.2.5.2. Initiating Events
13.2.5.3. Cascading Events
13.2.5.4. Final State

13.2.6. July 12, 2004 Greece Blackout
13.2.6.1. Precondition
13.2.6.2. Initiating Events
13.2.6.3. Cascading Events
13.2.6.4. Final State

13.2.7. July 2, 1996 Northwest U.S. Blackout
13.2.7.1. Precondition
13.2.7.2. Initiating Events
13.2.7.3. Cascading Events
13.2.7.4. Final State

13.2.8.1. Precondition
13.2.8.2. Initiating Events 818
13.2.8.3. Cascading Events 818
13.2.8.4. Final State 818

13.2.9. December 19, 1978 National Blackout in France 819
13.2.9.1. Precondition 819
13.2.9.2. Initiating Events 819
13.2.9.3. Cascading Events 819
13.2.9.4. Final State 820
13.2.9.5. Restoration 820
13.2.9.6. Causes of Blackout 820

13.2.10. January 12, 1987 Western France Blackout 820
13.2.10.1. Precondition 820
13.2.10.2. Initiating Events 820
13.2.10.3. Cascading Events 820
13.2.10.4. Emergency Actions 821
13.2.10.5. Causes of Blackout 821

13.2.11. March 13, 1989 Hydro-Quebec System Blackout Response to Geomagnetic Disturbance 822
13.2.11.1. Precondition 822
13.2.11.2. Initiating and Cascading Events 823
13.2.11.3. Causes of the SVC Tripping 823
13.2.11.4. Equipment Damage 825
13.2.11.5. Lessons Learned 825

13.2.12. January 17, 1995 Japan Blackout After Hanshin Earthquake 826
13.2.12.1. Precondition 826
13.2.12.2. Supply and Demand 826
13.2.12.3. Damage to Electric Power Facilities 827
13.2.12.4. Restoration of Electricity Supply 828

13.2.13. European Incident of November 4, 2006 830
13.2.13.1. Precondition 830
13.2.13.2. Initiating Events 830
13.2.13.3. Cascading Events 832
13.2.13.4. Final State 833
13.2.13.5. Resynchronization 835

13.2.14. Some Lessons Learned 835

13.3. Analysis of Blackouts 835

13.3.1. Classification of Blackouts 836
13.3.1.1. Precondition 836
13.3.1.2. Initiating Events 837
13.3.1.3. Cascading Events 837

13.3.2. Blackouts: Types of Incidents 840

13.3.3. Mechanisms of Blackouts 841
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.3.3.1</td>
<td>Voltage Collapse</td>
<td>842</td>
</tr>
<tr>
<td>13.3.3.2</td>
<td>Frequency Collapse</td>
<td>842</td>
</tr>
<tr>
<td>13.3.3.3</td>
<td>Cascading Overload</td>
<td>843</td>
</tr>
<tr>
<td>13.3.3.4</td>
<td>System Separation</td>
<td>843</td>
</tr>
<tr>
<td>13.3.3.5</td>
<td>Loss of Synchronism</td>
<td>843</td>
</tr>
<tr>
<td>13.3.3.6</td>
<td>Generalization</td>
<td>844</td>
</tr>
<tr>
<td>13.4</td>
<td>Economical and Social Effects</td>
<td>847</td>
</tr>
<tr>
<td>13.5</td>
<td>Recommendations for Preventing Blackouts</td>
<td>849</td>
</tr>
<tr>
<td>13.6</td>
<td>On Some Defense and Restoration Actions</td>
<td>850</td>
</tr>
<tr>
<td>13.6.1</td>
<td>Defense Actions</td>
<td>851</td>
</tr>
<tr>
<td>13.6.2</td>
<td>Restoration Actions</td>
<td>854</td>
</tr>
<tr>
<td>13.7</td>
<td>Survivability/vulnerability of Electric Power Systems</td>
<td>856</td>
</tr>
<tr>
<td>13.7.1</td>
<td>Introduction</td>
<td>856</td>
</tr>
<tr>
<td>13.7.2</td>
<td>Conception</td>
<td>857</td>
</tr>
<tr>
<td>13.7.3</td>
<td>Technology of Study</td>
<td>858</td>
</tr>
<tr>
<td>13.7.4</td>
<td>Concluding Remarks</td>
<td>859</td>
</tr>
<tr>
<td>13.8</td>
<td>Conclusions</td>
<td>860</td>
</tr>
<tr>
<td>13.7.</td>
<td>Acknowledgments</td>
<td>860</td>
</tr>
<tr>
<td>13.8.</td>
<td>References</td>
<td>860</td>
</tr>
<tr>
<td>14</td>
<td>RESTORATION PROCESSES AFTER BLACKOUTS</td>
<td>864</td>
</tr>
<tr>
<td>14.1</td>
<td>Introduction</td>
<td>864</td>
</tr>
<tr>
<td>14.2</td>
<td>Overview of The Restoration Process</td>
<td>865</td>
</tr>
<tr>
<td>14.2.1</td>
<td>System Restoration Stages, Duration, Tasks, and Typical Problems</td>
<td>866</td>
</tr>
<tr>
<td>14.2.2</td>
<td>New Requirements</td>
<td>868</td>
</tr>
<tr>
<td>14.3</td>
<td>Black-Start-Up Capabilities of Thermal Power Plant: Modeling and Computer Simulations</td>
<td>869</td>
</tr>
<tr>
<td>14.3.1</td>
<td>Black-Start-Up of a Steam Group Repowered by a Gas Turbine</td>
<td>869</td>
</tr>
<tr>
<td>14.3.1.1</td>
<td>Black-Start-up Capability of a Single Steam Group</td>
<td>870</td>
</tr>
<tr>
<td>14.3.1.2</td>
<td>Black-Start-Up Capability of a Steam Group Repowered by a Gas Turbine</td>
<td>872</td>
</tr>
<tr>
<td>14.3.1.3</td>
<td>Control System Modifications to Improve Black-Start-Up Capabilities</td>
<td>874</td>
</tr>
<tr>
<td>14.3.2</td>
<td>Black-Start-Up of a Combined-Cycle Power Plant</td>
<td>877</td>
</tr>
<tr>
<td>14.3.2.1</td>
<td>Analysis of the Energization Maneuvers</td>
<td>878</td>
</tr>
<tr>
<td>14.3.2.2</td>
<td>Analysis of the Islanding Maneuvers</td>
<td>879</td>
</tr>
<tr>
<td>14.3.2.3</td>
<td>Description of Some Islanding Tests and Obtained Experimental Results</td>
<td>886</td>
</tr>
<tr>
<td>14.4</td>
<td>Description of Computer Simulators</td>
<td>888</td>
</tr>
</tbody>
</table>
15. COMPUTER SIMULATION OF SCALE-BRIDGING TRANSIENTS IN POWER SYSTEMS 900
Kai Strunz and Feng Gao

15.1. Bridging of Instantaneous and Phasor Signals 901
15.2. Network Modeling 903
 15.2.1. Companion Model for Network Branches 903
 15.2.2. Direct Construction of Nodal Admittance Matrix 906
15.3. Modeling of Power System Components 909
 15.3.1. Multiphase Lumped Elements 909
 15.3.2. Transformer 911
 15.3.3. Transmission Line 912
 15.3.3.1. Single-Phase Line Model 912
 15.3.3.2. Multiphase Line Model 916
 15.3.4. Synchronous Machine in $dq0$ Domain 918
 15.3.4.1. Electromagnetic and Mechanical Machine Equations 918
 15.3.4.2. Calculation of Real Part of Stator Current 920
 15.3.4.3. Calculation of Imaginary Part of Stator Current 920
 15.3.4.4. Calculation of Rotor Speed and Angle 922
 15.3.4.5. Integration with AC Network 922
 15.3.4.6. Initialization 923
15.4. Application: Simulation of Blackout 923
 References 926

Index 929